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Abstract. We introduce a new graph parameter called the burning
number, inspired by contact processes on graphs such as graph boot-
strap percolation, and graph searching paradigms such as Firefighter.
The burning number measures the speed of the spread of contagion in a
graph; the lower the burning number, the faster the contagion spreads.
We provide a number of properties of the burning number, including
characterizations and bounds. The burning number is computed for sev-
eral graph classes, and is derived for the graphs generated by the Iterated
Local Transitivity model for social networks.

1 Introduction

The spread of social influence is an active topic in social network anal-
ysis; see, for example, [3, 8, 13, 14, 18, 19]. A recent study on the spread
of emotional contagion in Facebook [16] has highlighted the fact that the
underlying network is an essential factor; in particular, in-person inter-
action and nonverbal cues are not necessary for the spread of the conta-
gion. Hence, agents in the network spread the contagion to their friends
or followers, and the contagion propagates over time. If the goal was to
minimize the time it took for the contagion to reach the entire network,
then which agents would you target with the contagion, and in which
order?

As a simplified, deterministic approach to these questions, we consider
a new approach involving a graph process which we call burning. Burning
is inspired by graph theoretic processes like Firefighting [4, 7, 10], graph
cleaning [1], and graph bootstrap percolation [2]. There are discrete time-
steps or rounds. Each node is either burned or unburned ; if a node is
burned, then it remains in that state until the end of the process. Every
round, we choose a node to burn. Once a node is burned in round t, in
round t + 1, each of its unburned neighbours becomes burned. In every
round, we choose one additional unburned node to burn (if such a node
is available). The process ends when all nodes are burned. The burning



number of a graph G, written by b(G), is the minimum number of rounds
needed for the process to end. For example, it is straightforward to see
that b(Kn) = 2. However, even for a relatively simple graph such as the
path Pn on n nodes, computing the burning number is more complex; in
fact, b(Pn) = ⌈n1/2⌉ as stated below in Theorem 3 (and proven in [6]).

Burning may be viewed as a simplified model for the spread of social
contagion in a social network such as Facebook or Twitter. The lower the
value of b(G), the easier it is to spread such contagion in the graph G.

Suppose that in the process of burning a graph G, we eventually burned
the whole graph G in k steps, and for each i, 1 ≤ i ≤ k, we denote the
node that we burn in the i-th step by xi. We call such a node simply a
source of fire. The sequence (x1, x2, . . . , xk) is called a burning sequence
for G. With this notation, the burning number of G is the length of a
shortest burning sequence for G; such a burning sequence is referred to
as optimal. For example, for the path P4 with nodes v1, v2, v3, v4, the
sequence (v2, v4) is an optimal burning sequence (See Figure 1). Note
that for a graph G with at least two nodes, we have that b(G) ≥ 2.

Fig. 1. Burning the path P4 (the open circles represent burned nodes).

The goal of the current paper is to introduce the burning number and
explore its core properties. A characterization of burning number via a
decomposition into trees is given in Theorem 1. As proven in [6], com-
puting the burning number of a graph is NP-complete, even for planar,
disconnected, or bipartite graphs. As such, we provide sharp bounds on
the burning number for connected graphs, which are useful in many cases
when computing the burning number. See Theorem 2.2 for bounds on the
burning number. We compute the burning number on the Iterated Local
Transitivity model for social networks (introduced in [5]) and grids; see
Theorem 8 and Theorem 9, respectively. In the final section, we summa-
rize our results and present open problems for future work.

2 Properties of the burning number

In this section, we collect a number of results on the burning number,
ranging from characterizations, bounds, to computing the burning num-



ber on certain kinds of graphs. We first need some terminology. If G is
a graph and v is a node of G, then the eccentricity of v is defined as
max{d(v, u) : u ∈ G}. The radius of G is the minimum eccentricity over
the set of all nodes in G. The center of G consists of the nodes in G with
minimum eccentricity.

