# Cops and Robber with Fast Robber on Interval graphs and Chordal Graphs

Abbas Mehrabian amehrabi@uwaterloo.ca

University of Waterloo

May 26th, 2012 GrasCan'12

## Notation

- G the graph of the game, which is simple and connected.
- n the number of vertices of G.
- $c_{\infty}(G)$  the cop number of G.

- ( E

# What's Known?

- There are graphs with  $c_{\infty}(G) = \Theta(n)$ . [Frieze, Krivelevich, Loh'11]
- Computing  $c_{\infty}(G)$  is NP-hard.

[Fomin, Golovach, Kratochvíl'08]

• Computing  $c_{\infty}(\mathcal{G})$  for an interval graph is in P. [Gavenčiak'11]

# Today's Plan

- Any interval graph has  $c_{\infty}(G) = O(\sqrt{n})$  and this is best possible.
- 2 There are chordal graphs with  $c_{\infty}(G) = \Omega(n/\log n)$ .

In the usual game, both classes are cop-win.

## Interval Graphs

### Definition

Intersection graph of a set of closed intervals on the real line.



イロト イポト イヨト イヨト

э

# A Path Decomposition of a Graph

#### Definition

Let G be a graph, m be a positive integer, and  $\{W_i : 1 \le i \le m\}$  be a family of subsets of V(G), called the bags. The family  $\{W_i\}$  is a path decomposition of G if it satisfies:

(i) 
$$\cup_{1 \leq i \leq m} W_i = V(G)$$
.

(ii) For every  $uv \in E(G)$ , there is a bag containing both u and v.

(iii) For every  $v \in V(G)$ , v is contained in a consecutive set of bags.

# Figure!

Abbas Cops and Robber Game

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

### Definition

A subgraph H of G is k-wide if

(i) H is k-vertex-connected, and

(ii) No k-1 vertices of G dominate H.

#### Claim

If G has an k-wide subgraph H, then  $c_{\infty}(G) \ge k$ .

#### Proof.

The robber stays in *H* all the time!

< D > < P > < P > < P >

### Definition

A subgraph H of G is k-wide if

(i) H is k-vertex-connected, and

(ii) No k-1 vertices of G dominate H.

#### Claim

If G has an k-wide subgraph H, then  $c_{\infty}(G) \ge k$ .

#### Proof.

The robber stays in *H* all the time!

(日) (同) (三) (

### Definition

A subgraph H of G is k-wide if

(i) H is k-vertex-connected, and

(ii) No k-1 vertices of G dominate H.

#### Claim

If G has an k-wide subgraph H, then  $c_{\infty}(G) \ge k$ .

#### Proof.

The robber stays in H all the time!

## Wide Subgraphs

### Definition

A subgraph H of G is k-wide if

(i) H is k-vertex-connected, and

(ii) No k-1 vertices of G dominate H.

Let *M* be the maximum number s. t. *G* has an *M*-wide interval subgraph.

< 口 > < 同

### Definition

A subgraph H of G is k-wide if

(i) H is k-vertex-connected, and

(ii) No k-1 vertices of G dominate H.



Let M be the maximum number s. t. G has an M-wide interval subgraph.

### Definition

A subgraph H of G is k-wide if

(i) H is k-vertex-connected, and

(ii) No k-1 vertices of G dominate H.

Let M be the maximum number s. t. G has an M-wide interval subgraph.

#### Lemma

If M is the maximum number s. t. G has an M-wide interval subgraph,

 $M \leq c_{\infty}(G) \leq 3M$ 

#### Proof.

For each subgraph H of G, at least one of the following holds:

(i) *H* has a cut set with *M* vertices.

(ii) There are *M* vertices of *G* that dominate *H*.

#### Lemma

If M is the maximum number s. t. G has an M-wide interval subgraph,

$$M \leq c_{\infty}(G) \leq 3M$$

### Proof.

For each subgraph H of G, at least one of the following holds:

(i) *H* has a cut set with *M* vertices.

(ii) There are *M* vertices of *G* that dominate *H*.

#### Lemma

If M is the maximum number s. t. G has an M-wide interval subgraph,

$$M \leq c_{\infty}(G) \leq 3M$$

#### Proof.

For each subgraph H of G, at least one of the following holds:

- (i) *H* has a cut set with *M* vertices.
- (ii) There are *M* vertices of *G* that dominate *H*.

