Cops and Robbers on Graphs Based on Designs

Andrea Burgess Ryerson University

Joint work with Anthony Bonato

For a graph G, let c(G) denote the cop number of G.

For a graph G, let c(G) denote the cop number of G.

Conjecture (Meyniel)

If G is a connected graph of order n, then c(G) is $O(\sqrt{n})$.

For a graph G, let c(G) denote the cop number of G.

Conjecture (Meyniel)

If G is a connected graph of order n, then c(G) is $O(\sqrt{n})$.

Definition

A family of connected graphs $\{G_n : n \ge 1\}$ (where G_n has order n) is Meyniel extremal if there is a constant d such that $c(G_n) \ge d\sqrt{n}$.

For a graph G, let c(G) denote the cop number of G.

Conjecture (Meyniel)

If G is a connected graph of order n, then c(G) is $O(\sqrt{n})$.

Definition

A family of connected graphs $\{G_n : n \ge 1\}$ (where G_n has order n) is Meyniel extremal if there is a constant d such that $c(G_n) \ge d\sqrt{n}$.

Known Meyniel extremal families of graphs arise from:

- Incidence graphs of projective planes.
- ► Incidence graphs of affine planes with k ≥ 0 parallel classes removed. (Baird and Bonato, 2012+)

Graphs we have studied

- 1. Polarity graphs
- 2. *t*-orbit graphs
- 3. Incidence graphs of:
 - balanced incomplete block designs (projective and affine planes, oval designs, Denniston designs)
 - group divisible designs (transversal designs, truncated transversal designs)
- 4. *m*-subset incidence graphs of *t*-designs
- 5. block intersection graphs
- 6. point graphs of partial geometries

(Red indicates Meyniel extremal families arise.)

Lemma (Aigner and Fromme, 1984)

If G is a connected graph of girth at least 5, then $c(G) \ge \delta(G)$.

Lemma (Aigner and Fromme, 1984)

If G is a connected graph of girth at least 5, then $c(G) \ge \delta(G)$.

Lemma

If G is connected and $K_{2,t}$ -free, then $c(G) \ge \delta(G)/t$.

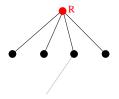
Idea of proof.

Lemma (Aigner and Fromme, 1984)

If G is a connected graph of girth at least 5, then $c(G) \ge \delta(G)$.

Lemma

If G is connected and $K_{2,t}$ -free, then $c(G) \ge \delta(G)/t$. Idea of proof.



Lemma (Aigner and Fromme, 1984)

If G is a connected graph of girth at least 5, then $c(G) \ge \delta(G)$.

Lemma

If G is connected and $K_{2,t}$ -free, then $c(G) \ge \delta(G)/t$. Idea of proof.

C C

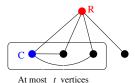
Lemma (Aigner and Fromme, 1984)

If G is a connected graph of girth at least 5, then $c(G) \ge \delta(G)$.

Lemma

If G is connected and $K_{2,t}$ -free, then $c(G) \ge \delta(G)/t$.

Idea of proof.

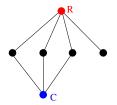


Lemma (Aigner and Fromme, 1984)

If G is a connected graph of girth at least 5, then $c(G) \ge \delta(G)$.

Lemma

If G is connected and $K_{2,t}$ -free, then $c(G) \ge \delta(G)/t$. Idea of proof.



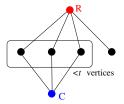
Lemma (Aigner and Fromme, 1984)

If G is a connected graph of girth at least 5, then $c(G) \ge \delta(G)$.

Lemma

If G is connected and $K_{2,t}$ -free, then $c(G) \ge \delta(G)/t$.

Idea of proof.



If there are less than δ/t cops, the number of guarded neighbours is less than (δ/t)t = δ.

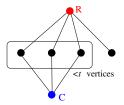
Lemma (Aigner and Fromme, 1984)

If G is a connected graph of girth at least 5, then $c(G) \ge \delta(G)$.

Lemma

If G is connected and $K_{2,t}$ -free, then $c(G) \ge \delta(G)/t$.

Idea of proof.



- If there are less than δ/t cops, the number of guarded neighbours is less than (δ/t)t = δ.
- So the robber is guaranteed an escape.

Corollary If G is C₄-free, then $c(G) \ge \delta(G)/2$.

Meyniel's conjecture and graphs of diameter 2

Theorem (Lu and Peng, 2012+)

If G has order n and diameter 2, then $c(G) \leq 2\sqrt{n} - 1$.