Given a positive integer k, the k-th closed neighborhood of v is defined
to be the set {u ∈ V (G) : d(u, v) ≤ k} and is denoted by Nk[v]; we denote
N1[v] simply by N [v]. We first make the following observation. Suppose
that (x1, x2, . . . , xk), where k ≥ 3, is a burning sequence for a given graph
G. For 1 ≤ i ≤ k, the fire spread from xi will burn only all the nodes
within distance k − i from xi by the end of the k-th step. On the other
hand, every node v ∈ V (G) must be either a source of fire, or burned from
at least one of the sources of fire by the end of the k-th step. In other
words, any node of G that is not a source of fire must be an element of
Nk−i[xi], for some 1 ≤ i ≤ k. Therefore, we can see that (x1, x2, . . . , xk)
forms a burning sequence for G if and only if the following set equation
holds:

Nk−1[x1] ∪Nk−2[x2] ∪ . . . ∪N0[xk] = V (G). (1)

Here is another simple observation. Let G be a connected graph, and
(x1, x2, . . . , xk) be an optimal burning sequence for G. Then for each pair
i and j, with 1 ≤ i < j ≤ k, d(xi, xj) ≥ j − i. Since, otherwise, if
d(xi, xj) = l < j − i, then xj will be burned at stage l + i (< j) which is
a contradiction. Hence, we have the following corollary.

Corollary 1. Suppose that (x1, x2, . . . , xk) is a burning sequence for a
connected graph G. If for some node x ∈ V (G)\{x1, . . . , xk} and 1 ≤ j ≤
k − 1, we have that N [x] ⊆ N [xj], and for every i 6= j, d(x, xi) ≥ |i− j|,
then (x1, . . . , xj−1, x, xj+1, . . . , xk) is also a burning sequence for G.

2.1 Characterizations of burning number via trees

The following theorem provides an alternative characterization of the
burning number. Note that through the rest of this paper we consider
the burning problem for connected graphs. The depth of a node in a
rooted tree is the number of edges in a shortest path from the node to
the tree’s root. The height of a rooted tree T is the greatest depth in T .
A rooted tree partition of G is a collection of rooted trees which are sub-
graphs of G, with the property that the node sets of the trees partition
V (G).



Theorem 1. Burning a graph G in k steps is equivalent to finding a
rooted tree partition into k trees T1, T2, . . . , Tk, with heights at most (k −
1), (k− 2), . . . , 0, respectively such that for every 1 ≤ i, j ≤ k the distance
between the roots of Ti and Tj is at least |i− j|.

Proof. Assume that (x1, x2, . . . , xk) is a burning sequence for G. For all
1 ≤ i ≤ k, after xi is burned, in each round t > i those unburned nodes
of G in the (t − i)-neighborhood of xi will burn. Hence, any node v is
burned by receiving fire via a shortest path of burned nodes from a fire
source like xi (this path can be of length zero in the case that v = xi).
Hence, we may define a surjective function f : V (G) → {x1, x2, . . . , xk},
with f(v) = xi if v receives fire from xi, where i is chosen with the
smallest index. Now {f−1(x1), f

−1(x2), . . . , f
−1(xk)} forms a partition of

V (G) such that G[f−1(xi)] (the subgraph induced by f−1(xi)) forms a
connected subgraph of G. Since every node v in f−1(xi) receives the fire
spread from xi through a shortest path between xi and v, by deleting extra
edges in G[f−1(xi)] we can make a rooted subtree of G, called Ti with
root xi. Since every node is burned after k steps, the distance between
each node on Ti and xi is at most k − i. Therefore, the height of Ti is at
most k − i.

Fig. 2. A rooted tree partition.

