
Chapter 1

Introduction

The discussion in this first chapter will give us a common
reference to present the results on the intersection of prob-
abilistic methods and graph searching games. As the name
suggests, this is a book on graphs and probability (we will
deal with the searching part more explicitly in the following
chapters). With a combinatorial audience in mind, we devote
a few brief pages to summarize some notation from graph
theory, and spend more time covering a few elementary but
key theorems in discrete probability. An advanced reader may
safely skim these pages and move directly to Chapter 2; this
chapter may be used, nevertheless, as a quick reference for
statements of key facts (like the Chernoff bounds) that we
freely use later. More involved tools, such as martingales or
the differential equations method, will be introduced in later
chapters as needed.

Some basic notation comes first. The set of natural num-
bers (excluding 0 for notation simplicity, although this nota-
tion often includes 0) is written N while the rationals and
reals are denoted by Q and R, respectively. If n is a natural
number, then define

[n] = {1, 2, . . . n}.

The Cartesian product of two sets A and B is written A×B.
The difference of two sets A and B is written A \ B. We use
the notation logn for the logarithm in the natural base.

1.1 Graphs

Graphs are our main objects of study. For further back-
ground in graph theory, the reader is directed to any of the
texts [34, 76, 180].

1



2 Graph Searching Games and Probabilistic Methods

A graph G = (V,E) is a pair consisting of a vertex set
V = V (G), an edge set E = E(G) consisting of pairs of
vertices. Note that E is taken as a multiset, as its elements
may occur more than once. We write uv if u and v form
an edge, and say that u and v are adjacent or joined. For
consistency, we will use the former term only. We refer to u
and v as endpoints of the edge uv. The order of a graph is
|V (G)|, and its size is |E(G)|. Graphs are often depicted by
their drawings; see Figure 1.2.
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FIGURE 1.1: An example of a graph of order and size 4.

A loop is an edge whose endpoints are equal. Multiple
edges are edges having the same pair of endpoints. If u and
v are the endpoints of an edge, then we say that they are
neighbors . The neighborhood N(v) = NG(v) of a vertex v is
the set of all neighbors of v. We usually restrict our attention
to simple graphs ; that is, graphs without loops and multiple
edges. Further, we only consider finite graphs.

The degree of a vertex v in G, written degG(v), is the num-
ber of neighbors of v in G; that is, degG(v) = |N(v)|. We will
drop the subscript G if the graph is clear from context. The
number δ(G) = minv∈V (G) deg(v) is the minimum degree of G,
and the number ∆(G) = maxv∈V (G) deg(v) is the maximum
degree of G. A graph is k-regular if each vertex has degree k.

The complement G of a graph G is the graph with vertex
set V (G) = V (G) and edge set E(G) defined by uv ∈ E(G)
if and only if uv /∈ E(G). See Figure 1.2. A clique (some-
times called a complete graph) is a set of pairwise-adjacent
vertices. The clique of order n is denoted by Kn. An inde-
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pendent set (sometimes called an empty graph) is a set of
pairwise-nonadjacent vertices. Note that an independent set
is the complement of a clique.
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FIGURE 1.2: The graph G and its complement G.

A graph G is bipartite if V (G) = X∪Y , where X∩Y = ∅,
and every edge is of the form xy, where x ∈ X and y ∈ Y ;
here X and Y are called partite sets . The complete bipartite
graph Km,n is the graph with partite sets X , Y with |X| = m,
|Y | = n, and edge set

E = {xy : x ∈ X, y ∈ Y }.

A graph G′ = (V ′, E ′) is a subgraph of G = (V,E) if
V ′ ⊆ V and E ′ ⊆ E. We say that G′ is a spanning subgraph
if V ′ = V . If V ′ ⊆ V , then

G[V ′] = (V ′, {uv ∈ E : u, v ∈ V ′})

is the subgraph of G induced by V ′. Similarly, if E ′ ⊆ E, then
G[E ′] = (V ′, E ′) where

V ′ = {v ∈ V : there exists e ∈ E ′ such that v ∈ e}

is an induced subgraph of G by E ′. Given a graph G = (V,E)
and a vertex v ∈ V , we define G − v = G[V \ {v}]. For an
edge e, G− e is the subgraph formed by deleting e.

An isomorphism from a graph G to a graph H is a bijec-
tion f : V (G) → V (H) such that uv ∈ E(G) if and only if
f(u)f(v) ∈ E(H). G is isomorphic to H , written G ∼= H , if
there is an isomorphism from G to H . See Figure 1.3 for two
isomorphic graphs.
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FIGURE 1.3: Two graphs isomorphic to the Petersen graph.

A walk in a graph G = (V,E) from vertex u to vertex
v is a sequence W = (u = v0, v1, . . . , vl = v) if vivi+1 ∈ E
for 0 ≤ i < l. The length l(W ) of a walk W is the number
of vertices in W minus 1 (that is, the number of edges). A
walk is closed if v0 = vl. A path is a walk in which the inter-
nal vertices are distinct. The path of order n is denoted by
Pn. A cycle is a closed path of length at least 3. We use the
notation Cn for a cycle of order n. A graph G is connected
if there is a walk (equivalently, a path) between every pair
of vertices; otherwise, G is disconnected . See Figure 1.4. A
connected component (or just component) of a graph G is a
maximal connected subgraph. A connected component con-
sisting of a single vertex is called an isolated vertex. A vertex
adjacent to all other vertices is called universal.

