Cops and Robber on Circulant Graphs

Shannon Fitzpatrick John Paul Larkin

University of Prince Edward Island

Cops and Robber

- Played on a finite, simple graph
- Cops have perfect information
- Two players alternate moves
- On Cops' move, some subset of cops (possibly empty) can each move to an adjacent vertex
- On Robber's move, the Robber can move to an adjacent vertex or pass

Circulant Graphs

- $C_{n;k_1,k_2,...,k_m}$
- Vertex Set {0,1,2,..., *n*-1}
- Edge from vertex *i* to *i* + *k_j* mod *n* for each *i* = 0,1,2,..., *n*-1 and *j* =1,2, ..., m

$c(C_{n;m,k}) \leq 3$ whenever gcd(n,m,k) = 1

On a Pursuit Game on Cayley Graphs P. Frankl (1987)

- *H* is an abelian group, *S* is a subset of *H* such that $S = S^{-1}$
- C(H,S) is the graph with vertex set H and edge set {(h,hs) | h in H, s in S}
- At most $\left\lfloor \frac{|S|+1}{2} \right\rfloor$ cops are required to win on connected Cayley graph

$C_{n;l,k}$ with gcd(n,l+k)=1

Cops C_1 and C_2 on vertex 0

Robber on vertex $r = -j(I+k) \mod n$

The cops respond to the robber's moves as follows

R	C ₁	C ₂
+m	-k	+m
+k	-m	+k
-m	-m	+k
-k	-k	+m
0	0	0

Suppose at some point in the game R has made j moves from {+m,+k}

R on -j(m+k) + im+(j-i)k + #(-m) + #(-k)= -ki + (i-j)m + #(-m) + #(-k)

 C_1 on i(-k) + (j-i)(-m) + #(-m) + #(-k)

C₁ has captured R

$c(C_{n;m,k}) \leq 3$ whenever gcd(n,m,k) = 1

 C_1 wins if R makes enough moves from {+m,+k} C_2 wins if R makes enough moves from {-m,-k} C_3 forces one of the previous situations

$C(C_{n;k_1,k_2,...,k_m})=1$ if and only if $C_{n;k_1,k_2,...,k_m}$ is complete

If $C_{n;k_1,k_2,...,k_m}$ is not complete then for every vertex v, there is a vertex w such that v and w are not adjacent.

Cop chooses a vertex, v, Robber chooses a non adjacent vertex, w.

Robber's strategy is to now mirror the Cop's moves. If Cop moves from v to v+j, Robber moves from w to w+j.

c(C_{n;m,k})=1 if and only if C_{n;m,k} is isomorphic to C_{4;1,2} or C_{5;1,2}

There exist connected $C_{n;m,k}$ such that $c(C_{n;m,k})=3$

c(C_{17;1,4})=3

Suppose 2 cops could win.

Consider cops' final move

R at 0

 C_1 at 1

Impossible for C₂ to "cover" R's other neighbours

$$C(C_{17;1,4})=3$$

Suppose 2 cops could win.

Consider cops' final move

R at 0

 C_1 at 4

Impossible for C₂ to "cover" R's other neighbours Question: For what *m*, *k* and *n* with gcd(m,k,n)=1is $c(C_{n;m,k}) = 2$?

Note: If gcd(n,m)=1 or gcd(n,k)=1, then $C_{n;m,k}$ is isomorphic to $C_{n;1,b}$ for some b.

 $c(C_{n;1,2}) = 2$ $c(C_{n;1,3}) = 2$ $c(C_{2k;1,k}) = 2$ (Frankl) $c(C_{2k+2;1,k}) = 2$

$$c(C_{n;1,2}) = 2$$

Cops C_1 and C_2 on 0 Assume R on vertex in $\{3, 4, ..., n-3\}$

$$c(C_{n;1,2}) = 2$$

C_1 moves to 2 C_2 move to *n*-2

$$c(C_{n;1,2}) = 2$$

 $C_1 \text{ on } 2$ $C_2 \text{ on } n-2$ *R* moves to vertex in {5,6, ... *n*-5}

$$c(C_{n;1,2}) = 2$$

C_1 moves to 4 C_2 moves to *n*-4

$$c(C_{n;1,2}) = 2$$

 C_1 moves to 4 C_2 on vertex *n*-4 R on vertex in $\{7,8,...,n-7\}$

$$c(C_{n;1,3}) = 2$$

Cops start on 0 R on vertex in {2, 4, 5, 6, ...,n-5, n-4, n-2}

$$c(C_{n;1,3}) = 2$$

R on 2 C_1 moves to 3 C_2 passes

$$c(C_{n;1,3}) = 2$$

R on 2 C_1 passes C_2 moves to 3 R forced to move to 5

$$c(C_{n;1,3}) = 2$$

From this point on, R will be forced to either use a +3 edge or pass.

C₂ will imitate R

In this case, that will keep R restricted to the subgraph induced by {5+3h}, moving clockwise only.

$$c(C_{n;1,3}) = 2$$

C₁ moves onto subgraph (cycle) to which R is now confined.

C₁ moves counterclockwise on every move.

Eventually captures R

$$c(C_{2k+2;1,k}) = 2$$

A vertex *v* is an **open corner** if there is some vertex *y* such that N(v) is a subset of N[y].

A graph G is tandemwin if and only if G-*v* is tandem-win for open corner *v*.

> Clarke and Nowakowski (2005)

$$c(C_{2k+2;1,k}) = 2$$

Suppose G has an open
corner v and
$$c(G-v) = 2$$
.
Then $c(G) = 2$.

Suppose open corners are successively removed from G so that the resulting graph G' satisfies $c(G') \le 2$, then $c(G) \le 2$.

$$c(C_{12;1,5}) = 2$$

1 is an o-corner

$$c(C_{12;1,5}) = 2$$

2 is an o-corner

a cycle with copnumber 2.

"Theorem"

Suppose gcd(n,k)=1 or gcd(n,m)=1. Then $c(C_{n;m,k}) = 2$ if and only if $C_{n;m,k}$ is isomorphic to one of

$$C_{n;1,2}$$

 $C_{n;1,3}$
 $C_{2k;1,k}$
 $C_{2k+2;1,k}$

Thank-you