Conversely, suppose that we have a decomposition of the nodes of G
into k rooted subtrees T1, T2, . . . , Tk, such that for each 1 ≤ i ≤ k, Ti

is of height at most k − i. Assume that x1, x2, . . . , xk are the roots of
T1, T2, . . . , Tk, respectively, and for each pair i and j, with 1 ≤ i < j ≤ k,
d(xi, xj) ≥ j − i. Then (x1, x2, . . . , xk) is a burning sequence for G, since
the distance between any node in Ti and xi is at most k − i. Thus, after
k steps the graph G will be burned. ⊓⊔



Figure 2 illustrates Theorem 1. The burning sequence is (x1, x2, x3).
We have shown the decomposition of G into subgraphs T1, T2, and T3

based on this burning sequence by drawing dashed curves around the
corresponding subgraphs. Each node has been indexed by a number cor-
responding to the step that it is burned.

The following corollary is useful for determining the burning number
of a graph, as it reduces the problem of burning a graph to burning its
spanning trees. First, note that for a spanning subgraph H of G, it is
evident that b(G) ≤ b(H) (since every burning sequence for H is also a
burning sequence for G).

Corollary 2. For a graph G we have that

b(G) = min{b(T ) : T is a spanning subtree of G}.

Proof. By Theorem 1, we assume that T1, T2, . . . , Tk is a rooted tree par-
tition of G, where k = b(G), derived from an optimal burning sequence
for G. If we take T to be a spanning subtree of G obtained by adding
edges sequentially between the Ti’s which do not induce a cycle in G, then
b(T ) ≤ k = b(G) ≤ b(T ), where the second inequality holds since T is a
spanning subgraph of G. ⊓⊔

2.2 Bounds

A subgraph H of a graph G is called an isometric subgraph if for every
pair of nodes u, v in H, we have that dH(u, v) = dG(u, v). For example,
a subtree of a tree is an isometric subgraph. As another example, if G
is a connected graph and P is a shortest path connecting two nodes of
G, then P is an isometric subgraph of G. The following theorem (with
proof omitted) shows that the burning number is monotonic on isometric
subgraphs.

Theorem 2. For any isometric subgraph H of a graph G, we have that
b(H) ≤ b(G).

However, this inequality may fail for non-isometric subgraphs. For
example, let H be a path of order 5, and form G by adding a universal
node to H. Then b(H) = 3, but b(G) = 2. The following corollary is an
immediate consequence of Theorem 2.

Corollary 3. If T is a tree and H is a subtree of T , then we have that
b(H) ≤ b(T ).



The burning number of paths is derived in the following result (with
proof omitted).

Theorem 3. For a path Pn on n nodes, we have that b(Pn) = ⌈n1/2⌉.

We have the following immediate corollaries.

Corollary 4. 1. For a cycle Cn, we have that b(Cn) = ⌈n1/2⌉.

2. For a graph G of order n with a Hamiltonian (that is, spanning) path,
we have that b(G) ≤ ⌈n1/2⌉.

The following theorem gives sharp bounds on the burning number.
For s ≥ 3, let K1,s denotes a star ; that is, a complete bipartite graph
with parts of order 1 and s. We call a graph obtained by a sequence of
subdivisions starting from K1,s a spider graph. In a spider graph G, any
path which connects a leaf to the node with maximum degree is called an
arm of G. If all the arms of a spider graph with maximum degree s are
of the same length r, we denote such a spider graph by SP (s, r).

Lemma 1. For any graph G with radius r and diameter d, we have that

⌈(d+ 1)1/2⌉ ≤ b(G) ≤ r + 1.

Proof. Assume that c is a central node of G with eccentricity r. Since
every node in G is within distance r from c, the fire will spread to all
nodes after r + 1 steps. Hence, r + 1 is an upper bound for b(G).

Now, let P be a path connecting two nodes u and v in G with d(u, v) =
d. Since P is an isometric subgraph of G, and |P | = d+1, by Theorem 2
and Theorem 3 we conclude that b(G) ≥ b(P ) = ⌈(d+ 1)1/2⌉. ⊓⊔

As proven in [6], the lower bound is achieved by paths, and the right side
bound is achieved by spider graphs SP (r, r). Note that when proving
b(G) ≤ r+1 in Theorem 1, we viewed G as covered by a ball with radius
r, with a central node chosen as a center of the ball. Hence, by burning a
central node, after r+1 steps every node in G will be burned. A covering
of G is a set of subsets of the nodes of G whose union is V (G). We may
generalize this idea to the case that there is a covering of G by a collection
of balls with a specified radius.

