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Graph searching models 

 Edge searching (Megiddo, Hakimi, Garey, Johnson and 

Papadimitriou, 1981) 

 Node searching (Kirousis and Papadimitriou, 1986) 

 Mixed searching (Bienstock and Seymour, 1991) 

 Fast searching (Dyer, Yang, Yasar, 2008) 
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Mixed searching model 

 At each step, only one of the following 

three actions is allowed:  

 placing a searcher on a vertex,  

 sliding a searcher along an edge, 

 removing a searcher from a vertex. 
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Three ways to clear an edge uv in mixed 

searching 

 Edge uv becomes cleared if both 

endpoints are occupied by searchers 

 sliding a searcher from u to v along 

uv while at least one searcher is 

located on u. 

 sliding a searcher from u to v along 

uv while all edges incident on u 

except uv are already cleared. 
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Fast searching model 

 At each step, only one of the following 

two actions is allowed:  

 placing a searcher on a vertex,  

 sliding a searcher along an edge. 

 

 Each edge is traversed exactly once. 
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Two ways to clear an edge uv in fast 

searching 

 sliding a searcher from u to v along 

uv while at least one searcher is 

located on u. 

 

 sliding a searcher from u to v along 

uv while all edges incident on u 

except uv are already cleared. 
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What is fast-mixed searching? 

 Fast-mixed searching is a combination of fast 

searching and mixed searching. 

 A graph contains a fugitive hiding on vertices 

or along edges. 

 The basic goal in a fast-mixed search is to 

use the minimum number of searchers to 

capture the fugitive. 
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Motivations 

 In some real-life scenarios, the cost of a 

searcher may be relatively low in comparison 

to the cost of allowing a fugitive to be free for a 

long period of time. 

 

 A fast-mixed search strategy of a graph gives 

an induced-path cover of the graph. 

 

 Task scheduling 
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In fast-mixed searching, the fugitive … 

 can stay on edges or on vertices. 

 has complete knowledge of the location 

of every searcher. 

 is invisible to searchers. 

 can move in the graph along any path 

that does not include a searcher. 

 always takes the best strategy for him to 

avoid being captured. 
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Some definitions... 

 An edge the fugitive could be on is said 

to be contaminated. 

 

 An edge the fugitive cannot be on is 

said to be cleared. 
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In fast-mixed searching, searchers … 

 have only one of the following two 

actions at each step:  

 placing a searcher on a contaminated 

vertex, or 

 sliding a searcher along a contaminated 

edge uv from u to v if v is contaminated 

and all edges incident on u except uv are 

cleared. 
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Two ways to clear an edge uv in fast-

mixed searching: 

 edge uv becomes cleared if both 

endpoints are occupied by searchers, 

or 

 edge uv becomes cleared if a 

searcher slides along uv from u to v if 

v is contaminated and all edges 

incident on u except uv are cleared. 
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Two ways to clear an edge uv in fast-

mixed searching: 
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Fast-mixed searching strategy and 

number 

 A fast-mixed search strategy (fms-

strategy) of G is a sequence of actions 

such that the final action leaves all 

edges of G cleared. 

 The minimum number of searchers 

required to clear G is the fast-mixed 

search number of G, denoted by 

fms(G). 
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Fast search number and mixed search 

number 

 The minimum number of searchers 

required to clear graph G in fast 

searching is the fast search number of 

G, denoted fs(G). 

 The minimum number of searchers 

required to clear graph G in mixed 

searching is the mixed search number 

of G, denoted ms(G). 
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fs(G)/fms(G) can be arbitrarily large for 

standard ladders 
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fs(G)/fms(G) can be arbitrarily small 

positive number 
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fms(G)/ms(G) can be arbitrarily large 

for caterpillars 
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Fast-mixed searching can be very 

different from fast searching and mixed 

searching 

Theorem. Given a graph G that contains at 

least one edge, let G' be a graph obtained 

from G by adding two pendent edges on each 

vertex. Then  

fs(G) ≤ fs(G') ≤ |V(G)| + fs(G),  

ms(G') = ms(G) +1,  

and fms(G') =ipc(G') = |V(G)|. 
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Fast-mixed searching, fast searching, mixed 

searching, and induced-path cover 
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Characterizations (I) 

Theorem. For a tree T, the following are 

equivalent: 

 fms(T) < 3. 

