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The Game of Cops and Robbers

Introduced independently by Quilliot (1978), and Nowakowski &
Winkler (1983).



Cops and Robbers

Introduction

The Official Rules (for Play and Research)

How to Play Cops and Robbers

Set Up:
Chose a graph G and a positive integer k .
Cops C1,C2, . . . ,Ck are placed on vertices of G
Next, the robber R is placed on a vertex of G.

A Game Turn:
Each cop moves to an adjacent vertex, or remains in place
Next, the robber moves similarly.

Victory Conditions:
Cops: one cop becomes co-located with the robber
Robber: evades capture forever
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How to Study Cops and Robbers

Pick a graph G and a number of cops k .
Who has a winning strategy: the k cops or the robber?

Definition
The cop number c(G) = fewest number of cops with a winning
strategy on G.

The cop number is always defined, since |V | cops trivially win.

Objective: Given a graph G, determine its cop
number c(G).



Cops and Robbers

Introduction

The Official Rules (for Play and Research)

The Petersen Graph

Lemma (Aigner and Fromme (1984))

If G has girth g(G) ≥ 5 then c(G) ≥ δ(G), the minimum degree
of G.

WELL KNOWN FACT: the Petersen graph (3-regular, girth 5) is
3-cop-win.

The smallest snark
The smallest connected,
vertex-transitive graph that is not a
Cayley graph
The smallest hypo-hamiltonian graph
The unique (3,5)-cage∗

∗ More on this later...
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Extremal Questions for Cop Number

What is the connected graph G = (V ,E) of smallest order with:

c(G)=1 |V|=1

c(G)=2 |V|=4

c(G)=3 |V| = 10

4-cycle

Petersen Graph

W. Baird and
A. Bonato (2012+)
computational proof
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Baird and Bonato (2012+): Proof by Computer
Search

|V| # {c(G) = 1} # {c(G) = 2} # {c(G) = 3}
...

...
...

...
8 3,791 7,326 0
9 65,561 195,519 0

10 2,258,213 9,458,257 1

Determine c(G) = 1 by finding a cop-win ordering
Determine c(G) = 2 or c(G) = 3 using a recursive
algorithm from Bonato, Chiniforooshan and Prałat (2010).
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Our Main Results [BCMMV (2012+)]

We give mathematical proofs of the following theorems

Theorem
If G = (V ,E) is a connected graph with |V | ≤ 9 then c(G) ≤ 2.

Theorem
Let G = (V ,E) be a connected graph with |V | = 10. Then
c(G) = 3 if and only if G is the Petersen graph. Otherwise,
c(G) ≤ 2.
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Our Strategy: Galactic Vertices

OUR STRATEGY: Consider c(G) for graphs on n vertices with
maximum degree

∆(G) ≥ n − 7.

Recall: UNIVERSAL VERTEX

A universal vertex has degree n − 1.
If G has a universal vertex then c(G) = 1.

For this talk, we define a GALACTIC VERTEX

A galactic vertex has degree at least n − 7.

Disclaimer: The term “galactic vertex” is for amusement
purposes only, in the context of this talk. It is easier to say than
“vertex with co-degree at most 7.”
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Notation

ASSUME: G = (V ,E) connected, has n vertices

Let u, v ∈ V and S ⊂ V .

neighbors u ∼ v when (u, v) ∈ E
neighborhood N(u) = {v ∈ V : u ∼ v}

closed neighborhood N(u) = N(u) + u
beyond set B(u) = V \N(u)

degree deg(v) = degree of v
maximum degree ∆(G) = maxv∈V deg(v)

induced subgraph G[S] = (S,E [S]), where S ⊂ V
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Galactic Vertex Lemma I

Lemma
If ∆(G) ≥ n − 5 then c(G) ≤ 2.

u ≥ n − 5 ≤ 4 forces c(G) = 2

N(u) B(u)
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Proof : ∆(G) ≥ n − 5 =⇒ c(G) ≤ 2

N(u) = closed neighborhood of u

B(u) = V − N(u)

CASE: deg(u) ≥ n − 4
|B(u)| ≤ n − 1− (n − 4) = 3
G[B(u)] is cop-win
Winning Strategy:

Place C1 on u and C2 in B(u).
Do not move C1
Play cop-win strategy on
G[B(u)] with C2

u

≥ n − 4N(u)

≤ 3B(u)



Cops and Robbers

The Proofs

Galactic Lemma I

Proof : ∆(G) ≥ n − 5 =⇒ c(G) ≤ 2

CASE: deg(u) = n − 5
|B(u)| = n − 1− (n − 5) = 4
G[B(u)] must be 4-cycle (otherwise cop-win)
Two forbidden subgraphs:

u

N(u)

B(u)

u

N(u)

B(u)
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Proof : ∆(G) ≥ n − 5 =⇒ c(G) ≤ 2

2-cop-win strategy for second case

C1

C2

R

⇒

C1

C2

R

⇒

C1

C2

R
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Proof : ∆(G) ≥ n − 5 =⇒ c(G) ≤ 2

The 2-cop-win strategy on G

C1

C2R
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The 2-cop-win strategy on G

C1

C2

R
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Proof : ∆(G) ≥ n − 5 =⇒ c(G) ≤ 2

Must be 3 edges from robber R to set B(u)

C1

C2

R
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Proof : ∆(G) ≥ n − 5 =⇒ c(G) ≤ 2