A forest is a graph with no cycle. A tree is a connected
forest; hence, every component of a forest is a tree. Each tree
on n vertices has size n − 1. An end-vertex is a vertex of
degree 1; note that every nontrivial tree (that is, a tree of
order at least 2) has at least two end-vertices. A spanning
tree is a spanning subgraph that is a tree. The graph Pn and
an n-vertex star K1,n−1 are trees. A hypercube of dimension n,
written Qn, has vertices elements of {0, 1}n, with two vertices
adjacent if they differ in exactly one coordinate. In particular,
Qn has order 2n and size n2n−1.

For distinct vertices u and v, the distance between u and
v, written dG(u, v) (or just d(u, v)) is the length of a shortest
path connecting u and v if such a path exists, and ∞, other-
wise. We take the distance between a vertex and itself to be
0. The diameter of a connected graph G, written diam(G), is
the maximum of all distances between vertices. If the graph
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FIGURE 1.4: A disconnected graph with 4 components.

is disconnected, then diam(G) is ∞. For a nonnegative in-
teger r and vertex u in G, define Nr(u) to be set of those
vertices of distance r from u in G. Note that N0(u) = {u}
and N1(u) = N(u).

The breadth-first search (BFS) process is a graph search
algorithm that begins at the root vertex v and explores all
the neighboring vertices. Then for each of those neighboring
vertices, it explores their unexplored neighbors, and so on,
until it explores the whole connected component containing
vertex v. Formally, the algorithm starts by putting vertex v
into a FIFO queue; that is, First In, First Out. In each round,
one vertex is taken from the queue and all neighbors that have
not yet been discovered are added to the queue. The process
continues until the queue is empty. It may be shown that the
BFS process naturally yields the breadth-first search tree.

A dominating set of a graph G = (V,E) is a set U ⊆ V
such that every vertex v ∈ V \U has at least one neighbor in U .
The domination number of G, written γ(G), is the minimum
cardinality of a dominating set in G. Note that the vertex set
V is a dominating set. However, it is usually possible to find
a much smaller dominating set (for example, consider a graph
with a universal vertex).

A matching in a graph G is a 1-regular subgraph. A match-
ing is maximal if it cannot be extended by adding an edge. A
matching is maximum if it contains the largest possible num-
ber of edges. A perfect matching in a graph G is a matching
in G that is a spanning subgraph of G.

The line graph of a graph G, written L(G), is the graph
whose vertices are the edges of G, with ef ∈ E(L(G)) when
e = uv and f = vw are both in E(G). See Figure 1.5 for an
example. For graphs G and H , define the Cartesian product of
G and H , written G�H, to have vertices V (G) × V (H), and
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FIGURE 1.5: The line graph of the Petersen graph (see Fig-
ure 1.3).

vertices (a, b) and (c, d) are adjacent if a = c and bd ∈ E(H)
or ac ∈ E(G) and b = d.

We can assign a direction to each edge of a graph G. A
simple directed graph (or digraph) G = (V,E) is a pair con-
sisting of a vertex set V = V (G) and an edge set E = E(G) ⊆
{(x, y) : x, y ∈ V (G), x 6= y}. See Figure 1.6; we use the ar-
row notation to depict an edge pointing from vertex to vertex.
The in-degree of a vertex v, written deg−(v), is the number

FIGURE 1.6: An example of a digraph.

of in-neighbors of v; that is,

deg−(v) = |{u ∈ V : (u, v) ∈ E}|.

Similarly, the out-degree of a vertex v, written deg+(v), is the
number of out-neighbors of v; that is,

deg+(v) = |{u ∈ V : (v, u) ∈ E}|.
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1.2 Probability

We next introduce some basic definitions and theorems
from discrete probability theory. For more details and any
proofs not provided here, see, for example, [8, 104].

Definitions

The set of possible outcomes of an experiment is called
the sample space and is denoted by Ω. An elementary event
is an event that contains only a single outcome in the sample
space. For example, a coin is tossed. There are two possible
outcomes: heads (H) and tails (T), so Ω = {H, T}. We might
be interested in the following events:

(i) the outcome is H,

(ii) the outcome is H or T,

(iii) the outcome is not H, and so on.

Note that we think of events as subsets of Ω.
A collection F of subsets of Ω is called a σ-field if it sat-

isfies the following conditions:

(i) ∅ ∈ F ,

(ii) if A1, A2, . . . ∈ F , then
⋃

iAi ∈ F , and

(iii) if A ∈ F , then Ac ∈ F .

