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What is it?

For our purposes:

Placement of mobile “protectors” at the vertices of a graph;

in reaction to the occurrence of “an event” in the graph

protectors move along edges of graph in certain prescribed ways

to ensure protectors reach site of event in unit time interval.

protectors = guards (emergency vehicles, etc.)
event = attack (fire, illness)

guards move along edge in unit time interval
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Roman Emperor Constantine The Great, 274 —337 CE
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Roman Strategy

Constantine’s strategy:

Deploy mobile field armies (FAs) throughout the regions of the
Roman Empire.

When a region without an army is attacked...

an FA can move to protect an adjacent region only if

it moves from a region where there is at least one other FA to help
launch it.

This strategy is called Roman domination.
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Roman Strategy

Mathematical strategy:

Regions = vertices; edges represent adjacent regions

Place 0, 1 or 2 guards per vertex such that

each unguarded vertex is adjacent to a vertex with 2 guards.

When an unguarded vertex is attacked...

a guard moves along an edge from a vertex with 2 guards to the
attacked vertex.
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Roman Domination

Graph G = (V ,E )

Roman dominating function:
function f : V → {0, 1, 2} such that

each u with f (u) = 0 is adjacent to v with f (v) = 2.

weight f (V ) of a Roman dominating function:
f (V ) = ∑u∈V f (u).

Roman domination number γR(G ) of G :
minimum weight of a Roman dominating function.
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Weak Roman Domination

Improved strategy:

Place 0, 1 or 2 guards per vertex such that

each unguarded vertex is adjacent to a vertex with 2 guards.

When an unguarded vertex is attacked...

a guard moves along an edge from a vertex with 2 guards to the
attacked vertex.

After the move, each unguarded vertex must be adjacent to a
guarded vertex.

This protection model is called weak Roman domination.
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Secure Domination

Different strategy:

Place 0, 1 or 2 guards per vertex such that

each unguarded vertex is adjacent to a vertex with a guard.

When an unguarded vertex is attacked...

a guard moves along an edge from a vertex with a guard to the
attacked vertex.

After the move, each unguarded vertex must be adjacent to a
guarded vertex.

This protection model is called weak Roman domination.
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When an unguarded vertex is attacked...

a guard moves along an edge from a vertex with a guard to the
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After the move, each unguarded vertex must be adjacent to a
guarded vertex.

This protection model is called secure domination.
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Secure Domination

Secure dominating set (SDS):
set X ⊆ V with the property that

for each u ∈ V − X there exists v ∈ N(u) ∩ X
such that (X − {v}) ∪ {u} is a dominating set.

We say that v defends u.

Secure domination number γs (G ) of G :
minimum cardinality of an SDS.
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Secure Domination

Let X ⊆ V and u ∈ X .
X -private neighbour of u:

v ∈ N [u] and v /∈ N [w ] for any w ∈ X − {u}.

External X -private neighbour of u:
v is an X -private neighbour of u and v ∈ V − X .

External X -private neighbourhood epn(u,X ) of u:
set of all external X -private neighbours of u.
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Secure Domination

Theorem
Let X be a dominating set of G. Vertex u ∈ X defends v ∈ V − X if and
only if v is adjacent to each vertex of {u} ∪ epn(u,X )− {v}.
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Secure Domination

Theorem
The set X is an SDS if and only if for each u ∈ V − X there exists v ∈ X
such that G [epn(v ,X ) ∪ {u, v}] is complete.

As for Roman domination, γ(G ) ≤ γs (G ) ≤ 2γ(G ) for any graph G .
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Secure Domination: Open Problems

Problems
1 Is it true that γs ≤ 3α

2 for all graphs? (True for claw-free graphs.)

2 Does equality hold in (1) for connected graphs only if α = 2?

3 The difference α(T )− γs (T ) may be arbitrary (≥ 0) for trees, but
what is the ratio γs (T )/α(T )?

It is known that min{γs (T )/α(T )} ≤ 1
2 + ε; is this best possible?

4 Is it true that γs (T ) > 1
2α(T ) for all trees?
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Sequences of Attacks

What happens after a guard has defended a vertex against an attack?

Guard returns to original position before another attack.

Now : sequences of attacks where guards do not return to
positions before another attack.

Two types of strategies:

One guard moves
Arbitrary number of guards move

{Di} is a sequence of vertex sets; one guard on each vertex of Di ;
{ri} is a sequence of vertices.
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Sequences of Attacks

Model problem as a 2-player game between defender and attacker:

taking turns, defender chooses each Di , i ≥ 1.

attacker chooses the locations of the attacks r1, r2, . . ..

