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The pyro game



Two-player game played on a connected graph

At step   , the pyro burns vertex

At step          , the firefighter “moves” and then the pyro “moves”

select a burned vertex    and spread 
from    to all unprotected, unburned 
neighbours of   .

t > 0

0

Goals?

•maximize burned vertices?
•burn a particular set of vertices?
•avoid containment?

pyro  firefighter

•minimize burned vertices?
•save a particular set of vertices?
•contain the pyro?

⌫0

⌫

⌫
⌫
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NP-hard!

Instance:  A rooted graph             and an integer          .

Question: Is

k � 1(G, ⌫0)

Let                        denote the maximum number of vertices 
of     that can be saved if the pyro initially burns vertex   

MSVP (G, ⌫0)
G ⌫0

MSVP (G, ⌫0) � k ?



Little Lemma:  

If the pyro can win, then there exists a set                         such 
that for all                ,     is initially burned during step          and 
the pyro spreads from     during step  .

For some fixed   , we say the pyro “wins” if he spreads to (burns)      
a vertex distance    from      (otherwise the firefighter “wins”)k ⌫0

{⌫0, ⌫1, . . . , ⌫t}
1  i  t i� 1

⌫i i
⌫i

k

Let     be the lowest-indexed vertex such that      was not 
initially burned during step         .

Suppose instead      was burned during step                      . 

⌫s ⌫s
s� 1

j � 1 < s� 1⌫s
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Cartesian Grids

Let                unprotected boundary 
vertices in the second neighbourhood 
at the end of step t

For each u 2 D5 we consider

threat value of    at the 
beginning of step t

u

threat value of     during step tu

Tht(u) =
���Nt�1(u)

����
⇣
dt�1(u) + 1

⌘

Tht
0(u) =

���Nt(u)
����

⇣
dt�1(u) + 1

⌘

Nt(u) =



Theorem:  

On the Cartesian Grid, the firefighter can contain the pyro such 
that all burned vertices are distance 6 or less from the origin.

Present an algorithm to determine the vertex to protect at each step 

Prove that for each step          ,                       for allt � 3 Tht
0(u)  0 u 2 D5

there is a step    when                      for some  t Tht
0(u) � 1 u 2 D5

Suppose otherwise:

Tht(u) � 2
for some u 2 D5

Tht(u) � 1; Tht(v) � 1

for some u, v 2 D5

On the Cartesian Grid, suppose ⌫0 = (0, 0)

Nt�1(u) \Nt�1(v) = ;



Theorem:  

On the Cartesian Grid, the firefighter can contain the pyro such 
that all burned vertices are distance 6 or less from the origin.

Theorem:  

On the Cartesian Grid, the firefighter cannot contain the pyro 
such that all burned vertices are distance 5 or less from the 
origin.

On the Cartesian Grid, suppose ⌫0 = (0, 0)



Thank you!