The smallest σ-field associated with Ω is the collection F =
{∅,Ω}. If A is any subset of Ω, then F = {∅, A, Ac,Ω} is a
σ-field. The power set of Ω, which contains all subsets of Ω, is
obviously a σ-field. For reasons beyond the scope of this book,
when Ω is infinite, its power set is too large for probabilities to
be assigned reasonably to all its members. Fortunately, we are
going to deal with finite graphs and related structures only,
and so from now on it will always be assumed that a σ-field
is the power set of Ω.
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A probability measure P on (Ω,F), where F is a σ-field, is
a function P : F → [0, 1] such that

(i) P(Ω) = 1, and

(ii) if A1, A2, . . . is a sequence of pairwise disjoint events,
then

P

(
⋃

i

Ai

)
=
∑

i

P(Ai).

The triple (Ω,F ,P) is called a probability space.

Basic Properties

Below we present a few elementary properties of a proba-
bility space.

Theorem 1.2.1. If (Ω,F ,P) is a probability space, then for
any A,B ∈ F we have that

(i) P(∅) = 0,

(ii) P(Ac) = 1 − P(A),

(iii) if A ⊆ B, then P(A) ≤ P(B), and

(iv) P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

The last equality can be generalized to the Inclusion-
Exclusion Principle. Let A1, A2, . . . , An be events, where n ≥
2.

P

(
n⋃

i=1

Ai

)
=

∑

i

P(Ai) −
∑

i<j

P(Ai ∩Aj)

+ · · · + (−1)n+1P(A1 ∩ A2 ∩ · · · ∩ An).

If P(B) > 0, then the conditional probability that A occurs
given that B occurs is defined to be

P(A|B) =
P(A ∩ B)

P(B)
.

We state a number of facts about conditional probabilities
that will be used (sometimes implicitly) in later discussions.
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Theorem 1.2.2 (Law of total probabilities). If A ∈ F is an
event with P (A) > 0, and {Ai}ni=1 is a partition of A, then
we have that

P(B|A) =
1

P(A)

n∑

i=1

P(B|Ai)P(Ai).

In particular, taking A = Ω, we derive the following corol-
lary.

Corollary 1.2.3. If {Ai}ni=1 is a partition of the sample space
Ω, then we have that

P(B) =
n∑

i=1

P(B|Ai)P(Ai).

We also have the following.

Theorem 1.2.4 (Chain law). If A1, A2, . . . , An ∈ F , then for
any event B ∈ F such that P

((⋂n−1
i=1 Ai

)
∩B

)
> 0, we have

that

P

(
n⋂

i=1

Ai|B
)

= P(A1|B) · P(A2|A1 ∩B)

· · ·P
(
An

∣∣∣
(

n−1⋂

i=1

Ai

)
∩B

)
.

In particular, taking B = Ω, we obtain the following corol-
lary.

Corollary 1.2.5 (Principle of deferred decision). If we have
A1, A2, . . . , An ∈ F such that P

(⋂n−1
i=1 Ai

)
> 0, then

P

(
n⋂

i=1

Ai

)
= P(A1)P(A2|A1) · · ·P

(
An

∣∣∣
n−1⋂

i=1

Ai

)
.

We will make use of the following equalities.

Theorem 1.2.6 (Bayes’ law). If {Ai}ni=1 is a partition of the
sample space Ω and B ∈ F , then for any j ∈ [n]

P(Aj |B) =
P(B|Aj)P(Aj)∑n
i=1 P(B|Ai)P(Ai)

.

Proof. Note that

P(Aj |B) =
P(Aj ∩ B)

P(B)
=

P(B|Aj)P(Aj)∑n
i=1 P(B|Ai)P(Ai)

.
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The following elementary fact, also known as the union
bound , proves useful.

Lemma 1.2.7 (Boole’s inequality). If A1, A2, . . . , An are
events, then

P

(
n⋃

i=1

Ai

)
≤

n∑

i=1

P(Ai).

We also mention a generalization of Boole’s inequality,
known as Bonferroni’s inequality (see Lemma 1.2.8). This in-
equality can be used to find upper and lower bounds on the
probability of a finite union of events. Boole’s inequality is
recovered by setting k = 1. If k = n, then equality holds, and
the resulting identity is the inclusion-exclusion principle.

Lemma 1.2.8 (Bonferroni inequalities). Let

Bk =
∑

1≤i1<i2<···<ik≤n

P(Ai1 ∩ Ai2 ∩ · · · ∩Aik)

for all integers k ∈ [n]. Then for odd k ∈ [n] we have that

P

(
n⋃

i=1

Ai

)
≤

k∑

j=1

(−1)j−1Bj ,

and for even k ∈ [n] we have that

P

(
n⋃

i=1

Ai

)
≥

k∑

j=1

(−1)j−1Bj .

Useful Distributions

Here are some discrete probability distributions that we
use throughout.

(i) Bernoulli(p): Fix p ∈ (0, 1).

P(X = x) =

{
p, if x = 1;
1 − p, if x = 0.

Here p is the success probability and 1 − p is the failure
probability.

(ii) Binomial(n, p) (we will use Bin(n, p) instead): Fix p ∈
(0, 1) and n ∈ N. Let X be the number of successes in n
independent repetitions of the same Bernoulli(p) trial.
Then we have that

P(X = k) =

(
n

k

)
pk(1 − p)n−k, 0 ≤ k ≤ n.
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(iii) Hypergeometric(N,K, n): Let N,K, n, k ∈ N. The hy-
pergeometric distribution describes the probability of
k successes in n draws, without replacement, from a
population of size N that contains exactly K successes,
wherein each draw is either a success or a failure. A ran-
dom variable X follows the hypergeometric distribution
if

P(X = k) =

(
K
k

)(
N−K
n−k

)
(
N
n

) .

