Chapter 1

Introduction

1.1. The Game

We all grew up playing games. Some of us are lucky enough to play
them while working. Such is the case with Cops and Robbers: it is
at once a game you can play for fun on a piece of paper with some
spare coins and a deep mathematical research topic containing hard
conjectures and problems. The purpose of this chapter is a kind of
mezze: readers will gain the requisite notation and background to
tackle the harder topics in later chapters, and also gain some insight
into the heart of the game.

To set the stage, do you remember the video game Pac-Man? If
you are not a member of the video game generation, then let us recall
how it is played. You, Pac-Man, are stuck in a maze. You can move
up and down, and across, but not through walls. Unfortunately, there
are some attackers in the form of ghosts who are trying to capture
you. They do this by touching you, or by occupying your position
i the maze. Your goal is to eat dots set throughout the maze while
avoiding capture. We do not care as much about the dot eating. In
some sense, the real goal is to move about the maze unfettered by the
ghosts. This is fairly easy with one ghost, but the more ghosts, the
greater chance you have of being captured sooner. You can see all
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Figure 1.1. A maze and its corresponding graph.

the players loose in the maze and remember all the moves of ghosts
(and they can see you).

We may think of the maze as a set of discrete cells, each joined
to one above, below, or beside it, assuming there is no wall blocking
your way. To help visualize this, see Figure 1.1. For more on this
approach in artificial intelligence and so-called moving target search,
see [157] and also [120]. (In moving target search, octile connected
maps which allow diagonal moves are often studied. In this case, a cell
becomes a clique of order four.) Analyzing the movements of players
in Pac-Man then becomes a problem about certain kinds of graphs.
We focus on a particular view that deviates from the original game
somewhat: how many ghosts are needed to ensure they can always
capture you, by some strategy? Some mazes require more ghosts,
some fewer. For example, think of a very simple maze consisting of a
rectangle. One ghost would eternally chase you to no avail, but two
can corner you. The game of Cops and Robbers is—in some sense—a
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discretized version of Pac-Man, and the cop number corresponds to
the minimum number of ghosts needed to capture you. You are the
intruder, or robber, and the cops are the ghosts.

To be more precise, Cops and Robbers (or, as it is sometimes
called, Cops and Robber) is a game played on a reflexive graph; that
is, the vertices each have at least one loop. Multiple edges are allowed
but make no difference to the game play, so we always assume there
is exactly one edge between adjacent vertices. There are two players
consisting of a set of cops and a single robber. The game is played
over a countable sequence of discrete time-steps or rounds, with the
cops going first in round 0. The cops and robber occupy vertices;
for simplicity, we often identify the player by the vertex they occupy.
We refer to the set of cops as C and the robber as R. The rules of
the game are straightforward: when a player is ready to move in a
round they must move to a neighboring vertex. Because of the loops,
players can pass or remain on their own vertex. This may or may
not be a wise strategy for the robber, depending on the graph. Note
that if we play on irreflexive graphs, then we still allow passes. Also
observe that any subset of C' may move in a given round.

The cops win if after some finite number of rounds, one of them
can occupy the same vertex as the robber (in a reflexive graph, this is
equivalent to the cop landing on the robber). This is called a capture.
The robber wins if he (usually the cops are considered female and the
robber male) can evade capture indefinitely. A winning strategy for
the cops is a set of rules that, if followed, result in a win for the cops.
A winning strategy for the robber is defined analogously. Cops and
Robbers is often called a vertezx-pursuit game on graphs, for reasons
that should now be apparent to the reader.

As an elementary but instructive example, consider the game
played on a 5-cycle Cs. We label the vertices 1,2, 3, 4, and 5, as in
Figure 1.2, and place a cop on vertex 1. If the robber chooses 1, then
that would be suicide, and choosing vertex 2 or 5 would result in
his losing in round 1. The robber chooses 3 and can evade capture in
round 1. It is straightforward to see the robber has a winning strategy
(just move to ¢ £ 1 (mod 5) in order to maintain distance two from
the cop).
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Figure 1.2. A labeled 5-cycle.

Two cops are enough, however, to win. If a second cop occupies
3, then the robber will be caught in round 0 or 1, depending on his
initial move. Cycles of size 4 or larger are similar with respect to
the game (note that cycles correspond to discretized versions of the
simplified rectangular maze we discussed above), because two cops
are necessary and sufficient to guarantee a win for the cops.

