The Petersen graph is the smallest 3-cop-win graph

Andrew Beveridge Macalester College, Saint Paul MN

joint work with Paolo Codenotti¹, Aaron Maurer², John MacCauley², Silviya Valeva²

1: Institute for Mathematics and its Applications 2: IMA Summer Undergraduate Research Program in Interdisciplinary Mathematics (2010)

GRAScan Workshop Ryerson University 26 May 2012

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Introduction

• The Official Rules (for Play and Research)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Our Main Results

2 The Proofs

- Galactic Lemma I
- Galactic Lemma II
- Galactic Lemma III
- 3 Conclusions and Reflections
 - Conclusions and Reflections

Cops and Robbers

Introduction

The Official Rules (for Play and Research)

Introduction

• The Official Rules (for Play and Research)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Our Main Results

2 The Proofs

- Galactic Lemma I
- Galactic Lemma II
- Galactic Lemma III
- Conclusions and Reflections
 Conclusions and Reflections

The Official Rules (for Play and Research)

The Game of Cops and Robbers

Introduced independently by Quilliot (1978), and Nowakowski & Winkler (1983).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The Official Rules (for Play and Research)

How to Play Cops and Robbers

Set Up:

- Chose a graph *G* and a positive integer *k*.
- Cops C_1, C_2, \ldots, C_k are placed on vertices of G
- Next, the robber *R* is placed on a vertex of *G*.

A Game Turn:

- Each cop moves to an adjacent vertex, or remains in place
- Next, the robber moves similarly.

Victory Conditions:

- Cops: one cop becomes co-located with the robber
- Robber: evades capture forever

The Official Rules (for Play and Research)

How to Study Cops and Robbers

- Pick a graph G and a number of cops k.
- Who has a winning strategy: the k cops or the robber?

Definition

The cop number c(G) = fewest number of cops with a winning strategy on G.

The cop number is always defined, since |V| cops trivially win.

Objective: Given a graph G, determine its cop number c(G).

Cops and Robbers

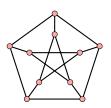
Introduction

The Official Rules (for Play and Research)

Lemma (Aigner and Fromme (1984))

If G has girth $g(G) \ge 5$ then $c(G) \ge \delta(G)$, the minimum degree of G.

WELL KNOWN FACT: the Petersen graph (3-regular, girth 5) is 3-cop-win.



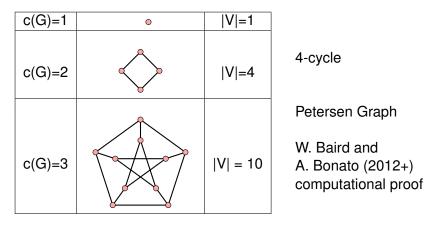
- The smallest snark
- The smallest connected, vertex-transitive graph that is not a Cayley graph
- The smallest hypo-hamiltonian graph
- The unique (3,5)-cage*

* More on this later ...

The Official Rules (for Play and Research)

Extremal Questions for Cop Number

What is the connected graph G = (V, E) of smallest order with:



The Official Rules (for Play and Research)

Baird and Bonato (2012+): Proof by Computer Search

V	$\# \{c(G) = 1\}$	$\# \{c(G) = 2\}$	$\# \{c(G) = 3\}$
÷	:	:	:
8	3,791	7,326	0
9	65,561	195,519	0
10	2,258,213	9,458,257	1

- Determine c(G) = 1 by finding a cop-win ordering
- Determine c(G) = 2 or c(G) = 3 using a recursive algorithm from Bonato, Chiniforooshan and Prałat (2010).

Our Main Results

Introduction

• The Official Rules (for Play and Research)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Our Main Results

2 The Proofs

- Galactic Lemma I
- Galactic Lemma II
- Galactic Lemma III
- Conclusions and Reflections
 Conclusions and Reflections

Our Main Results

Our Main Results [BCMMV (2012+)]

We give mathematical proofs of the following theorems

Theorem

If G = (V, E) is a connected graph with $|V| \le 9$ then $c(G) \le 2$.