Otherwise: two-cop-win

C1

C2

R
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Galactic Lemma I

Proof : ∆(G) ≥ n − 5 =⇒ c(G) ≤ 2

Must be 3 edges from R to B(u)

C1

C2

R
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Proof : ∆(G) ≥ n − 5 =⇒ c(G) ≤ 2

Cops move to threaten robber in N(u)

C1

C2

R
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Proof : ∆(G) ≥ n − 5 =⇒ c(G) ≤ 2

Cops threaten robber in N(u)

C1

C2
R
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Proof : ∆(G) ≥ n − 5 =⇒ c(G) ≤ 2

Robber must move within N(u)

C1

C2
R
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Proof : ∆(G) ≥ n − 5 =⇒ c(G) ≤ 2

Cops trap the Robber in their next move

C1

C2
R
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Proof : ∆(G) ≥ n − 5 =⇒ c(G) ≤ 2

|N(R) ∩ B(u)| ≤ 2, so C1 can move to cover N(R) ∩ B(u).

C1

C2

R
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Galactic Vertex Lemma II

Lemma
Suppose that c(G) = 3. If u ∈ V with deg(u) = n − 6 then the
induced subgraph G[V − N(u)] is a 5-cycle.

u n − 6

N(u) B(u)

if c(G) = 3 then
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Corollary for ∆(G) = n − 6

Corollary

Suppose that deg(u) = n − 6 and minv∈B(u) deg(v) ≤ 3.
Then c(G) ≤ 2.

u n − 6

N(u) B(u)

forces c(G) ≤ 2
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Progress on Our Main Result

Galactic Lemmas I and II narrow the hunt for smallest
3-cop-win graph.

We can now prove that:

All graphs on 9 or fewer vertices need at most 2 cops
10-vertex graphs with ∆(G) ≥ 4 need at most 2 cops
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If |V | ≤ 9 then c(G) ≤ 2

Theorem
If n ≤ 9 then c(G) ≤ 2.

PROOF

If ∆(G) ≥ 4 = 9− 5, use Galactic Lemma I
If n = 9 and ∆(G) ≥ 4 then c(G) ≤ 2

If ∆(G) = 3 = 9− 6, use the Corollary to Galactic Lemma
II

If n = 9 and deg(u) = 3 then every v ∈ V − N(u) satisfies
deg(v) ≤ 3. So c(G) ≤ 2.

If ∆(G) = 2, then G is a path or a cycle.
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|V | = 10 and ∆(G) ≥ 4

Lemma
If n = 10 and ∆(G) ≥ 4 then c(G) ≤ 2.

PROOF

If ∆(G) ≥ 5 = 10− 5, use Galactic Lemma I
If ∆(G) = 4 = 10− 6, then G must contain one of the
following subgraphs. This forces c(G) ≤ 2.
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Remark: B(u) is 5-cycle when deg(u) = 4
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Galactic Vertex Lemma III

Lemma
Suppose that c(G) = 3. If u ∈ V with deg(u) = n − 7 with
deg(v) ≤ 3 for all v ∈ B(u). Then the induced subgraph
G[B(u)] is a 6-cycle.

u n − 7

N(u) B(u)

deg(v) ≤ 3

if c(G) = 3 then
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The Unique Smallest 3-cop-win Graph

Theorem
The Petersen graph is the only 10-vertex graph that is 3-cop
win. All other 10-vertex graphs satisfy c(G) ≤ 2.

PROOF. Suppose that n = 10 and c(G) = 3.

Know ∆(G) = 3.
If deg(u) = 3 then G[B(u)] is a 6-cycle.
G is 3-regular⇐⇒ G is the Petersen graph.
If v ∈ B(u) has deg(v) = 2, then there is a winning 2-cop
strategy for G.
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The Smallest k -cop-win Graph for k > 3

The Petersen graph is the smallest 3-cop-win graph.
QUESTION: What is the smallest k -cop-win graph?

Aigner and Fromme (1984): If G has girth g(G) ≥ 5 then
c(G) ≥ δ(G).

A (k ,5)-cage is a k -regular graph with girth 5 of minimal
order.
The cop number of a (k ,5)-cage is at least k .
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Cages for Robbers?

Let k ≥ 3.

QUESTION 1: Is a (k ,5)-cage k -cop-win?
QUESTION 2: Is the (k ,5)-cage the smallest k -cop win
graphs for k ≥ 3?

Baird and Bonato (2012+)
The size of the smallest k -cop-win graph is O(k2) (by
construction using incidence graphs of projective planes).
Meyniel’s conjecture =⇒ smallest k -cop win graph has
order Ω(k2)

Observation

The (k ,5)-cage has order Θ(k2).
So QUESTION 2 remains in the realm of possibility.
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Cages for Robbers?

Thanks, Doc!
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Cages

cage n description order of Aut(G)

(3,5) 10 Petersen Graph 120

(4,5) 19 Robertson Graph 24

(5,5) 30 4 different ones 20, 30, 96 and 120

(6,5) 40 unique 480

(7,5) 50 Hoffman-Singleton Graph 252,000
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The Robertson Graph

The three vertices on the right are
adjacent to the vertices of the cor-
responding color

This unique (4,5)-cage is 4-cop-win.
Start one cop on each of the three right vertices, and one
on a yellow vertex.
Move the yellow cop for the win.
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