#### Lemma

If M is the maximum number s. t. G has an M-wide interval subgraph,

$$M \leq c_{\infty}(G) \leq 3M$$

#### Proof.

For each subgraph H of G, at least one of the following holds:

- (i) *H* has a cut set with *M* vertices.
- (ii) There are *M* vertices of *G* that dominate *H*.



#### Lemma

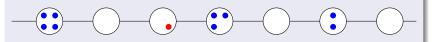
If M is the maximum number s. t. G has an M-wide interval subgraph,

$$M \leq c_{\infty}(G) \leq 3M$$

#### Proof.

For each subgraph H of G, at least one of the following holds:

- (i) *H* has a cut set with *M* vertices.
- (ii) There are *M* vertices of *G* that dominate *H*.



#### Lemma

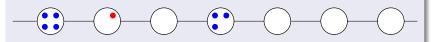
If M is the maximum number s. t. G has an M-wide interval subgraph,

$$M \leq c_{\infty}(G) \leq 3M$$

#### Proof.

For each subgraph H of G, at least one of the following holds:

- (i) *H* has a cut set with *M* vertices.
- (ii) There are *M* vertices of *G* that dominate *H*.



#### Lemma

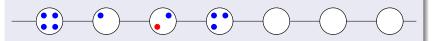
If M is the maximum number s. t. G has an M-wide interval subgraph,

$$M \leq c_{\infty}(G) \leq 3M$$

#### Proof.

For each subgraph H of G, at least one of the following holds:

- (i) *H* has a cut set with *M* vertices.
- (ii) There are *M* vertices of *G* that dominate *H*.



#### Theorem

Let G be an interval graph. No interval subgraph of G is  $(\sqrt{5n}+3)$ -wide.

### The theorem implies

$$c_{\infty}(G) = O(\sqrt{n})$$



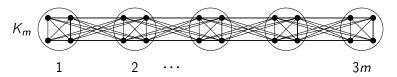
The above graph is  $\left(\frac{\sqrt{n}}{3}\right)$ -wide.

#### Theorem

Let G be an interval graph. No interval subgraph of G is  $(\sqrt{5n}+3)$ -wide.

### The theorem implies

$$c_{\infty}(G) = O(\sqrt{n})$$



The above graph is  $\left(\frac{\sqrt{n}}{3}\right)$ -wide.

#### Theorem

Let G be an interval graph. No interval subgraph of G is  $(\sqrt{5n}+3)$ -wide.

#### Proposition

For a minimum dominating set A, any vertex is adjacent to at most five vertices of A.

< ロ > < 同 > < 回 > <

#### Theorem

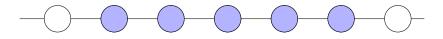
Let G be an interval graph. No interval subgraph of G is  $(\sqrt{5n}+3)$ -wide.

#### Proposition

For a minimum dominating set A, any vertex is adjacent to at most five vertices of A.

#### Theorem

Let G be an interval graph. No interval subgraph of G is  $(\sqrt{5n}+3)$ -wide.



- A: minimum dominating set for H
- $\delta$ : minimum degree in A

 $|A|(\delta+1) \le 5|V(H)| \le 5n$ 

If  $|A| \leq \sqrt{5n}$  then H has small dominating set If  $\delta + 1 \leq \sqrt{5n}$  then H has small cut set

#### Theorem

Let G be an interval graph. No interval subgraph of G is  $(\sqrt{5n}+3)$ -wide.



- A: minimum dominating set for H
- $\delta$ : minimum degree in A

 $|A|(\delta+1) \le 5|V(H)| \le 5n$ 

If  $|{\cal A}| \leq \sqrt{5n}$  then  $\, H$  has small dominating set If  $\, \delta + 1 \leq \sqrt{5n}$  then  $\, H$  has small cut set

#### Theorem

Let G be an interval graph. No interval subgraph of G is  $(\sqrt{5n} + 3)$ -wide.



- A: minimum dominating set for H
- $\delta$ : minimum degree in A

 $|A|(\delta+1) \le 5|V(H)| \le 5n$ 

If  $|A| \le \sqrt{5n}$  then *H* has small dominating set If  $\delta + 1 \le \sqrt{5n}$  then *H* has small cut set

## Today's Plan

- Any interval graph has  $c_{\infty}(G) = O(\sqrt{n})$  and this is best possible.
- **2** There are chordal graphs with  $c_{\infty}(G) = \Omega(n/\log n)$ .