 All vertices of T have degree at most 3; at most 

two vertices have degree 3; and if T has two 

vertices of degree 3, then these two vertices 

must be adjacent. 

 T is one of the graphs in the following figure 
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Trees with fms ≤ 2 
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Characterizations (II) 

 Theorem. For any connected graph G that is 

not a tree, fms(G) = 2 if and only if G is a 

ladder.  
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k-stack 
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k-stack 
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k-stack 
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k-stack 
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k-stack 

May 27, 2012 GRASCan 2012, Ryerson University 29 



k-stack 
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k-stack 
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k-stack 
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k-stack 
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k-stack 
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k-stack 
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k-stack 
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k-stack 
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Characterizations (III) 

Theorem. For any connected graph G, fms(G) 

= k if and only if G is a k-stack.  
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Relations to the induced-path cover 

Lemma. For a graph G=(V,E) that can be cleared by k 

searchers in an fms-strategy S, let V1, …, Vk be k 

subsets of V such that each vertex in Vi, 1 ≤ i ≤ k, is 

visited by the same searcher in the fms-strategy S. Then 

V1, …, Vk form a partition of V and each Vi induces a 

path. 

 

Definition. Each induced path  G[Vi] is called an fms-path 

with respect to S, and the set G[V1], …, G[Vk] of fms-

paths is called an fms-path cover of G with respect to S. 
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Relations to the induced-path cover 

Theorem. For an fms-strategy S of a graph G that uses k 

searchers, k ≤ 2, let P be an fms-path cover of G with 

respect to S. For any two paths P1 and P2 in P, let H be 

the subgraph of G induced by vertices V(P1) U V(P2). 

Then the following are equivalent: 

 H does not contain any graph in the following figure, 

where a, a'  V(P1) and b, b'  V(P2). 

 H has one of the three patterns:  

 (a) a forest consisting of two disjoint paths,  

 (b) a tree consisting of two adjacent degree-3 vertices and all 

other vertices having degree one or two; and  

 (c) a ladder. 
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Graphs with fms ≥ 2 
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Complete graphs, complete bipartite 

graphs and grids 

 Lemma. For a complete graph Kn (n ≥ 2), 

fms(Kn) = n-1. 

 

 Lemma. For a complete bipartite graph Km,n 

(n ≥ m ≥ 2), fms(Km,n) = m+n-2. 

 

 Lemma. For a grid Gmxn with m rows and n 

columns (2 ≤ m ≤ n), fms(Gmxn) =m. 
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Trees 

 Theorem. For a tree T, fms(T)=ipc(T). 

 

 Corollary. For any tree, the fast-mixed search 

number and an optimal fms-strategy can be 

computed in linear time. 
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Cactus 

 Theorem. For any cactus, the fast-mixed 

search number and an optimal fms-strategy 

can be computed in linear time.  
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Interval graphs 

 Theorem. Given an interval graph G, let C1, 

C2, …, Cm be the sequence of the maximal 

cliques of G such that, for any v  V(Ci) ∩ 

V(Ck), 1 ≤ i < k ≤ m, the vertex v is also 

contained in all Cj, i ≤ j ≤ k. If k >1, then  
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Interval graphs 

 Corollary. For any interval graph, the fast-

mixed search number and an optimal fms-

strategy can be computed in linear time. 
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k-trees 

 Theorem. For a k-tree G with more than k 

vertices, if G has exactly two simplicial 

vertices, then fms(G)=k.  
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fms-maximal graphs 
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Theorem. Every fms-maximal graph G with fms(G)=k is a 

k-tree with exactly two simplicial vertices.  



Cartesian product 

 Theorem. For any graphs G and H, 

 

fms(G □ H) ≤ min{|V(G)|fms(H), |V(H)|fms(G)}. 
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NP-completeness 
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A variable gadget Gk with four legs (k=4)  



NP-completeness 
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A clause gadget  



NP-completeness 
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The reduction  



NP-completeness 

 

 Theorem. The fast-mixed search problem is 

NP-complete. It remains NP-complete for 

graphs with maximum degree 4. 

 

 Corollary. Given a graph G with k leaves and 

maximum degree 4, the problem of 

determining whether fms(G)= k/2 is NP-

complete. 

May 27, 2012 GRASCan 2012, Ryerson University 53 



Thank you! 
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