(iv) Geometric(p): Fix p ∈ (0, 1). Let X be the waiting time
(that is, the number of trials) for the first success in
independent repetitions of the same Bernoulli(p) trial.
Then it follows that

P(X = k) = (1 − p)k−1p, k = 1, 2, . . . .

Note that P(X > k) = (1 − p)k. Note also that the
geometric distribution is “memory-less”; that is, for r >
k,

P(X > r|X > k) =
P(X > r)

P(X > k)
=

(1 − p)r

(1 − p)k

= (1 − p)r−k = P(X > r − k).

(v) Poisson(λ) (we will use Po(λ) instead): Fix λ > 0.

P(X = k) =
λk

k!
e−λ, k = 0, 1, 2, . . . .

1.3 Asymptotic Notation and Useful Inequalities

Since many of our results will be asymptotic, in this sec-
tion we recall some asymptotic notation and some inequalities
that we frequently use.

Asymptotic Notation

Let f(n) and g(n) be two functions whose domain is some
fixed subset of R, and assume that g(n) > 0 for all n. We say
that f is of order at most g, written f(n) = O(g(n)), if there
exist constants A > 0 and N > 0 such that for all n > N, we
have that

|f(n)| ≤ A|g(n)|.
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Observe that f(n) could be negative or even oscillate be-
tween negative and positive values (for example, 2 sin(3n)n2 =
O(n2)). We say that f is of order at least g, written f(n) =
Ω(g(n)), if there exist constants A > 0 and N > 0 such that
for all n > N ,

f(n) ≥ Ag(n).

Finally, we say that f is of order g, written f(n) = Θ(g(n)),
if f(n) = O(g(n)) and f(n) = Ω(g(n)).

Note that for a polynomial p(n) of degree k, p(n) = Θ(nk).
Here are some useful properties of the O- and Ω- notation,
which are by no means exhaustive.

Theorem 1.3.1. For positive functions f(n) and g(n) we
have the following.

(i) O(f(n)) +O(g(n)) = O(f(n) + g(n)).

(ii) f(n)O(g(n)) = O(f(n)g(n)) and
f(n)Ω(g(n)) = Ω(f(n)g(n)).

(iii) If f(n) = O(1), then f(n) is bounded by a constant.

(iv) nr = O(ns) for any real numbers r, s with r ≤ s.

(v) nr = O(an) for any real numbers r, a with a > 1.

(vi) log n = O(nr) for any real number r > 0 (note that
this could be the logarithm to any base, since loga x =
logb x
logb a

= Θ(logb x) for any a, b > 1).

(vii) log log n = O(logn) and log log log n = O(log log n).

We say that f is of order smaller than g, written f(n) =
o(g(n)) or f(n) ≪ g(n), if

lim
n→∞

f(n)

g(n)
= 0.

Note that we do not control the sign of function f(n) while
in the next definition we do. The function f is of order larger
than g, written f(n) = ω(g(n)) or f(n) ≫ g(n), if

lim
n→∞

f(n)

g(n)
= ∞.
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Finally, f is asymptotically equal to g, written f(n) ∼ g(n) or
f(n) = (1 + o(1))g(n), if

lim
n→∞

f(n)

g(n)
= 1.

For more details about asymptotic notation see, for exam-
ple, [177].

Useful Inequalities

We collect a few inequalities that will be used throughout.
For all x ∈ R, ex ≥ 1+x. Hence, for all x ∈ R that are positive,
we have that log(1 + x) ≤ x. For the factorial function n!, we
have (n

e

)n
≤ n! ≤ en

(n
e

)n
.

Stirling’s formula, as stated in the following lemma, is often
useful for our estimates.

Lemma 1.3.2.
n! ∼

√
2πn

(n
e

)n
.

More precisely,

n! =
√

2πn
(n
e

)n
eλn , with

1

12n+ 1
< λn <

1

12n
,

so

n! =
√

2πn
(n
e

)n(
1 +

1

12n
+

1

288n2
+O(n−3)

)
.

For the binomial coefficient
(
n
k

)
, we have the inequalities

(n
k

)k
≤
(
n

k

)
≤
(en
k

)k
.

For the middle binomial coefficient
(
2m
m

)
, we have the better

estimate
22m

2
√
m

≤
(

2m

m

)
≤ 22m

√
2m

,

and from Stirling’s formula the asymptotic behavior may be
obtained as follows:

(
2m

m

)
=

(2m)!

(m!)2
∼

√
4πm(2m/e)2m

(√
2πm(m/e)m

)2 =
22m

√
πm

.
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1.4 Random Graphs

In this section, we supply five examples of probability
spaces. These notions of random graphs, especially the second
and to a lesser extent the third and fourth, will be central to
our discussion.