Meyniel's conjecture and graphs of diameter 2

Theorem (Lu and Peng, 2012+)

If G has order n and diameter 2, then $c(G) \leq 2\sqrt{n} - 1$.

Question

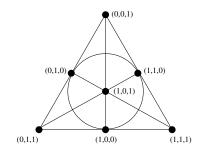
Is there an infinite family of graphs of diameter 2 with cop number $c\sqrt{n}$ for some constant c?

Definition

Suppose PG(2, q) has point set P and lines L. A **polarity** $\pi : P \to L$ is a bijection such that for all $p_1, p_2 \in P$, $p_1 \in \pi(p_2)$ if and only if $p_2 \in \pi(p_1)$.

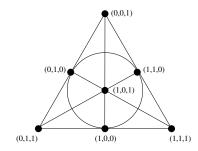
Definition

Suppose PG(2, q) has point set P and lines L. A **polarity** $\pi : P \to L$ is a bijection such that for all $p_1, p_2 \in P$, $p_1 \in \pi(p_2)$ if and only if $p_2 \in \pi(p_1)$.



Definition

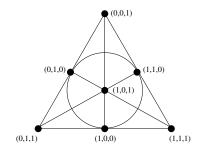
Suppose PG(2, q) has point set P and lines L. A **polarity** $\pi : P \to L$ is a bijection such that for all $p_1, p_2 \in P$, $p_1 \in \pi(p_2)$ if and only if $p_2 \in \pi(p_1)$.



001>	(010,100,110)
010>	(001,100,101)
011>	(011,100,111)
100>	(001,010,011)
101>	(010,101,111)
110>	(001,110,111)
111>	(011,101,110)

Definition

Suppose PG(2, q) has point set P and lines L. A **polarity** $\pi : P \to L$ is a bijection such that for all $p_1, p_2 \in P$, $p_1 \in \pi(p_2)$ if and only if $p_2 \in \pi(p_1)$.

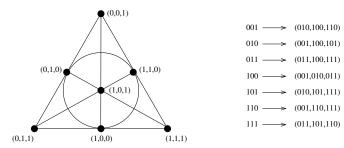


001 →	(010,100,100)
010>	(001,100,101)
011>	(011,100,111)
100>	(001,010,011)
101>	(010,101,111)
110>	(001,110,111)
111>	(011,101,110)

Definition

Suppose PG(2, q) has point set P and lines L. A **polarity** $\pi : P \to L$ is a bijection such that for all $p_1, p_2 \in P$, $p_1 \in \pi(p_2)$ if and only if $p_2 \in \pi(p_1)$.

Example



This is the **orthogonal polarity**: a point is mapped to its orthogonal complement.

Definition

Given PG(2, q) with point set *P*, and a polarity π , the **polarity** graph has vertex set *P* and distinct vertices *u* and *v* adjacent if $u \in \pi(v)$.

Definition

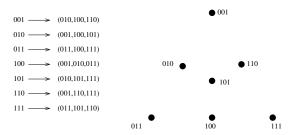
Given PG(2, q) with point set P, and a polarity π , the **polarity** graph has vertex set P and distinct vertices u and v adjacent if $u \in \pi(v)$.

If π is the orthogonal polarity, then a polarity graph is called an **Erdős-Rényi graph**, ER_q (not to be confused with G(n, p)).

Definition

Given PG(2, q) with point set P, and a polarity π , the **polarity** graph has vertex set P and distinct vertices u and v adjacent if $u \in \pi(v)$.

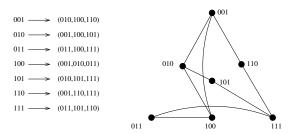
If π is the orthogonal polarity, then a polarity graph is called an **Erdős-Rényi graph**, ER_q (not to be confused with G(n, p)).



Definition

Given PG(2, q) with point set P, and a polarity π , the **polarity** graph has vertex set P and distinct vertices u and v adjacent if $u \in \pi(v)$.

If π is the orthogonal polarity, then a polarity graph is called an **Erdős-Rényi graph**, ER_q (not to be confused with G(n, p)).



Properties of polarity graphs:

Properties of polarity graphs:

A polarity graph of PG(2, q):

▶ has order $q^2 + q + 1$

Properties of polarity graphs:

- has order $q^2 + q + 1$
- is (q, q+1)-regular.

Properties of polarity graphs:

- has order $q^2 + q + 1$
- is (q, q + 1)-regular.
- ▶ is C₄-free.