Theorem 4. Let {C1, C2, . . . , Ct} be a covering of the nodes of a graph
G, in which each Ci is a connected subgraph of radius at most k. Then
we have that b(G) ≤ t+ k.



We finish this section by providing some bounds on the burning num-
ber in terms of certain domination numbers. A k-distance dominating set
like Dk for G is a subset of nodes such that for every node u ∈ V (G)\Dk ,
there exists a node v ∈ Dk, with d(u, v) ≤ k. The number of the nodes
in a minimum k-distance dominating set of G is denoted by γk(G) and
we call it the k-distance domination number of G. We have the following
result (proof omitted).

Theorem 5. For any graph G with burning number k we have, γk−1(G) ≤
k.

We now give bounds on the burning number in terms of distance
domination numbers.

Theorem 6. If G is a connected graph, then we have that

1

2

(

min
i≥1

{γi(G) + i}+ 1
)

≤ b(G) ≤ min
i≥1

{γi(G) + i}.

Proof. The upper bound is an immediate corollary of Theorem 4. For the
lower bound, let k = b(G), and let (x1, . . . , xk) be a burning sequence.
Then we have that

V (G) ⊆ Nk−1[x1] ∪ . . . ∪N0[xk]

⊆ Nk−1[x1] ∪ . . . ∪Nk−1[xk].

Hence, {x1, . . . , xk} is a k-distance dominating set of G. Since by The-
orem 5 we have that γk−1(G) ≤ k, and γk−1(G) + (k − 1) ≤ 2k − 1 =
2b(G)−1, we derive that mini≥1{γi(G)+i} ≤ γk−1(G)+(k−1) ≤ 2b(G)−1.

⊓⊔

We have the following fact about the k-distance domination number
of graphs.

Theorem 7. [17] If G is a connected graph of order n with n ≥ k + 1,
then we have that

γk(G) ≤
n

k + 1
.

Now we use the bound in Theorem 7 for k-distance domination number
which provides another upper bound for the burning number.

Corollary 5. If G is a connected graph of order n, then we have that

b(G) ≤ 2n1/2 − 1.

We conjecture that for any connected graph G of order n, b(G) ≤ ⌈n1/2⌉.



3 Burning in the ILT Model

The Iterated Local Transitivity (ILT) model [5], simulates on-line social
networks (or OSNs). The central idea behind the ILT model is what
sociologists call transitivity : if u is a friend of v, and v is a friend of w,
then u is a friend of w. In its simplest form, transitivity gives rise to
the notion of cloning, where u is joined to all of the neighbours of v. In
the ILT model, given some initial graph as a starting point, nodes are
repeatedly added over time which clone each node, so that the new nodes
form an independent set. The only parameter of the model is the initial
graph G0, which is any fixed finite connected graph. Assume that for a
fixed t ≥ 0, the graph Gt has been constructed. To form Gt+1, for each
node x ∈ V (Gt), add its clone x′, such that x′ is joined to x and all of its
neighbours at time t. Note that the set of new nodes at time t+ 1 form
an independent set of cardinality |V (Gt)|.

The ILT model shares many properties with OSNs such as low average
distance, high clustering coefficient densification, and bad spectral expan-
sion; see [5]. The ILT model has also been studied from the viewpoint of
competitive diffusion which is one model of the spread of influence; see
[20].

We have the following theorem about the burning number of graphs
obtained based on ILT model. Even though the graphs generated by the
ILT model grow exponentially in order with t, we see that the burning
number of such networks remains constant.

Theorem 8. Let Gt be the graph generated at time t ≥ 1 based on the
ILT model with initial graph G0. If G0 has an optimal burning sequence
(x1, . . . , xk) in which xk has a neighbor that is burned in the (k − 1)-th
step, then b(Gt) = b(G0). Otherwise, b(Gt) = b(G0) + 1.