If we place a cop at each vertex, then the cops are guaranteed to
win. Therefore, the minimum number of cops required to win in a
graph G is a well-defined positive integer (or infinite cardinal) called
the cop number (or copnumber) of the graph G. We write ¢(G) for
the cop number of a graph G. If ¢(G) = k, then we say G is k-cop-
win. In the special case k = 1, we say G is cop-win (or copwin). A
graph with ¢(G) > 1 is sometimes called robber-win (since one cannot
capture the robber).

The game of Cops and Robbers was first considered by Quilliot
[167] in his doctoral thesis, and was independently considered by
Nowakowski and Winkler [165]. Although [167] predates [165], the
latter reference is sometimes referred to as the starting point of the
literature on the topic. The authors of [165] were told about the
game by G. Gabor. Both [167] and [165] refer only to one cop.
The introduction of the cop number came in 1984 with Aigner and
Fromme [2]. Many papers have now been written on the cop number
of graphs since these three early works; see the surveys [7] and [103].
For example, at least a dozen theses (at the master’s and doctoral
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level) have been written on the topic; see [14], [51], [52], [79], [97],
[113], [122], [156], [161], [167], [168], [179], [184], and [188].

As an introduction to the topic of Cops and Robbers, we be-
gin this chapter by first covering some notation and definitions from
graph theory in Section 1.2. The more advanced reader can skip this,
although a casual perusal may eliminate any confusion with notation
when reading later sections and chapters. We discuss some examples
of cop number in Section 1.3, and include the elementary but help-
ful Theorem 1.3 which provides a lower bound on the cop number
in terms of the minimum degree for graphs without small cycles. In
Section 1.4 we prove Frankl’s upper bound for the cop number; see
Theorem 1.6. Along the way, we will show that one cop can guard an
isometric path. We finish with a discussion of retracts in Section 1.5,
which play a critical role in the structure of cop-win graphs.

1.2. Interlude on Notation

As we stated in the Preface, we assume (although it is not essential)
that the reader has some background in graph theory, such as a first
course on the topic. Two good references on the topic are [68] and
[195]. However, as an aid to the reader, we summarize at least some
of the notation used as well as some of the requisite background here.
As such, the present section is short and may be safely skipped by
more advanced readers.

We will use the following notation throughout. The set of natural
numbers (which contains 0) is written N, while the rationals and reals
are denoted by Q and R, respectively. The cardinality of N is X, while
the cardinality of R is 280, If n > 0 is a natural number, then define

[n] ={1,...n}.

The Cartesian product of two sets A and B is written A x B. The
difference of two sets A and B is written A\B.

As we will present a number of asymptotic results, we give some
corresponding notation. Let f and g be functions whose domain is
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some fixed subset of R. We write f € O(g) if
f(z)

hmlsl)l([))o (@)
exists and is finite. We will abuse notation and write f = O(g). This
is equivalent to saying that there is a constant ¢ > 0 (not depending
on x) and an integer N such that for z > N, f(z) < cg(z).
We write f = Q(g) if g = O(f), and f = O(g) if f = O(g) and
Q(g). If limy 0 g((:;‘ =0, then f = o(g) (or g = w(f)). So if
o(1), then f tends to 0. We write f ~ g if

f
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If = is a real number, then 1 4+ x < e®. We will sometimes write
e® as exp(x), especially if = is a complicated expression. We write
log z for the logarithm in base e (other bases will be made explicit).
If 4 < m < n are non-negative integers, then

n nm
" (7)< <

For a graph G, we often write G = (V(G), E(G)), or if G is clear
from context, G = (V, E). The set F may be empty. Elements of V(G)
are vertices, and elements of E(G) are edges. Vertices are sometimes
referred to as nodes. We write uv for an edge {u,v}, and say that u
and v are joined or adjacent (we use both terms interchangeably); we
say that u is incident with v, and that u and v are endpoints of uv.
All the graphs we consider are reflexive unless otherwise stated.