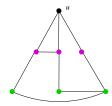
Properties of polarity graphs:

- has order $q^2 + q + 1$
- is (q, q + 1)-regular.
- ▶ is *C*₄-free.
- has diameter 2.

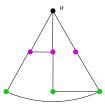
Properties of polarity graphs:

- has order $q^2 + q + 1$
- is (q, q + 1)-regular.
- ▶ is C₄-free.
- has diameter 2.
- ▶ has unbounded chromatic number as q → ∞ (Godsil, Newman, 2008).

If G_q is a polarity graph of a $\operatorname{PG}(2,q)$, then $q/2 \leq c(G_q) \leq q+1$



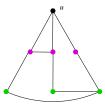
If G_q is a polarity graph of a $\operatorname{PG}(2,q)$, then $q/2 \leq c(G_q) \leq q+1$



Corollary

There exists a Meyniel extremal family of graphs of diameter 2 whose members have unbounded chromatic number.

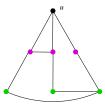
If G_q is a polarity graph of a $\operatorname{PG}(2,q)$, then $q/2 \leq c(G_q) \leq q+1$



Corollary

- There exists a Meyniel extremal family of graphs of diameter 2 whose members have unbounded chromatic number.
- ► There exists a Meyniel extremal family of C₄-free graphs whose members have unbounded chromatic number.

If G_q is a polarity graph of a $\operatorname{PG}(2,q)$, then $q/2 \leq c(G_q) \leq q+1$



Corollary

- There exists a Meyniel extremal family of graphs of diameter 2 whose members have unbounded chromatic number.
- ► There exists a Meyniel extremal family of C₄-free graphs whose members have unbounded chromatic number.

(Fill in non-prime power orders by adding corners and using number theory.)

► Füredi (1996) described a family of K_{2,t+1}-free extremal graphs of order (q² − 1)/t, for prime powers q.

- ► Füredi (1996) described a family of K_{2,t+1}-free extremal graphs of order (q² − 1)/t, for prime powers q.
- In GF(q), suppose h is an element of order t.

- ► Füredi (1996) described a family of K_{2,t+1}-free extremal graphs of order (q² − 1)/t, for prime powers q.
- In GF(q), suppose h is an element of order t.

• Let
$$H = \{1, h, \dots, h^{t-1}\}.$$

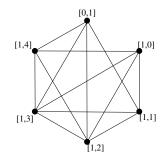
- ► Füredi (1996) described a family of K_{2,t+1}-free extremal graphs of order (q² − 1)/t, for prime powers q.
- In GF(q), suppose h is an element of order t.

• Let
$$H = \{1, h, \dots, h^{t-1}\}.$$

Form a graph G as follows. Vertices of G are the t-element orbits of (GF(q) × GF(q)) \ {(0,0)} under the action of multiplication by powers of h. Join [a, b] and [x, y] by an edge if ax + by ∈ H.

Example

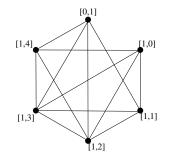
In GF(5), with t = 4, h = 2, $H = \{1, 2, 4, 3\}$



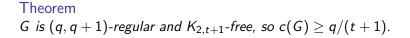
 $\begin{array}{l} [0,1] = \{(0,1),(0,2),(0,4),(0,3)\} \\ [1,0] = \{(1,0),(2,0),(4,0),(3,0)\} \\ [1,1] = \{(1,1),(2,2),(4,4),(3,3)\} \\ [1,2] = \{(1,2),(2,4),(4,3),(3,1)\} \\ [1,3] = \{(1,3),(2,1),(4,2),(3,4)\} \\ [1,4] = \{(1,4),(2,3),(4,1),(3,2)\} \end{array}$

Example

In GF(5), with t = 4, h = 2, $H = \{1, 2, 4, 3\}$

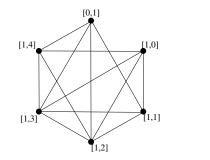


 $\begin{array}{l} [0,1] = \{(0,1),(0,2),(0,4),(0,3)\} \\ [1,0] = \{(1,0),(2,0),(4,0),(3,0)\} \\ [1,1] = \{(1,1),(2,2),(4,4),(3,3)\} \\ [1,2] = \{(1,2),(2,4),(4,3),(3,1)\} \\ [1,3] = \{(1,3),(2,1),(4,2),(3,4)\} \\ [1,4] = \{(1,4),(2,3),(4,1),(3,2)\} \end{array}$



