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Meyniel’s Conjecture

For a graph G , let c(G ) denote the cop number of G .

Conjecture (Meyniel)

If G is a connected graph of order n, then c(G ) is O(
√

n).

Definition
A family of connected graphs {Gn : n ≥ 1} (where Gn has order n)
is Meyniel extremal if there is a constant d such that
c(Gn) ≥ d

√
n.

Known Meyniel extremal families of graphs arise from:

I Incidence graphs of projective planes.

I Incidence graphs of affine planes with k ≥ 0 parallel classes
removed. (Baird and Bonato, 2012+)
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Graphs we have studied

1. Polarity graphs

2. t-orbit graphs

3. Incidence graphs of:
I balanced incomplete block designs (projective and affine

planes, oval designs, Denniston designs)
I group divisible designs (transversal designs, truncated

transversal designs)

4. m-subset incidence graphs of t-designs

5. block intersection graphs

6. point graphs of partial geometries

(Red indicates Meyniel extremal families arise.)



Tools

Lemma (Aigner and Fromme, 1984)

If G is a connected graph of girth at least 5, then c(G ) ≥ δ(G ).

Lemma
If G is connected and K2,t-free, then c(G ) ≥ δ(G )/t.

Idea of proof.

I If there are less than δ/t cops, the number of guarded
neighbours is less than (δ/t)t = δ.

I So the robber is guaranteed an escape.
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Tools

Corollary

If G is C4-free, then c(G ) ≥ δ(G )/2.



Meyniel’s conjecture and graphs of diameter 2

Theorem (Lu and Peng, 2012+)

If G has order n and diameter 2, then c(G ) ≤ 2
√

n − 1.

Question
Is there an infinite family of graphs of diameter 2 with cop number
c
√

n for some constant c?
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Polarity graphs

Definition
Suppose PG(2, q) has point set P and lines L. A polarity
π : P → L is a bijection such that for all p1, p2 ∈ P, p1 ∈ π(p2) if
and only if p2 ∈ π(p1).

Example

This is the orthogonal polarity: a point is mapped to its
orthogonal complement.
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Polarity graphs

Definition
Given PG(2, q) with point set P, and a polarity π, the polarity
graph has vertex set P and distinct vertices u and v adjacent if
u ∈ π(v).

If π is the orthogonal polarity, then a polarity graph is called an
Erdős-Rényi graph, ERq (not to be confused with G (n, p)).

Example
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Polarity graphs

Properties of polarity graphs:
A polarity graph of PG(2, q):

I has order q2 + q + 1

I is (q, q + 1)-regular.

I is C4-free.

I has diameter 2.

I has unbounded chromatic number as q →∞ (Godsil,
Newman, 2008).
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Theorem
If Gq is a polarity graph of a PG(2, q), then q/2 ≤ c(Gq) ≤ q + 1

u

Corollary

I There exists a Meyniel extremal family of graphs of diameter
2 whose members have unbounded chromatic number.

I There exists a Meyniel extremal family of C4-free graphs
whose members have unbounded chromatic number.

(Fill in non-prime power orders by adding corners and using
number theory.)
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t-orbit graphs

I Füredi (1996) described a family of K2,t+1-free extremal
graphs of order (q2 − 1)/t, for prime powers q.

I In GF(q), suppose h is an element of order t.

I Let H = {1, h, . . . , ht−1}.
I Form a graph G as follows. Vertices of G are the t-element

orbits of (GF(q)×GF(q)) \ {(0, 0)} under the action of
multiplication by powers of h. Join [a, b] and [x , y ] by an edge
if ax + by ∈ H.
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I Füredi (1996) described a family of K2,t+1-free extremal
graphs of order (q2 − 1)/t, for prime powers q.

I In GF(q), suppose h is an element of order t.

I Let H = {1, h, . . . , ht−1}.
I Form a graph G as follows. Vertices of G are the t-element

orbits of (GF(q)×GF(q)) \ {(0, 0)} under the action of
multiplication by powers of h. Join [a, b] and [x , y ] by an edge
if ax + by ∈ H.



Example

In GF(5), with t = 4, h = 2, H = {1, 2, 4, 3}

[1,0]={(1,0),(2,0),(4,0),(3,0)}

[1,1]={(1,1),(2,2),(4,4),(3,3)}

[1,2]={(1,2),(2,4),(4,3),(3,1)}

[1,3]={(1,3),(2,1),(4,2),(3,4)}

[1,4]={(1,4),(2,3),(4,1),(3,2)}

[0,1]

[1,0]

[1,1]

[1,2]

[1,3]

[1,4]
[0,1]={(0,1),(0,2),(0,4),(0,3)}

Theorem
G is (q, q + 1)-regular and K2,t+1-free, so c(G ) ≥ q/(t + 1).