Let Ω be the family of all graphs with n vertices and ex-
actly M edges, 0 ≤M ≤

(
n
2

)
. To every graph G ∈ Ω we assign

a uniform probability; that is,

P({G}) =

((n
2

)

M

)−1

.

We denote this associated probability space by G(n,M).

Now, let 0 ≤ p ≤ 1 and let Ω be the family of all graphs
on n vertices. To every graph G ∈ Ω we assign a probability

P({G}) = p|E(G)|(1 − p)(
n
2)−|E(G)|.

Note that this indeed is a probability measure, since

∑

G

P({G}) =

(n
2)∑

m=0

((n
2

)

m

)
pm(1−p)(n

2)−m = (p+(1−p))(n2) = 1.

We denote this probability space by G(n, p). The space
G(n, p) is often referred to as the binomial random graph or
Erdős-Rényi random graph. Note also that this probability
space can informally be viewed as a result of

(
n
2

)
independent

coin flips, one for each pair of vertices u, v, where the prob-
ability of success (that is, adding an edge uv) is equal to p.

Let us also note that if p = 1/2, then P({G}) = 2−(n
2) for

any graph G on n vertices. We obtain a uniform probability
space.

Next, let Ω be the family of all d-regular graphs on n
vertices, where 0 ≤ d ≤ n− 1 and dn is even. (Note that the
condition dn is needed; otherwise, Ω = ∅.) To every graph
G ∈ Ω we assign a uniform probability; that is,

P({G}) =
1

|Ω| .

We refer to this space as the random regular graph of degree
d, and write Gn,d.
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As typical in random graph theory, we shall consider only
asymptotic properties of G(n,M) and G(n, p) as n → ∞,
where M = M(n) and, respectively, p = p(n) may and usu-
ally do depend on n. For Gn,d we typically concentrate on d
being a constant but it is also interesting to consider d = d(n)
tending to infinity with n. We say that an event in a prob-
ability space holds asymptotically almost surely (a.a.s.) if its
probability tends to one as n goes to infinity. For mode details
see, for example, the two classic books [35, 115] or more recent
monograph [94]. Random d-regular graphs are also discussed
in the survey [184].

Finally, we introduce the random geometric graph
G(Xn, rn), where (i) Xn is a set of n points located inde-
pendently uniformly at random in [0,

√
n]2, (ii) (rn)n≥1 is a

sequence of positive real integers, and (iii) for X ⊆ R2 and
r > 0, the graph G(X , r) is defined to have vertex set X , with
two vertices connected by an edge if and only if their spa-
tial locations are at Euclidean distance at most r from each
other. As before, we shall consider only asymptotic properties
of G(Xn, rn) as n → ∞. We will therefore write r = rn, we
will identify vertices with their spatial locations, and we will
define G(n, r) as the graph with vertex set [n] corresponding
to n locations chosen independently uniformly at random in
[0,

√
n]2 and a pair of vertices within Euclidean distance r

appear as an edge.
We will also consider the percolated random geometric

graph G(n, r, p), which is defined as a random graph with
vertex set [n] corresponding to n locations chosen indepen-
dently uniformly at random in [0,

√
n]2, and for each pair of

vertices within Euclidean distance at most r we flip a biased
coin with success probability p to determine whether there
is an edge (independently for each such a pair, and pairs at
distance bigger than r never share an edge). In particular, for
p = 1 we simply have the random geometric graph G(n, r).
Percolated random geometric graphs were recently studied by
Penrose [154] under the name soft random geometric graphs.

Alternatively, we can scale the space and define the model
in [0, 1]2. Of course, results from one model can be translated
to the other one and we will make sure that it is always clear
which model we have in mind. For more details, see, for ex-
ample, the monograph [155].
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We note that we use the notations G(n, p), G(n,M), and
G(n, r), but this will not cause confusion as it will be clear
from the context which of the corresponding three models we
are discussing.

1.5 Tools: First and Second Moment Methods

Events A,B are independent if

P(A ∩B) = P(A)P(B).

In general, events A1, A2, . . . , An are independent if for any
I ⊆ [n],

P

(
⋂

i∈I
Ai

)
=
∏

i∈I
P(Ai).

Intuitively, the property of independence means that the
knowledge of whether some of the events A1, A2, . . . , An oc-
curred does not affect the probability that the remaining
events occur.

A random variable on a probability space (Ω,F ,P) is a
function X : Ω → R that is F -measurable; that is, for any
x ∈ R,

{ω ∈ Ω : X(ω) ≤ x} ∈ F .
Random variables X, Y are independent if for every pair of
events {X ∈ A}, {Y ∈ B}, where A,B ⊆ R, we have that

P({X ∈ A} ∩ {Y ∈ B}) = P({X ∈ A})P({Y ∈ B}).

Thus, two random variables are independent if and only if
the events related to those random variables are independent
events.

The First Moment Method

Let (Ω,F ,P) be a finite probability space. The expectation
of a random variable X is defined as

E[X ] =
∑

ω∈Ω
P(ω)X(ω).
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A simple but useful property of expectation is the follow-
ing.

Lemma 1.5.1 (Linearity of expectation). For any two ran-
dom variables X, Y and a, b ∈ R, we have that

E[aX + bY ] = aE[X ] + bE[Y ].