Example

In GF(5), with t = 4, h = 2, $H = \{1, 2, 4, 3\}$



 $\begin{array}{l} [0,1] = \{(0,1),(0,2),(0,4),(0,3)\} \\ [1,0] = \{(1,0),(2,0),(4,0),(3,0)\} \\ [1,1] = \{(1,1),(2,2),(4,4),(3,3)\} \\ [1,2] = \{(1,2),(2,4),(4,3),(3,1)\} \\ [1,3] = \{(1,3),(2,1),(4,2),(3,4)\} \\ [1,4] = \{(1,4),(2,3),(4,1),(3,2)\} \end{array}$

Theorem

G is (q, q+1)-regular and $K_{2,t+1}$ -free, so $c(G) \geq q/(t+1)$.

Since the order is $(q^2 - 1)/t$, we get Meyniel extremal.

Incidence graphs

Definition

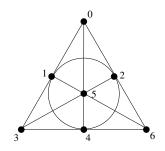
Let (V, \mathcal{B}) be an incidence structure (block design). Its **incidence graph** is the bipartite graph with vertex set $V \cup \mathcal{B}$ such that there is an edge between $x \in V$ and $B \in \mathcal{B}$ if and only if $x \in B$.

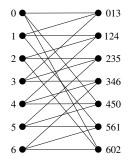
Incidence graphs

Definition

Let (V, \mathcal{B}) be an incidence structure (block design). Its **incidence graph** is the bipartite graph with vertex set $V \cup \mathcal{B}$ such that there is an edge between $x \in V$ and $B \in \mathcal{B}$ if and only if $x \in B$.

Example





It is known that Meyniel extremal families can be derived from incidence graphs of:

- projective planes.
- affine planes with a fixed number of parallel classes removed (Baird and Bonato, 2012+)

Balanced Incomplete Block Designs

Definition

A **BIBD**(v, k, λ) is a pair (V, B), where V is a set of v points, and B is a set of k-subsets of V, called blocks, such that each pair of points is contained in exactly λ blocks.

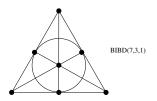
Balanced Incomplete Block Designs

Definition

A **BIBD**(v, k, λ) is a pair (V, B), where V is a set of v points, and B is a set of k-subsets of V, called blocks, such that each pair of points is contained in exactly λ blocks.

Example

A projective plane of order q is a BIBD $(q^2 + q + 1, q + 1, 1)$, and an affine plane of order q is a BIBD $(q^2, q, 1)$.



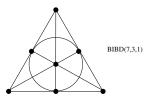
Balanced Incomplete Block Designs

Definition

A **BIBD**(v, k, λ) is a pair (V, B), where V is a set of v points, and B is a set of k-subsets of V, called blocks, such that each pair of points is contained in exactly λ blocks.

Example

A projective plane of order q is a BIBD $(q^2 + q + 1, q + 1, 1)$, and an affine plane of order q is a BIBD $(q^2, q, 1)$.



The **replication number** r of a BIBD is the number of blocks containing a given point. Note: $r = \lambda(v-1)/(k-1)$.

$$v+v(v-1)/k(k-1).$$

$$v+v(v-1)/k(k-1).$$

Theorem

If G is the incidence graph of a BIBD(v, k, 1), then $k \leq c(G) \leq r$.

$$v+v(v-1)/k(k-1).$$

Theorem

If G is the incidence graph of a BIBD(v, k, 1), then $k \le c(G) \le r$. Idea of proof. $c(G) \ge k : G$ has girth at least 6, so

$$c(G) \geq \delta(G) = \min\{k, r\} = k.$$

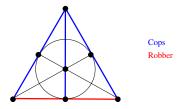
$$v+v(v-1)/k(k-1).$$

Theorem

If G is the incidence graph of a BIBD(v, k, 1), then $k \le c(G) \le r$. Idea of proof. $c(G) \ge k : G$ has girth at least 6, so

$$c(G) \geq \delta(G) = \min\{k, r\} = k.$$

 $c(G) \leq r$: Play with r cops.



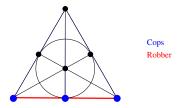
$$v+v(v-1)/k(k-1).$$

Theorem

If G is the incidence graph of a BIBD(v, k, 1), then $k \le c(G) \le r$. Idea of proof. $c(G) \ge k : G$ has girth at least 6, so

$$c(G) \geq \delta(G) = \min\{k, r\} = k.$$

 $c(G) \leq r$: Play with r cops.