Defender wins if they can successfully defend any series of attacks,
subject to the constraints of the game; attacker wins otherwise.
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Eternal Domination

Eternal dominating set (EDS):
same as secure dominating set, but repeat any number
of times.

I.e., each Di , i ≥ 1, is a dominating set, ri ∈ V −Di , and

Di+1 is obtained by moving a guard from v ∈ Di ∩N(ri ) to ri .

Eternal domination number γ∞(G ) of G :
minimum cardinality of an EDS.



Eternal Domination

Eternal dominating set (EDS):
same as secure dominating set, but repeat any number
of times.

I.e., each Di , i ≥ 1, is a dominating set, ri ∈ V −Di , and

Di+1 is obtained by moving a guard from v ∈ Di ∩N(ri ) to ri .

Eternal domination number γ∞(G ) of G :
minimum cardinality of an EDS.



Eternal Domination

Eternal dominating set (EDS):
same as secure dominating set, but repeat any number
of times.

I.e., each Di , i ≥ 1, is a dominating set, ri ∈ V −Di , and
Di+1 is obtained by moving a guard from v ∈ Di ∩N(ri ) to ri .

Eternal domination number γ∞(G ) of G :
minimum cardinality of an EDS.



Eternal Domination

Eternal dominating set (EDS):
same as secure dominating set, but repeat any number
of times.

I.e., each Di , i ≥ 1, is a dominating set, ri ∈ V −Di , and
Di+1 is obtained by moving a guard from v ∈ Di ∩N(ri ) to ri .

Eternal domination number γ∞(G ) of G :
minimum cardinality of an EDS.



Eternal Domination

Tweedledee

Remus

Romulus Tweedledum

Eternal Dominating Set



Eternal Domination

Clique partition of G :
partition of V (G ) into cliques (complete graphs),
i.e., a colouring of G .

Clique partition number θ(G ):
smallest number of sets in clique partition,
i.e. θ(G ) = χ(G ).
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Eternal Domination

Fact: α(G ) ≤ γ∞(G ) ≤ θ(G ) for all graphs.

Hence if G is perfect, then α(G ) = γ∞(G ) = θ(G ).

Problem
Is γ∞(G ) = θ(G ) for all planar graphs?

Problem
Characterize graphs G with γ(G ) = γ∞(G ) = θ(G ).

Theorem

For any graph G, γ∞(G ) ≤ (α(G )+1
2 ) and

this bound, though huge, is sharp!
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m-Eternal Domination

m-Eternal dominating set (m-EDS):
same as eternal dominating set, but any number
of guards can move.

I.e., each Di , i ≥ 1, is a dominating set, ri ∈ V −Di , and

Di+1 is obtained by moving a guard from v ∈ Di ∩N(ri ) to ri , and
by moving any number of other guards to adjacent vertices.

m-Eternal domination number γ∞
m(G ) of G :

minimum cardinality of an m-EDS.
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Fact: γ(G ) ≤ γ∞
m(G ) ≤ α(G ) for all graphs G .

Thus we have the chain

γ(G ) ≤ γ∞
m(G ) ≤ α(G ) ≤ γ∞(G ) ≤ θ(G )

for all graphs.
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Describe classes of graphs where equality holds in each case.
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What difference does it make if more than one guard per vertex is allowed?

(Exist graphs where it is better to allow more than one guard per vertex.)
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Conditions on Eternal Dominating Sets

Can require, for both models (one guard moves or all guards move),
the guards to maintain a:

a total dominating set
a paired dominating set
a connected dominating set.

Suppose, in the “all guards move”model, guards must form an
independent set.

Can it be done?

If so, the graph is called i-protectable.
independent protection number i∞(G ):

smallest cardinality of independent protecting set.
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i-Protectable Graphs

Obvious bound: i(G ) ≤ i∞(G ) ≤ α(G ).

Well-covered graph G :
i(G ) = α(G ) —all maximal independent sets have
the same size.

Examples: Kn, Kn,n, C4, C5, P4, lots of others —class not
characterized (diffi cult problem).

Theorem
If G is well-covered, then G is i-protectable.
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If A,B are maximum independent sets of G , then G [(A∪ B)− (A∩ B)]
has a perfect matching.

Follows from Hall’s theorem.
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We know:

i∞(G ) = k ⇒ every vertex of G is contained in a maximal
independent k-set.

Converse not true.
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We know:

Difference between i(G ), i∞(G ) and α(G ) can be arbitrary.

For each k ≥ 1 there exists a graph Gk such that
i(Gk ) = 6k < i∞(Gk ) = 10k < α(Gk ) = 12k.
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i-Protectable Graphs

Problems
1 Find conditions for i∞ to exist/not exist.