(日) (同) (三) (

## Chordal Graphs

### Definition

### No induced cycle with more than 3 vertices.



Fact: Every interval graph is chordal.

< D > < P > < P > < P >

## Chordal Graphs

### Definition

No induced cycle with more than 3 vertices.



Fact: Every interval graph is chordal.

< ロ > < 同 > < 回 > <

## Accessible Sets

### Definition

A subset  $X \subseteq V(G)$  is called accessible if

- $c_{\infty}(G) \geq |X|$ , and
- if there are |X| 1 cops in the game, then there exists a strategy for the robber, in which the robber has access to X in every round.

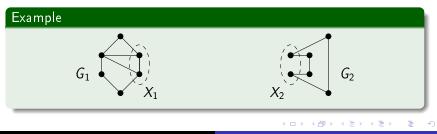


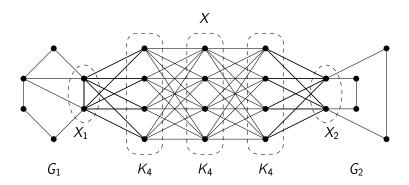
## Accessible Sets

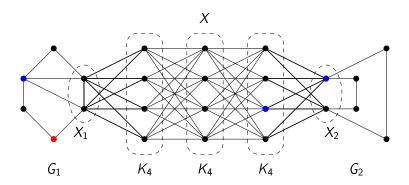
### Definition

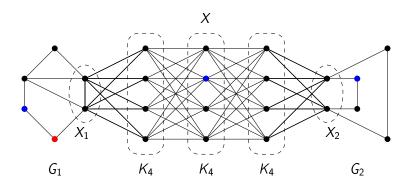
A subset  $X \subseteq V(G)$  is called accessible if

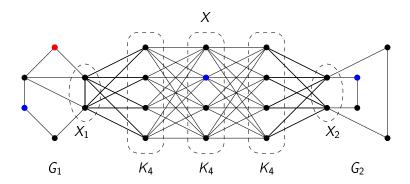
- $c_{\infty}(G) \geq |X|$ , and
- if there are |X| 1 cops in the game, then there exists a strategy for the robber, in which the robber has access to X in every round.

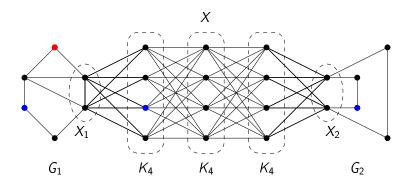


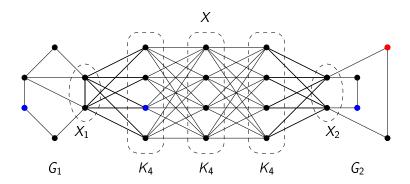












# The Maximum Cop Number of Chordal Graphs

#### Theorem

There exist chordal graphs with cop number  $\Omega\left(\frac{n}{\log n}\right)$ .

#### Proof.

Let g(m) be the minimum order of a graph with an accessible subset of m vertices.

$$g(2m) \le 2g(m) + 3 \times 2m$$

so  $g(m) = O(m \log m)$ .

(日) (同) (三) (

# The Maximum Cop Number of Chordal Graphs

#### Theorem

There exist chordal graphs with cop number  $\Omega\left(\frac{n}{\log n}\right)$ .

### Proof.

Let g(m) be the minimum order of a graph with an accessible subset of m vertices.

### $g(2m) \le 2g(m) + 3 \times 2m$

so  $g(m) = O(m \log m)$ .

# The Maximum Cop Number of Chordal Graphs

#### Theorem

There exist chordal graphs with cop number  $\Omega\left(\frac{n}{\log n}\right)$ .

### Proof.

Let g(m) be the minimum order of a graph with an accessible subset of m vertices.

$$g(2m) \le 2g(m) + 3 \times 2m$$

so  $g(m) = O(m \log m)$ .

### An Open Problem

### We proved that there are chordal graphs with

$$c_\infty(G) = \Omega(n/\log n)$$
 .

Is this bound tight? Are there chordal graphs with  $c_{\infty}(G) = \Theta(n)$ ?

I = I → I

## Thank You!

Any Questions?

Abbas Cops and Robber Game

・ロト ・日 ・ ・ ヨ ・ ・

문 문 문