Theorem

Let G = (V, E) be a connected graph with |V| = 10. Then c(G) = 3 if and only if G is the Petersen graph. Otherwise, $c(G) \le 2$.

Our Main Results

The Collaboration

UNIVERSITY OF MINNESOTA

IMA Institute for Mathematics and its Applications

Summer 2010 Interdisciplinary Math REU

AB, Sylvia Valeva, John MacCauley, Aaron Maurer Pursuit-Evasion Group

Paolo Codenotti IMA Post Doctoral Fellow, 2011-2013

Our Main Results

Our Strategy: Galactic Vertices

OUR STRATEGY: Consider c(G) for graphs on *n* vertices with maximum degree

$$\Delta(G) \geq n-7.$$

Recall: UNIVERSAL VERTEX

- A *universal vertex* has degree n 1.
- If G has a universal vertex then c(G) = 1.

For this talk, we define a GALACTIC VERTEX

• A galactic vertex has degree at least n - 7.

Disclaimer: The term "galactic vertex" is for amusement purposes only, in the context of this talk. It is easier to say than "vertex with co-degree at most 7."

Our Main Results

Notation

ASSUME: G = (V, E) connected, has *n* vertices Let $u, v \in V$ and $S \subset V$.

neighbors	$u \sim v$ when $(u, v) \in E$
neighborhood	$N(u) = \{v \in V : u \sim v\}$
closed neighborhood	$\overline{N}(u) = N(u) + u$
beyond set	$B(u) = V \setminus \overline{N}(u)$

degree deg(v) = degree of vmaximum degree $\Delta(G) = \max_{v \in V} \deg(v)$

induced subgraph G[S] = (S, E[S]), where $S \subset V$

Galactic Lemma I

Introduction

• The Official Rules (for Play and Research)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Our Main Results

2 The Proofs

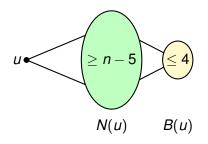
- Galactic Lemma I
- Galactic Lemma II
- Galactic Lemma III
- Conclusions and Reflections
 Conclusions and Reflections

Galactic Lemma I

Galactic Vertex Lemma I

Lemma

If $\Delta(G) \ge n-5$ then $c(G) \le 2$.



forces c(G) = 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

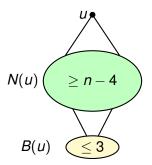
Galactic Lemma I

$\mathsf{Proof}: \Delta(G) \geq n-5 \Longrightarrow \textit{c}(G) \leq 2$

 $\overline{N}(u) =$ closed neighborhood of u $B(u) = V - \overline{N}(u)$

CASE: $deg(u) \ge n - 4$ • $|B(u)| \le n - 1 - (n - 4) = 3$ • G[B(u)] is cop-win • Winning Strategy: • Place C_1 on u and C_2 in B(u). • Do not move C_1

• Play cop-win strategy on G[B(u)] with C_2



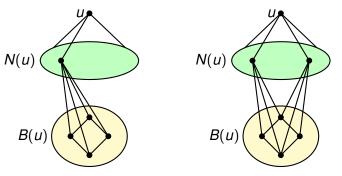
◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Galactic Lemma I

$\mathsf{Proof}: \Delta(G) \geq n-5 \Longrightarrow c(G) \leq 2$

CASE: deg(u) = n - 5

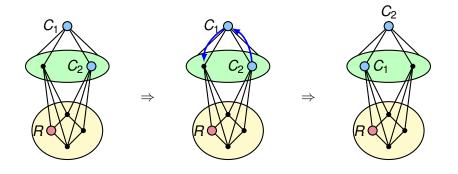
- |B(u)| = n 1 (n 5) = 4
- *G*[*B*(*u*)] must be 4-cycle (otherwise cop-win)
- Two forbidden subgraphs:



Galactic Lemma I

$\mathsf{Proof}: \Delta(G) \geq n-5 \Longrightarrow c(G) \leq 2$

2-cop-win strategy for second case

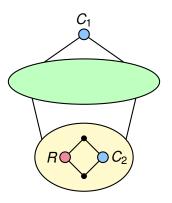


Cops and Robbers

Galactic Lemma I

$\mathsf{Proof}: \Delta(G) \ge n-5 \Longrightarrow c(G) \le 2$

The 2-cop-win strategy on G



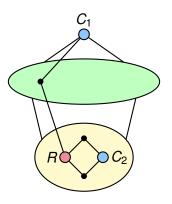
◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Cops and Robbers

Galactic Lemma I

$\mathsf{Proof}: \Delta(G) \ge n-5 \Longrightarrow c(G) \le 2$

The 2-cop-win strategy on G

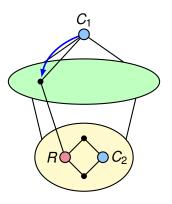


Cops and Robbers

Galactic Lemma I

$\mathsf{Proof}: \Delta(G) \ge n-5 \Longrightarrow c(G) \le 2$

The 2-cop-win strategy on G

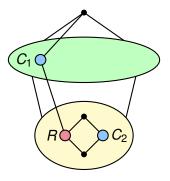


Cops and Robbers

Galactic Lemma I

$\mathsf{Proof}: \Delta(G) \ge n-5 \Longrightarrow c(G) \le 2$

The 2-cop-win strategy on G



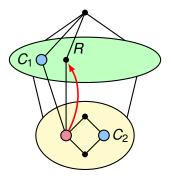
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Cops and Robbers

Galactic Lemma I

$\mathsf{Proof}: \Delta(G) \ge n-5 \Longrightarrow c(G) \le 2$

The 2-cop-win strategy on G

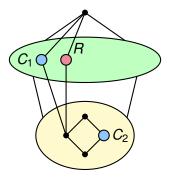


Cops and Robbers

Galactic Lemma I

$\mathsf{Proof}: \Delta(G) \ge n-5 \Longrightarrow c(G) \le 2$

The 2-cop-win strategy on G

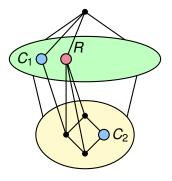


▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Galactic Lemma I

$\mathsf{Proof}: \Delta(G) \geq n-5 \Longrightarrow c(G) \leq 2$

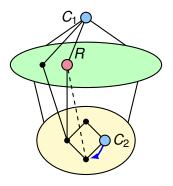
Must be 3 edges from robber *R* to set B(u)



Galactic Lemma I

$\mathsf{Proof}: \Delta(G) \geq n-5 \Longrightarrow c(G) \leq 2$

Otherwise: two-cop-win



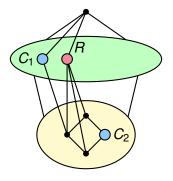
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Cops and Robbers

Galactic Lemma I

$\mathsf{Proof}: \Delta(G) \ge n-5 \Longrightarrow c(G) \le 2$

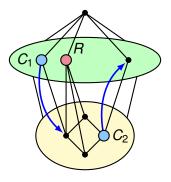
Must be 3 edges from R to B(u)



Galactic Lemma I

$\mathsf{Proof}: \Delta(G) \geq n-5 \Longrightarrow c(G) \leq 2$

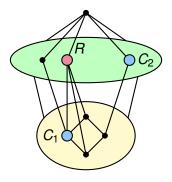
Cops move to threaten robber in N(u)



Galactic Lemma I

$\mathsf{Proof}: \Delta(G) \geq n-5 \Longrightarrow c(G) \leq 2$

Cops threaten robber in N(u)