2 Prove or disprove:
If a tree does not have a perfect matching, then i∞ does not exist.

3 Determine the bipartite graphs for which i∞ exists.

4 Determine whether the ratios i∞/i and α/i∞ are bounded.

5 Extend various classes of well-covered graphs to i-protectable graphs,
e.g. graphs with fixed (large-ish) girth.

6 Characterize i-protectable graphs.
They form a nice extension of well-covered graphs.



i-Protectable Graphs

Problems
1 Find conditions for i∞ to exist/not exist.

2 Prove or disprove:
If a tree does not have a perfect matching, then i∞ does not exist.

3 Determine the bipartite graphs for which i∞ exists.

4 Determine whether the ratios i∞/i and α/i∞ are bounded.

5 Extend various classes of well-covered graphs to i-protectable graphs,
e.g. graphs with fixed (large-ish) girth.

6 Characterize i-protectable graphs.
They form a nice extension of well-covered graphs.



i-Protectable Graphs

Problems
1 Find conditions for i∞ to exist/not exist.

2 Prove or disprove:
If a tree does not have a perfect matching, then i∞ does not exist.

3 Determine the bipartite graphs for which i∞ exists.

4 Determine whether the ratios i∞/i and α/i∞ are bounded.

5 Extend various classes of well-covered graphs to i-protectable graphs,
e.g. graphs with fixed (large-ish) girth.

6 Characterize i-protectable graphs.
They form a nice extension of well-covered graphs.



i-Protectable Graphs

Problems
1 Find conditions for i∞ to exist/not exist.

2 Prove or disprove:
If a tree does not have a perfect matching, then i∞ does not exist.

3 Determine the bipartite graphs for which i∞ exists.

4 Determine whether the ratios i∞/i and α/i∞ are bounded.

5 Extend various classes of well-covered graphs to i-protectable graphs,
e.g. graphs with fixed (large-ish) girth.

6 Characterize i-protectable graphs.
They form a nice extension of well-covered graphs.



i-Protectable Graphs

Problems
1 Find conditions for i∞ to exist/not exist.

2 Prove or disprove:
If a tree does not have a perfect matching, then i∞ does not exist.

3 Determine the bipartite graphs for which i∞ exists.

4 Determine whether the ratios i∞/i and α/i∞ are bounded.

5 Extend various classes of well-covered graphs to i-protectable graphs,
e.g. graphs with fixed (large-ish) girth.

6 Characterize i-protectable graphs.
They form a nice extension of well-covered graphs.



i-Protectable Graphs

Problems
1 Find conditions for i∞ to exist/not exist.

2 Prove or disprove:
If a tree does not have a perfect matching, then i∞ does not exist.

3 Determine the bipartite graphs for which i∞ exists.

4 Determine whether the ratios i∞/i and α/i∞ are bounded.

5 Extend various classes of well-covered graphs to i-protectable graphs,
e.g. graphs with fixed (large-ish) girth.

6 Characterize i-protectable graphs.
They form a nice extension of well-covered graphs.


	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Protection against single attacks
	What is it?

	Protection against single attacks
	What is it?

	Protection against single attacks
	What is it?

	Protection against single attacks
	What is it?

	Protection against single attacks
	What is it?
	Who started it?
	Who started it?
	Roman Strategy
	Roman Strategy
	Roman Strategy
	Roman Strategy
	Roman Strategy
	Mathematical Strategy
	Mathematical Strategy
	Mathematical Strategy
	Mathematical Strategy
	Mathematical Strategy
	Roman Domination
	Roman Domination
	Roman Domination
	Roman Domination
	Weak Roman Domination
	Weak Roman Domination
	Weak Roman Domination
	Weak Roman Domination
	Secure Domination

	Protection against sequences of attacks
	Protection against sequences of attacks
	Protection against sequences of attacks
	Protection against sequences of attacks
	Protection against sequences of attacks
	Protection against sequences of attacks
	Protection against sequences of attacks
	Eternal Domination
	Eternal Domination
	Eternal Domination
	Eternal Domination
	m-Eternal Domination
	m-Eternal Domination
	m-Eternal Domination
	m-Eternal Domination
	m-Eternal Domination
	Conditions on Eternal Dominating Sets
	Conditions on Eternal Dominating Sets
	Conditions on Eternal Dominating Sets
	Conditions on Eternal Dominating Sets
	Conditions on Eternal Dominating Sets
	Conditions on Eternal Dominating Sets
	Conditions on Eternal Dominating Sets
	Conditions on Eternal Dominating Sets


