SLOW FIREFIGHTING

M.E. Messinger S.P. Yarnell Mount Allison University

THE PYRO GAME

M.E. Messinger S.P. Yarnell Mount Allison University Two-player game played on a connected graph

At step 0, the pyro burns vertex ν_0

At step t > 0, the firefighter "moves" and then the pyro "moves"

select a burned vertex ν and spread *from* ν to all unprotected, unburned neighbours of ν .

Goals?

<u>pyro</u>

maximize burned vertices?
burn a particular set of vertices?
avoid containment?

<u>firefighter</u>

minimize burned vertices?
save a particular set of vertices?
contain the pyro?

The Pyro Game

The Pyro Game

The Pyro Game

save
$$\frac{5}{m+9}$$
 vertices

save
$$\frac{5}{m+9}$$
 vertices

save
$$\frac{5}{m+9}$$
 vertices

 K_m

save
$$\frac{5}{m+9}$$
 vertices

 K_m

save
$$\frac{5}{m+9}$$
 vertices

Let $MSV_P(G, \nu_0)$ denote the maximum number of vertices of *G* that can be saved if the pyro initially burns vertex ν_0

Instance: A rooted graph (G, ν_0) and an integer $k \ge 1$. Question: Is $MSV_P(G, \nu_0) \ge k$?

NP-hard!

For some fixed k, we say the pyro "wins" if he spreads to (burns) a vertex distance k from ν_0 (otherwise the firefighter "wins")

Little Lemma:

If the pyro can win, then there exists a set $\{\nu_0, \nu_1, \ldots, \nu_t\}$ such that for all $1 \le i \le t$, ν_i is initially burned during step i - 1 and the pyro spreads from ν_i during step i.

Let ν_s be the lowest-indexed vertex such that ν_s was not initially burned during step s - 1.

Suppose instead ν_s was burned during step j - 1 < s - 1.

Let $\mathcal{N}_t(u)$ = unprotected boundary vertices in the second neighbourhood at the end of step t

For each $u \in D_5$ we consider

$$Th_t(u) = |\mathcal{N}_{t-1}(u)| - (d_{t-1}(u) + 1)$$

threat value of *u* at the beginning of step t

$$Th_t'(u) = \left| \mathcal{N}_t(u) \right| - \left(d_{t-1}(u) + 1 \right)$$

threat value of u <u>during</u> step t

On the Cartesian Grid, suppose $\nu_0 = (0,0)$

Theorem:

On the Cartesian Grid, the firefighter can contain the pyro such that all burned vertices are distance 6 or less from the origin.

Present an algorithm to determine the vertex to protect at each step

Prove that for each step $t \ge 3$, $Th_t'(u) \le 0$ for all $u \in D_5$

Suppose otherwise:

there is a step t when $Th_t'(u) \ge 1$ for some $u \in D_5$

 $Th_t(u) \ge 2$ for some $u \in D_5$ $Th_t(u) \ge 1; Th_t(v) \ge 1$ $\mathcal{N}_{t-1}(u) \cap \mathcal{N}_{t-1}(v) = \emptyset$

for some $u, v \in D_5$

On the Cartesian Grid, suppose $\nu_0 = (0,0)$

Theorem:

On the Cartesian Grid, the firefighter can contain the pyro such that all burned vertices are distance 6 or less from the origin.

Theorem:

On the Cartesian Grid, the firefighter cannot contain the pyro such that all burned vertices are distance 5 or less from the origin.

Thank you! Mount Allison P NOVA SCOTIA An Emera Company UNIVERSITY