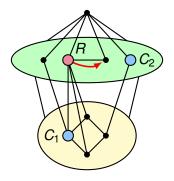


Cops and Robbers

Galactic Lemma I

$\mathsf{Proof}: \Delta(G) \ge n-5 \Longrightarrow c(G) \le 2$

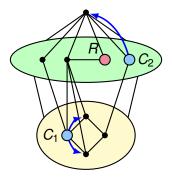
Robber must move within N(u)



Galactic Lemma I

$\mathsf{Proof}: \Delta(G) \geq n-5 \Longrightarrow c(G) \leq 2$

Cops trap the Robber in their next move

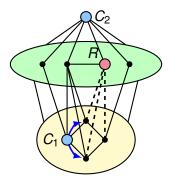


▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Galactic Lemma I

$\mathsf{Proof}: \Delta(G) \ge n-5 \Longrightarrow c(G) \le 2$

 $|N(R) \cap B(u)| \le 2$, so C_1 can move to cover $N(R) \cap B(u)$.



▲□▶▲□▶▲□▶▲□▶ □ のQ@

Galactic Lemma II

Introduction

• The Official Rules (for Play and Research)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Our Main Results

2 The Proofs

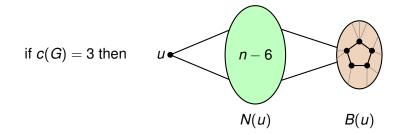
- Galactic Lemma I
- Galactic Lemma II
- Galactic Lemma III
- Conclusions and Reflections
 Conclusions and Reflections

Galactic Lemma II

Galactic Vertex Lemma II

Lemma

Suppose that c(G) = 3. If $u \in V$ with deg(u) = n - 6 then the induced subgraph $G[V - \overline{N}(u)]$ is a 5-cycle.



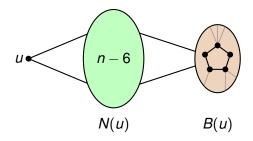
◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Galactic Lemma II

Corollary for
$$\Delta(G) = n - 6$$

Corollary

Suppose that $\deg(u) = n - 6$ and $\min_{v \in B(u)} \deg(v) \le 3$. Then $c(G) \le 2$.



forces $c(G) \leq 2$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Cops and Robbers

The Proofs

Galactic Lemma II

Progress on Our Main Result

Galactic Lemmas I and II narrow the hunt for smallest 3-cop-win graph.

We can now prove that:

- All graphs on 9 or fewer vertices need at most 2 cops
- 10-vertex graphs with $\Delta(G) \ge 4$ need at most 2 cops

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Galactic Lemma II

If
$$|V| \leq 9$$
 then $c(G) \leq 2$

Theorem

If $n \leq 9$ then $c(G) \leq 2$.

PROOF

• If $\Delta(G) \ge 4 = 9 - 5$, use Galactic Lemma I

• If n = 9 and $\Delta(G) \ge 4$ then $c(G) \le 2$

- If Δ(G) = 3 = 9 6, use the Corollary to Galactic Lemma II
 - If n = 9 and deg(u) = 3 then every v ∈ V − N(u) satisfies deg(v) ≤ 3. So c(G) ≤ 2.
- If $\Delta(G) = 2$, then G is a path or a cycle.

Galactic Lemma II

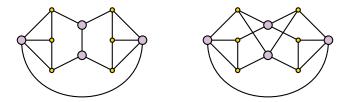
$$|V| = 10$$
 and $\Delta(G) \ge 4$

Lemma

If n = 10 and $\Delta(G) \ge 4$ then $c(G) \le 2$.

PROOF

- If $\Delta(G) \ge 5 = 10 5$, use Galactic Lemma I
- If Δ(G) = 4 = 10 − 6, then G must contain one of the following subgraphs. This forces c(G) ≤ 2.