Linearity of expectation implies that for all random vari-
ables X1, X2, . . . , Xn and all c1, c2, . . . , cn ∈ R,

E

[
n∑

i=1

ciXi

]
=

n∑

i=1

ciE[Xi].

This is a simple observation, but a powerful one. It is im-
portant to point out that it holds for both dependent and
independent random variables.

For an event A ∈ F , we define the indicator random vari-
able as follows:

IA(ω) =

{
1, if ω ∈ A,
0, otherwise.

It is evident that

E[IA] =
∑

ω∈Ω
P(ω)IA(ω) =

∑

ω∈A
P(ω) = P(A).

It is common that a random variable can be expressed as a
sum of indicators. In such case, the expected value can also
be expressed as a sum of expectations of corresponding indi-
cators.

The first moment method that we are about to introduce
is a standard tool used in investigating random graphs and
the probabilistic method. It is a useful tool to bound the prob-
ability that a random variable X satisfies X ≥ 1.

Theorem 1.5.2 (Markov’s inequality). If (Ω,F ,P) is a prob-
ability space, and X is a nonnegative random variable, then
for all ε > 0,

P(X ≥ ε) ≤ E[X ]

ε
.
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Proof. Note that

X = XIX≥ε +XIX<ε ≥ XIX≥ε ≥ εIX≥ε .

Hence, by linearity of expectation, we have that

E[X ] ≥ εE[IX≥ε] = εP(X ≥ ε),

and the theorem holds.

Markov’s inequality has a simple corollary, proved by set-
ting ε = 1.

Corollary 1.5.3 (The first moment method). If X is a non-
negative integer-valued random variable, then

P(X > 0) ≤ E[X ] .

The Second Moment Method

Next, we will use the variance to bound the probability
that a random variable X satisfies X = 0. The second moment
method that we are about to introduce is another standard
tool used in investigating random graphs. Let X be a random
variable. The variance of X is defined as

Var[X ] = E[(X − EX)2] = E[X2] − (E[X ])2 ,

that is,

Var[X ] =
∞∑

i=1

(xi − E[X ])2P(X = xi) .

We collect some elementary properties of the variance. For
random variables X and Y , the covariance Cov(X, Y ) is de-
fined as

Cov(X, Y ) = E[XY ] − (E[X ])(E[Y ]).

Theorem 1.5.4. Let X and Y be random variables, and let a
and b be real numbers. The variance operator has the following
properties.

(i) Var[X ] ≥ 0.

(ii) Var[aX + b] = a2Var[X ].

(iii)

Var[X + Y ] = Cov(X,X) + Cov(Y, Y ) + 2Cov(X, Y )

= Var[X ] + Var[Y ] + 2Cov(X, Y ).
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(iv) If X, Y are independent, then

Var[X + Y ] = Var[X ] + Var[Y ] .

The following theorem is a key tool to achieve our goal.

Theorem 1.5.5 (Chebyshev’s inequality). Let (Ω,F ,P) be
a probability space. If X is a random variable, then for any
ε > 0,

P

(
|X − E[X ]| ≥ ε

)
≤ Var[X ]

ε2
.

Proof. By Markov’s inequality

P(|Y | ≥ ε) = P(Y 2 ≥ ε2) ≤ E[Y 2]

ε2
.

Setting Y = X − E[X ] we derive the desired assertion.

In combinatorial applications of probability, the follow-
ing consequence of Chebyshev’s inequality plays an important
role, as we will develop in later chapters.

Theorem 1.5.6 (The second moment method). If X is a
nonnegative integer-valued random variable, then

P(X = 0) ≤ Var[X ]

(E[X ])2
=

E[X2]

(E[X ])2
− 1 .

The second moment method can easily be strengthened
using the Cauchy-Schwarz inequality.

Theorem 1.5.7 (The Cauchy-Schwarz inequality). For all
vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Rn, we
have that

(
n∑

i=1

xiyi

)2

≤
(

n∑

i=1

x2i

)(
n∑

i=1

y2i

)
.

Theorem 1.5.8 (The strong second moment method). If X
is a nonnegative integer-valued random variable, then

P(X = 0) ≤ Var[X ]

E[X2]
= 1 − (E[X ])2

E[X2]
.
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Proof. Note that X = X · IX>0. But

(E[X ])2 =
(
E[X · IX>0]

)2 ≤ E[X2] · E[I2X>0]

= E[X2] · E[IX>0] = E[X2] · P(X > 0)

yields

P(X = 0) = 1 − P(X > 0) ≤ 1 − (E[X ])2

E[X2]
=

Var[X ]

E[X2]
.

The last equality follows immediately from the definition of
the variance.

The bound in Theorem 1.5.8 is better than the bound in
Theorem 1.5.6, since E[X2] ≥ (E[X ])2. For many applications,
however, these bounds are equally powerful.

Examples of Both Methods

We will be using both the first and second moment meth-
ods many times in this book, especially the former. For il-
lustrative purposes, we conclude this section with simple ex-
amples of both methods. In particular, we will prove that
p = logn/n is the threshold for the disappearance of isolated
vertices in G(n, p).