Proof. It is straightforward to see that G0 is an isometric subgraph of
Gt. Therefore, by Theorem 2, b(Gt) ≥ b(G0). On the other hand, assume
that (x1, . . . , xk) is an optimal burning sequence for G0. Since every node
x′ ∈ V (Gt)\V (G0) is adjacent to a node in G0, we have that (x1, . . . , xk)
is a burning sequence for the subgraph of Gt induced by V (Gt)\(NGt

[xk]\
NG0

[xk]). Thus, b(Gt) ≤ b(G0)+1. Hence, we conclude that always either
we have that b(Gt) = b(G0), or b(Gt) = b(G0) + 1.

Suppose that for every optimal burning sequence of G0 all the neigh-
bours of xk are burned in the k-th step. We claim that b(G1) = b(G0)+1.
Assume not; that is, b(G1) = b(G0). Let (y1, y2, . . . , yk) be an optimal
burning sequence for G1. Without loss of generality, by Corollary 1, and



the structure of G1, we can assume that {y1, y2, . . . , yk−1} ⊆ G0. Then,
we have two possibilities; either yk = x or yk = x′ ∈ V (G1) \ V (G0),
for some x ∈ V (G0). If the former holds, then to burn x′ by the end
of the k-th step, one of the nodes in the neighbourhood of x must be
burned in an earlier stage, which is a contradiction. Since in this case
(y1, y2, . . . , yk) forms a burning sequence for G0. If the latter holds, that
is, yk = x′ ∈ V (G1) \ V (G0), for some x ∈ V (G0), then, we must have
x = yk−1 (Note that all the neighbours of x must be burned either in the
(k − 1)-th step or the k-th step; Otherwise, yk is burned before the k-th
step, which is a contradiction). Otherwise, if x 6= yk−1, to burn x by the
k-th step, one of the neighbours of x must be burned in an earlier stage.
But then in this case, (y1, . . . , yk−1, x) forms an optimal burning sequence
for G0 such that one of the neighbours of x is burned in the (k − 1)-th
step which is a contradiction with the assumption. Thus, x = yk−1.

If all the neighbours of x, including y, are burned in the (k − 1)-th
step, then (y1, . . . , yk−2, y, x) forms an optimal burning sequence for G0.
But this is a contradiction with the assumption. If at least one of the
neighbours of x like y is burned at the k-th step, then (y1, . . . , yk−2, x, y)
forms an optimal burning sequence for G0, which is again a contradiction
with the assumption. Therefore, in this case, b(G1) = b(G0) is impossible,
and hence, b(G1) = b(G0) + 1.

Conversely, suppose that b(G1) = b(G0) + 1, and (x1, . . . , xk) is an
optimal burning sequence for G0. If xk has a neighbour that is burned at
stage k − 1, then x′k is also burned at stage k. Therefore, (x1, . . . , xk) is
a burning sequence for G1, and we have that b(G1) = b(G0), which is a
contradiction. Thus, b(G1) = b(G0) + 1, if and only if for every optimal
burning sequence of G0, say (x1, . . . , xk), all the neighbours of xk are
burned in stage k. By induction, we can conclude that b(Gt) = b(G0) + 1
if and only if for every optimal burning sequence of G0, say (x1, . . . , xk),
all the neighbours of xk are burned in stage k. Since starting from any
graph G0, for any t ≥ 1, b(Gt) = b(G0), or b(Gt) = b(G0)+1, we conclude
that b(Gt) = b(G0) if and only if for every optimal burning sequence of
G0, say (x1, . . . , xk) one of the neighbours of xk is burned in stage k− 1.

⊓⊔

4 Cartesian Grids

The Cartesian product of graphs G and H, written G�H, has nodes
V (G) × V (H) with (u, v) adjacent to (x, y) if u = x and vy ∈ E(H) or



v = y and ux ∈ E(G). The Cartesian m × n grid is Pm�Pn. We prove
the following theorem.