Corollary (Prałat, 2010)

The incidence graph of the projective plane of order q has cop number q + 1.

Corollary (Prałat, 2010)

The incidence graph of the projective plane of order q has cop number q + 1.

Theorem

Let *i* and *j* be integers with $2 \le i < j$. Then there exists:

- ► An oval design, i.e. BIBD(2ⁱ⁻¹(2ⁱ 1), 2ⁱ⁻¹, 1) (Bose and Shrikhande, 1960)
- ► A Denniston design, i.e. BIBD(2^{i+j} + 2ⁱ 2^j, 2ⁱ, 1) (Denniston, 1969)

Corollary (Prałat, 2010)

The incidence graph of the projective plane of order q has cop number q + 1.

Theorem

Let *i* and *j* be integers with $2 \le i < j$. Then there exists:

- ► An oval design, i.e. BIBD(2ⁱ⁻¹(2ⁱ 1), 2ⁱ⁻¹, 1) (Bose and Shrikhande, 1960)
- ► A Denniston design, i.e. BIBD(2^{i+j} + 2ⁱ 2^j, 2ⁱ, 1) (Denniston, 1969)

Oval designs and Denniston designs (with $j = i + \alpha$) give new Meyniel extremal families.

Definition A **k**-GDD is a triple $(X, \mathcal{G}, \mathcal{B})$, satisfying:

1. X is a finite set of points

Definition

- 1. X is a finite set of points
- 2. G is a partition of X into groups

Definition

- 1. X is a finite set of points
- 2. G is a partition of X into groups
- 3. \mathcal{B} is a collection of k-subsets of X called blocks

Definition

- 1. X is a finite set of points
- 2. G is a partition of X into groups
- 3. \mathcal{B} is a collection of k-subsets of X called *blocks*
- 4. Each pair of points in different groups is contained in exactly one block.

Definition

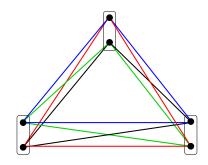
- 1. X is a finite set of points
- 2. G is a partition of X into groups
- 3. \mathcal{B} is a collection of k-subsets of X called *blocks*
- 4. Each pair of points in different groups is contained in exactly one block.
- 5. No pair of points in the same group appears in any block.

Definition

A k-GDD with k groups of size n is a transversal design, TD(k, n).

Definition A k-GDD with k groups of size n is a **transversal design**, **TD**(k, n).

Example A TD(3,2).



Theorem Let G be the incidence graph of a k-GDD of type n^m . Then

$$c(G) \geq \min\left\{k, \frac{(m-1)n}{k-1}\right\}.$$

Theorem Let G be the incidence graph of a k-GDD of type n^m . Then

$$c(G) \geq \min\left\{k, \frac{(m-1)n}{k-1}
ight\}$$

Theorem If G is the incidence graph of a TD(k, n), then

$$c(G) = \min\{k, n\}$$

• A TD(k, n) has kn points and n blocks.

- A TD(k, n) has kn points and n blocks.
- There exists a TD(k, n) if n is a prime power and $k \le n + 1$.

- A TD(k, n) has kn points and n blocks.
- There exists a TD(k, n) if n is a prime power and $k \le n + 1$.
- ▶ We get Meyniel extremal families from TD(n + 1, n) and $TD(n \alpha, n)$ where $\alpha \ge 0$ is fixed. (These designs exist for n a prime power.)

- A TD(k, n) has kn points and n blocks.
- There exists a TD(k, n) if n is a prime power and $k \le n + 1$.
- ▶ We get Meyniel extremal families from TD(n + 1, n) and $TD(n \alpha, n)$ where $\alpha \ge 0$ is fixed. (These designs exist for n a prime power.)
- A TD(n + 1, n) is the dual of an affine plane of order n. A TD(n − α, n) is the dual of an affine plane of order n with (α + 1) parallel classes removed.

- A TD(k, n) has kn points and n blocks.
- There exists a TD(k, n) if n is a prime power and $k \le n + 1$.
- ▶ We get Meyniel extremal families from TD(n + 1, n) and $TD(n \alpha, n)$ where $\alpha \ge 0$ is fixed. (These designs exist for n a prime power.)
- A TD(n + 1, n) is the dual of an affine plane of order n. A TD(n − α, n) is the dual of an affine plane of order n with (α + 1) parallel classes removed.
- So the families of graphs involved are those studied by Baird and Bonato.