Since the order is (q2 − 1)/t, we get Meyniel extremal.
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Incidence graphs

Definition
Let (V ,B) be an incidence structure (block design). Its incidence
graph is the bipartite graph with vertex set V ∪ B such that there
is an edge between x ∈ V and B ∈ B if and only if x ∈ B.

Example
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It is known that Meyniel extremal families can be derived from
incidence graphs of:

I projective planes.

I affine planes with a fixed number of parallel classes removed
(Baird and Bonato, 2012+)



Balanced Incomplete Block Designs

Definition
A BIBD(v, k, λ) is a pair (V ,B), where V is a set of v points,
and B is a set of k-subsets of V , called blocks, such that each pair
of points is contained in exactly λ blocks.

Example

A projective plane of order q is a BIBD(q2 + q + 1, q + 1, 1), and
an affine plane of order q is a BIBD(q2, q, 1).

BIBD(7,3,1)

The replication number r of a BIBD is the number of blocks
containing a given point. Note: r = λ(v − 1)/(k − 1).
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The incidence graph of a BIBD(v , k, 1) has order

v + v(v − 1)/k(k − 1).

Theorem
If G is the incidence graph of a BIBD(v , k, 1), then k ≤ c(G ) ≤ r .

Idea of proof. c(G) ≥ k : G has girth at least 6, so

c(G ) ≥ δ(G ) = min{k , r} = k.

c(G) ≤ r : Play with r cops.
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Corollary (Pra lat, 2010)

The incidence graph of the projective plane of order q has cop
number q + 1.

Theorem
Let i and j be integers with 2 ≤ i < j . Then there exists:

I An oval design, i.e. BIBD(2i−1(2i − 1), 2i−1, 1) (Bose and
Shrikhande, 1960)

I A Denniston design, i.e. BIBD(2i+j + 2i − 2j , 2i , 1)
(Denniston, 1969)

Oval designs and Denniston designs (with j = i + α) give new
Meyniel extremal families.
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Group Divisible Designs

Definition
A k-GDD is a triple (X ,G,B), satisfying:

1. X is a finite set of points

2. G is a partition of X into groups

3. B is a collection of k-subsets of X called blocks

4. Each pair of points in different groups is contained in exactly
one block.

5. No pair of points in the same group appears in any block.
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Definition
A k-GDD with k groups of size n is a transversal design,
TD(k, n).

Example

A TD(3, 2).



Definition
A k-GDD with k groups of size n is a transversal design,
TD(k, n).

Example

A TD(3, 2).



Theorem
Let G be the incidence graph of a k-GDD of type nm. Then

c(G ) ≥ min

{
k ,

(m − 1)n

k − 1

}
.
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I A TD(k , n) has kn points and n blocks.

I There exists a TD(k, n) if n is a prime power and k ≤ n + 1.

I We get Meyniel extremal families from TD(n + 1, n) and
TD(n − α, n) where α ≥ 0 is fixed. (These designs exist for n
a prime power.)

I A TD(n + 1, n) is the dual of an affine plane of order n. A
TD(n − α, n) is the dual of an affine plane of order n with
(α + 1) parallel classes removed.

I So the families of graphs involved are those studied by Baird
and Bonato.

I But we now know their exact cop number.
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Definition
A truncated transversal design, TTD(k, n, u) is a
{k , k + 1}-GDD with k parts of size n and of size u, such that each
point in the group of size u appears only in blocks of size k + 1.

Lemma
If n is a prime power, 3 ≤ k ≤ n and 1 ≤ u ≤ n, then there exists
a TTD(k, n, u).

Proof.
Take a TD(k + 1, n) and delete n − u points in one group.

Theorem
If G is the incidence graph of a TTD(k , n, u), then
min{k , n} ≤ c(G ) ≤ min{k + 1, n}.
G has order n2 + kn + u, so we obtain Meyniel extremal families
from TTD(n, n, u) and TTD(n − α, n, u) for fixed α and u.
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Block intersection graphs

Definition
Let (V ,B) be a block design. Its block intersection graph has
vertex set B, with blocks B1 and B2 adjacent if and only if
B1 ∩ B2 6= ∅.

Example

123 147 159 168
456 258 267 249
789 369 348 357
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Theorem
Let G be the block intersection graph of a BIBD(v , k , 1). Then
c(G ) ≤ k. Moreover, if v > k(k − 1)2 + 1, then c(G ) = k.

Strategy with k cops:

The lower bound is by a counting argument.
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Lemma

I The block intersection graph of a projective plane is complete,
and so has cop number 1.

I The block intersection graph of an affine plane is complete
multipartite, and so has cop number 2.
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Other questions:

I Are there other Meyniel extremal families based on designs?
Not based on designs?

I Other graphs based on designs

I Other designs

I t-designs

I Higher index