Theorem 9. If G is a Cartesian m × n grid with 1 ≤ m ≤ n, then we
have that

b(G) =

{

Θ(n) if m = O(n1/2)

Θ(mn)1/3 if m = Ω(n1/2).

Proof. First, we find a general upper bound by applying the covering
idea in Theorem 4 as follows. Using a layout as shown in Figure 3 we
may provide a covering of G by a collection of t closed neighbourhoods
of radius r. Note that the r-th neighbourhood of a vertex in a grid is a
subset of a “diamond” with diameter 2r + 1 in the Cartesian grid plane.
Thus, by a simple counting argument we have that

t =

⌈

m

2r + 1

⌉⌈

n

2r + 1

⌉

+

(⌈

m

2r + 1

⌉

+ 1

)(⌈

n

2r + 1

⌉

+ 1

)

≤ 2

(⌈

m

2r + 1

⌉

+ 1

)(⌈

n

2r + 1

⌉

+ 1

)

.

Fig. 3. A covering of the Cartesian grid.

Therefore, t = O(mn
r2

+ m
r + n

r ), and consequently, by Theorem 4,

b(G) = O
(

r +
mn

r2
+

m

r
+

n

r

)

. (2)

First, we consider the case that m = O(n1/2): Since Pn is an isomet-
ric subgraph of G, then by Theorem 3, we have that b(G) = Ω(n1/2).
Moreover, by taking r = n1/2, we derive that mn

r2 = m = O(n1/2), and
m
r + n

r ≤ 2n
r = O(n1/2). Thus, by equation (2), b(G) = O(n1/2), and we

conclude that in this case, b(G) = Θ(n1/2).



Now, suppose m = Ω(n1/2). Let S = (x1, x2, . . . , xk) be a burning
sequence for G. Thus, every node in G must be in the (k − i)-th neigh-
borhood of a node xi, for some 1 ≤ i ≤ k. By direct checking, the number
of nodes in the r-th closed neighborhood of a node x in G equals

|Nr[x]| = |{y ∈ G : d(x, y) ≤ r}| = 1 + 4 + · · ·+ 4r

= 1 + 2r(r + 1).

Therefore, by double counting the nodes of G and by (1), we have that

mn = |G| ≤ |Nk−1[x1]|+ |Nk−2[x2]|+ · · ·+ |N0[xk]|

= k +

k−1
∑

i=1

2i(i + 1) =
2k3 + k

3
.

Since the above inequality holds for all burning sequences, we conclude
that b(G) = Ω((mn)1/3). On the other hand, by taking r = (mn)1/3 in
equation 2, we derive that b(G) = O((mn)1/3). Hence, the proof follows.

⊓⊔

5 Conclusions and future work

We introduced a new graph parameter, the burning number of a graph,
written b(G). The burning number measures how rapidly social conta-
gion spreads in a given graph. We gave a characterization of the burning
number in terms of decompositions into trees, and gave bounds on the
burning number which allow us to compute it for a variety of graphs.
We determined the asymptotic order of the burning number of grids, and
determined the burning number in the Iterated Local Transitive model
for social networks.

Several problems remain on the burning number. We conjecture that
for a connected graph G of order n, b(G) ≤ ⌈n1/2⌉. Determining the burn-
ing number remains open for many classes of graphs, including trees and
disconnected graphs. It remains open to consider the burning number in
real-world social networks such as Facebook or LinkedIn. As Theorem 8
suggests, the burning number of on-line social networks is likely of con-
stant order as the network grows over time. We remark that burning
number generalizes naturally to directed graphs; one interesting direction
is to determine the burning number on Kleinberg’s small world model
[15], which adds random directed edges to the Cartesian grid.

A simple variation which leads to complex dynamics is to change the
rules for nodes to burn. As in graph bootstrap percolation [2], the rules



could be varied so nodes burn only if they are adjacent to at least r

burned neighbors, where r > 1. We plan on studying this variation in
future work.
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