First, we will show that a.a.s. there is no isolated vertex
in a random graph G(n, p) for

p = p(n) =
lnn+ ω(n)

n
,

where ω(n) is any function tending to infinity. (The case when
ω(n) tends to a constant c ∈ R will be discussed later.) Let
Ii denote the indicator random variable for the event when
the vertex i is isolated, where i ∈ [n]. The number of isolated
vertices in G(n, p) is X =

∑n
i=1 Ii. Since for every i ∈ [n]

P(Ii = 1) = (1 − p)n−1 ∼ exp
(
− lnn− ω(n)

)
=
e−ω(n)

n
,

E[X ] ∼ e−ω(n) → 0 as n → ∞, and the claim holds by the
first moment method.

Now, we will show that a.a.s. there is at least one isolated
vertex in a random graph G(n, p) for

p = p(n) =
lnn− ω(n)

n
.
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In this case, E[X ] ∼ eω(n) → ∞ as n→ ∞, and

Var[X ] = Var

[
n∑

i=1

Ii

]
=

∑

1≤i,j≤n

Cov(Ii, Ij)

=
∑

1≤i,j≤n

(E[IiIj ] − (E[Ii])(E[Ij ])).

Hence,

Var[X ] =
∑

1≤i,j≤n,i 6=j

(
P(Ii = 1, Ij = 1) − (P(Ii = 1))2

)

+
n∑

i=1

(
P(Ii = 1) − (P(Ii = 1))2

)
.

The second term in the last sum can be dropped to derive the
following bound:

Var[X ] ≤
∑

1≤i,j≤n,i 6=j

(
(1 − p)2n−3 − (1 − p)2n−2

)
+ E[X ]

=
∑

1≤i,j≤n,i 6=j

(1 − p)2n−3(1 − (1 − p)) + E[X ]

∼
∑

1≤i,j≤n,i 6=j

e2ω(n)

n2
p+ E[X ] ∼ e2ω(n)p+ E[X ].

Hence, from the second moment method we derive that

P(X = 0) ≤ Var[X ]

(E[X ])2
≤ (1 + o(1))p+

1

E[X ]
= o(1).

1.6 Tools: Chernoff Bounds

Suppose that S is a random variable and t > 0. We would
like to find the upper and lower tails of the distribution; that
is, bounds for P(S ≥ E[S]+t) and P(S ≤ E[S]−t). Let u ≥ 0.
Then

P(S ≥ E[S] + t) = P(euS ≥ eu(E[S]+t)) ≤ e−u(E[S]+t)E[euS ],

by Markov’s inequality. Similarly, for u ≤ 0,

P(S ≤ E[S] − t) ≤ e−u(E[S]−t)E[euS ].
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Combining these inequalities, we obtain a bound for P(|S −
E[S]| ≥ t).

Now, let Sn =
∑n

i=1Xi, where Xi, i ∈ [n] are independent
random variables. Then for u ≥ 0, we have that

P(Sn ≥ E[Sn] + t) ≤ e−u(E[Sn]+t)

n∏

i=1

E[euXi ],

whereas for u ≤ 0, we have that

P(Sn ≤ E[Sn] − t) ≤ e−u(E[Sn]−t)

n∏

i=1

E[euXi ].

After calculating E[euXi ] and finding the value of u that min-
imizes the right side, we derive the desired bound.

To illustrate this general approach, we focus on Bernoulli(p)
random variables. Then Sn has a Bin(n, p) distribution with
expectation µ = E[Sn] = np. For u ≥ 0, we have that

P(Sn ≥ µ+ t) ≤ e−u(µ+t)
(
peu + (1 − p)

)n
.

To minimize the right side, we take

eu =
(µ+ t)(1 − p)

(n− µ− t)p
.

Hence, assuming that µ+ t < n,

P(Sn ≥ µ+ t) ≤
(

µ

µ+ t

)µ+t(
n− µ

n− µ− t

)n−µ−t

,

whereas for µ+ t > n this probability is zero.
Now, let

ϕ(x) =

{
(1 + x) log(1 + x) − x, x > −1,
∞, otherwise.

For 0 ≤ t < n− µ, we have that

P(Sn ≥ µ+ t) ≤ exp

(
−µϕ

(
t

µ

)
− (n− µ)ϕ

( −t
n− µ

))

≤ e−µϕ(t/µ),

since ϕ(x) ≥ 0 for every x. By a similar argument, for 0 ≤
t < µ we obtain that

P(Sn ≤ µ− t) ≤ exp

(
−µϕ

(−t
µ

)
− (n− µ)ϕ

(
t

n− µ

))

≤ e−µϕ(−t/µ).
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Now, observe that ϕ(0) = 0 and

ϕ′(x) = log(1 + x) ≤ x =
(
x2/2

)′
.

Thus, ϕ(x) ≥ x2/2 for −1 ≤ x ≤ 0. Further, ϕ′(0) = 0 and

ϕ′′(x) =
1

1 + x
≥ 1

(1 + x/3)3
=

(
x2

2(1 + x/3)

)′′
,

so for x ≥ 0

ϕ(x) ≥ x2

2(1 + x/3)
.