- A TD(k, n) has kn points and n blocks.
- There exists a TD(k, n) if n is a prime power and $k \le n + 1$.
- ▶ We get Meyniel extremal families from TD(n + 1, n) and $TD(n \alpha, n)$ where $\alpha \ge 0$ is fixed. (These designs exist for n a prime power.)
- A TD(n + 1, n) is the dual of an affine plane of order n. A TD(n − α, n) is the dual of an affine plane of order n with (α + 1) parallel classes removed.
- So the families of graphs involved are those studied by Baird and Bonato.
- But we now know their exact cop number.

A truncated transversal design, TTD(k, n, u) is a

 $\{k, k+1\}$ -GDD with k parts of size n and of size u, such that each point in the group of size u appears only in blocks of size k + 1.

A truncated transversal design, TTD(k, n, u) is a

 $\{k, k+1\}$ -GDD with k parts of size n and of size u, such that each point in the group of size u appears only in blocks of size k + 1.

Lemma

If n is a prime power, $3 \le k \le n$ and $1 \le u \le n$, then there exists a TTD(k, n, u).

A truncated transversal design, TTD(k, n, u) is a

 $\{k, k+1\}$ -GDD with k parts of size n and of size u, such that each point in the group of size u appears only in blocks of size k + 1.

Lemma

If n is a prime power, $3 \le k \le n$ and $1 \le u \le n$, then there exists a TTD(k, n, u).

Proof.

Take a TD(k + 1, n) and delete n - u points in one group.

A truncated transversal design, TTD(k, n, u) is a

 $\{k, k+1\}$ -GDD with k parts of size n and of size u, such that each point in the group of size u appears only in blocks of size k + 1.

Lemma

If n is a prime power, $3 \le k \le n$ and $1 \le u \le n$, then there exists a TTD(k, n, u).

Proof.

Take a TD(k + 1, n) and delete n - u points in one group.

Theorem

If G is the incidence graph of a TTD(k, n, u), then $\min\{k, n\} \le c(G) \le \min\{k+1, n\}.$

G has order $n^2 + kn + u$, so we obtain Meyniel extremal families from TTD(n, n, u) and $TTD(n - \alpha, n, u)$ for fixed α and u.

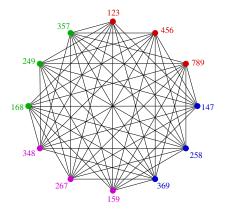
Block intersection graphs

Definition

Let (V, \mathcal{B}) be a block design. Its **block intersection graph** has vertex set \mathcal{B} , with blocks B_1 and B_2 adjacent if and only if $B_1 \cap B_2 \neq \emptyset$.

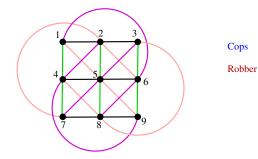
Example

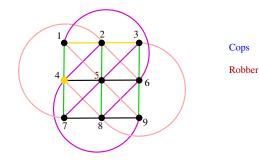
123	147	159	168
456	258	267	249
789	369	348	357

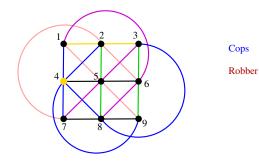


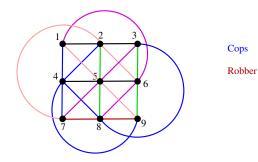
Theorem

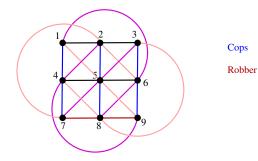
Let G be the block intersection graph of a BIBD(v, k, 1). Then $c(G) \le k$. Moreover, if $v > k(k-1)^2 + 1$, then c(G) = k.



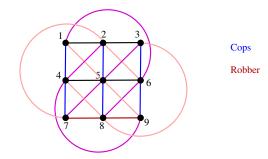








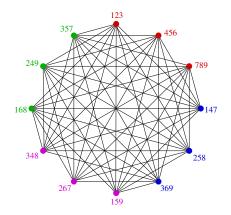
Strategy with k cops:



The lower bound is by a counting argument.

Lemma

- The block intersection graph of a projective plane is complete, and so has cop number 1.
- The block intersection graph of an affine plane is complete multipartite, and so has cop number 2.



Other questions:

- Are there other Meyniel extremal families based on designs? Not based on designs?
- Other graphs based on designs
- Other designs
- t-designs
- Higher index