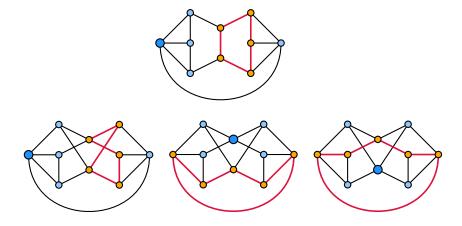


Cops and Robbers

The Proofs

Galactic Lemma II

Remark: B(u) is 5-cycle when deg(u) = 4



Galactic Lemma III

Introduction

• The Official Rules (for Play and Research)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Our Main Results

2 The Proofs

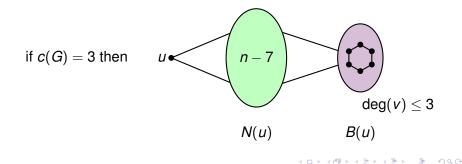
- Galactic Lemma I
- Galactic Lemma II
- Galactic Lemma III
- Conclusions and Reflections
 Conclusions and Reflections

Galactic Lemma III

Galactic Vertex Lemma III

Lemma

Suppose that c(G) = 3. If $u \in V$ with deg(u) = n - 7 with $deg(v) \le 3$ for all $v \in B(u)$. Then the induced subgraph G[B(u)] is a 6-cycle.



Galactic Lemma III

The Unique Smallest 3-cop-win Graph

Theorem

The Petersen graph is the only 10-vertex graph that is 3-cop win. All other 10-vertex graphs satisfy $c(G) \leq 2$.

PROOF. Suppose that n = 10 and c(G) = 3.

- Know $\Delta(G) = 3$.
- If deg(u) = 3 then G[B(u)] is a 6-cycle.
- *G* is 3-regular \iff *G* is the Petersen graph.
- If v ∈ B(u) has deg(v) = 2, then there is a winning 2-cop strategy for G.

Conclusions and Reflections

Introduction

• The Official Rules (for Play and Research)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Our Main Results

2 The Proofs

- Galactic Lemma I
- Galactic Lemma II
- Galactic Lemma III

3 Conclusions and Reflections

Conclusions and Reflections

Conclusions and Reflections

The Smallest *k*-cop-win Graph for k > 3

- The Petersen graph is the smallest 3-cop-win graph.
- QUESTION: What is the smallest k-cop-win graph?

Aigner and Fromme (1984): If *G* has girth $g(G) \ge 5$ then $c(G) \ge \delta(G)$.

- A (*k*, 5)-cage is a *k*-regular graph with girth 5 of minimal order.
- The cop number of a (k, 5)-cage is at least k.

Conclusions and Reflections

Cages for Robbers?

Let $k \geq 3$.

- QUESTION 1: Is a (k,5)-cage k-cop-win?
- QUESTION 2: Is the (k, 5)-cage the smallest k-cop win graphs for k ≥ 3?
- Baird and Bonato (2012+)
 - The size of the smallest k-cop-win graph is O(k²) (by construction using incidence graphs of projective planes).
 - Meyniel's conjecture ⇒ smallest k-cop win graph has order Ω(k²)

Observation

- The (k, 5)-cage has order $\Theta(k^2)$.
- So QUESTION 2 remains in the realm of possibility.

Conclusions and Reflections

Cages for Robbers?

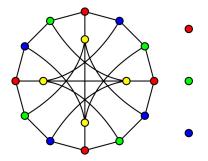
Thanks, Doc!

Conclusions and Reflections

cage	n	description	order of Aut(G)
(3,5)	10	Petersen Graph	120
(4,5)	19	Robertson Graph	24
(5,5)	30	4 different ones	20, 30, 96 and 120
(6,5)	40	unique	480
(7,5)	50	Hoffman-Singleton Graph	252,000

Conclusions and Reflections

The Robertson Graph



The three vertices on the right are adjacent to the vertices of the corresponding color

This unique (4, 5)-cage is 4-cop-win.

- Start one cop on each of the three right vertices, and one on a yellow vertex.
- Move the yellow cop for the win.