The functions ϕ(x) (brown), x2

2
(in green), and x2

2(1+x/3)
(in

red) are presented in Figure 1.7.

FIGURE 1.7: The functions: ϕ(x), x2

2
, and x2

2(1+x/3)
.

Therefore, we arrive at the following result.

Theorem 1.6.1 (Chernoff bounds; see, for example, [115]).
If Sn is a random variable with the binomial distribution
Bin(n, p) and µ = E[Sn] = np, then for t ≥ 0 we have that

P(Sn ≥ µ+ t) ≤ exp

(
− t2

2(µ+ t/3)

)
and

P(Sn ≤ µ− t) ≤ exp

(
− t2

2µ

)
.
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The following corollary is sometimes more convenient.

Corollary 1.6.2 ([115]). If Sn is a random variable with the
binomial distribution Bin(n, p) and µ = E[Sn] = np, then for
ε ≤ 3/2 we have that

P(|Sn − µ| ≥ εµ) ≤ 2 exp

(
−ε

2

3
µ

)
.

We mention another, sometimes useful version of the Cher-
noff bounds.

Theorem 1.6.3 ([8]). If Sn is a random variable with the
binomial distribution Bin(n, p) and µ = E[Sn] = np, then for
a > 0 we have that

P(Sn > µ+ a) < e−2a2/n and P(Sn < µ− a) < e−2a2/n.

In addition, all of the above bounds hold for the general
case in which Xi ∈ Bernoulli(pi) with (possibly) different pi.
Indeed, we can repeat all calculations with the only difference
being that now

n∏

i=1

E[euXi ] =

n∏

i=1

(
pie

u + (1 − pi)
)
.

We need the following inequality known as the arithmetic-
geometric mean inequality .

Lemma 1.6.4. For all sequences of nonnegative numbers
(a1, a2, . . . , an) we have that

1

n

n∑

i=1

ai ≥
(

n∏

i=1

ai

)1/n

.

Using the arithmetic-geometric mean inequality we derive
that

n∏

i=1

E[euXi ] ≤
(

1

n

n∑

i=1

(
pie

u + (1 − pi)
)
)n

=
(
peu + (1 − p)

)n
,

where p =
∑n

i=1 pi/n. This is exactly the same expression as
we had before with p taken as the arithmetic mean of the pi’s.
The rest of the proof is not affected.



Introduction 25

Finally, recall that the hypergeometric distribution de-
scribes the probability of k successes in n draws, without re-
placement, from a population of size N that contains exactly
K successes, wherein each draw is either a success or a failure.
Note that drawing with replacement would yield a binomial
random variable. It seems reasonable that drawing without
replacement tends to produce smaller random fluctuations,
and indeed the bounds obtained above (Theorem 1.6.1 and
Corollary 1.6.2) still hold for Hypergeometric(N,K, n) with
µ = nK/N . For more details, see, for example [115].

Lower Bound

Until now, we have focused on bounding from above the
probability that a random variable is far away from the expec-
tation. However, sometimes we are more interested in bound-
ing the probability of this rare event from below. The well-
known Central Limit Theorem suggests that the distribution
of the sum of many independent random variables is approxi-
mately normal, and so the bounds we obtained earlier should
not be far from the truth. This is actually the case under
general circumstances.

Theorem 1.6.5. If Sn is a random variable with the binomial
distribution Bin(n, 1/2) and E[Sn] = n/2 = µ, then for any
integer t ∈ [0, n/8] we have that

P(Sn ≥ µ+ t) ≥ 1

15
e−16t2/n.

Such general and precise bounds can be found in [85]. We
use some elementary calculations to prove Theorem 1.6.5.

Proof of Theorem 1.6.5. We note that

P(Sn ≥ n/2 + t) =

n/2∑

j=t

P(Sn = n/2 + j)

= 2−n

n/2∑

j=t

(
n

n/2 + j

)
≥ 2−n

2t−1∑

j=t

(
n

n/2 + j

)

= 2−n
2t−1∑

j=t

(
n

n/2

)
n/2

n/2 + j
· n/2 − 1

n/2 + j − 1

· · · n/2 − j + 1

n/2 + 1
.



26 Graph Searching Games and Probabilistic Methods

As
(

n
n/2

)
≥ 2n/2

√
n/2 = 2n/

√
2n (see Lemma 1.3.2), we de-

rive that

P(Sn ≥ n/2 + t) ≥ 1√
2n

2t−1∑

j=t

j∏

i=1

(
1 − j

n/2 + i

)

≥ t√
2n

(
1 − 2t

n/2

)2t

≥ t√
2n

exp

(
−16t2

n

)
,

since 1 − x ≥ e−2x for 0 ≤ x ≤ 1/2. For t ≥ 1
4
√
2

√
n, the

probability is at least 1
8
e−16t2/n. For 0 ≤ t < 1

4
√
2

√
n, we have

that

P(Sn ≥ n/2 + t) ≥ P

(
Sn ≥ n/2 +

1

4
√

2

√
n

)

≥ 1

8
e−1/2 ≥ 1

15
≥ 1

15
e−16t2/n,

and so the claimed bound also holds for this range of t.