The cardinality |V(G)| is the order of G, while |E(G)| is its size.
Given a vertex u, define its neighbor set N(u) to be the set of vertices
joined and not equal to u (also called neighbors of u). The closed
neighbor set of u, written Nu], is the set N(u)U{u}. We write G | S
(or as either (S)g or G[S]) for the subgraph of G induced by the set
of vertices S; that is, the graph with vertices in the set .S, with two
vertices joined if and only if they are joined in G. If S is a set of
vertices, then G — S is the subgraph induced by V(G)\S; if S = {z},
then we write this as G — z. If H is an induced subgraph of GG, then
we sometimes write G — H for G — V(H).
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The degree of a vertex is the cardinal |N(u)|, and is written
degy(u) or simply deg(u). A graph is k-regular if each vertex has
degree k. A path is a sequence of vertices such that each vertex is
joined to the next vertex in the sequence; the length of a path is the
number of its edges. A path of order n is written P,. A graph is
connected if there is a path between any two vertices. The relation
of being connected by a path is an equivalence relation on V, and
the equivalence classes are the connected components of G. A graph
which is not connected is called disconnected; a connected component
consisting of a single vertex is called an isolated vertex. A cut vertex
is one whose deletion results in a disconnected graph. A vertex joined
to all other vertices is called universal. A vertex of degree one will be
called an end-vertez.

A homomorphism f from G to H is a function f : V(G) — V(H)
which preserves edges; that is, if xy € E(G), then f(x)f(y) € E(H).
We abuse notation and simply write f : G — H. An embedding
from G to H is an injective homomorphism f : G — H with the
property that zy € E(G) if and only if f(z)f(y) € E(H). We will
write G < H if there is some embedding of G into H and say that G
embeds in H. An isomorphism is a bijective embedding; if there is an
isomorphism between two graphs, then we say they are isomorphic.
We write G =2 H if G and H are isomorphic. The relation & is
an equivalence relation on the class of all graphs, whose equivalence
classes are isomorphism types or isotypes. We will always identify
a graph with its isomorphism type. An automorphism of G is an
isomorphism from G to itself. A graph is vertez-transitive G if for all
pairs of vertices v and v of G, there is an automorphism f of G, so
that f(u) = v. Note that every vertex-transitive graph is k-regular
for some integer k£ > 0.

The distance between u and v, written dg(u,v) (or just d(u,v)),
is either the length of a shortest path connecting v and v (and 0
if u = v) or oo otherwise. Note that d(u,v) turns each graph into a
metric space. The diameter of a connected graph G, written diam(G),
is the supremum of all distances between distinct pairs of vertices. If
the graph is disconnected, then diam(G) is co.
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The complement of G, written G, has vertices V(G) with two
distinct vertices joined if and only if they are not joined in G. A
complete graph of order n or n-clique has all edges present and is
written K,,. A set of vertices S is independent if (S)g contains no
edges. A co-clique of order n is K,. The graph of order n with no
edges is K,,.

A wheel of order n, written W,,, consists of a cycle C,, along with
one universal vertex. A hypercube of dimension n, written @Q,, has
vertices elements of {0,1}" with two vertices joined if they differ in
exactly one coordinate.

The chromatic number of G, written x(G), is the minimum car-
dinal n with the property that V(G) may be partitioned into n many
independent sets; that is, the minimum n so that G has proper n-
coloring. If x(G) = 2, then G is bipartite. A complete bipartite graph
has all possible edges present between the two colors, and is written
K, n, where m and n are the orders of the vertex classes. A star is a
graph K ,, for some positive integer n.

In a graph G, a set S of vertices is a dominating set if every vertex
not in S has a neighbor in S. The domination number of G, written
~(@G), is the minimum cardinality of a dominating set. Since placing
a cop on each element of a dominating set ensures a win for the cops
in at most two rounds, we have that ¢(G) < v(G).

Although our primary focus is on undirected graphs, we may
sometimes assign orientations to edges. A directed graph or digraph
is defined identically as a graph, except that E(G) consists of ordered
pairs of vertices. As with graphs, we assume our directed graphs are
reflexive. The edges are then called directed edges or arcs (u,v), where
u is the head and v is the tail. The vertex v is an out-neighbor of u,
while u is an in-neighbor of v. The in-degree of u, written deg™ (u)
is the number of vertices v such that (v,u) are directed edges; the
out-degree deg™ (u) is defined dually. Subgraphs, induced subgraphs,
and isomorphisms are defined analogously to graphs.

A digraph is oriented if it is antisymmetric: if (u,v) is a directed
edge, then (v,u) is not a directed edge. An orientation of a graph
is an assignment of directions to the edges resulting in an oriented
graph. A tournament is an orientation of a clique.
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An order (or partially ordered set or poset) is an oriented digraph
that is transitive: whenever (u,v) and (v, w) are arcs, then so is (u, w).
We write u < v if (u,v) is an arc in an order. We say that v covers u
if u <w, u # v, and there is no = such that u < x < v. A vertex u is
minimal if v < u implies that v = u; mazimal elements are defined
dually. Orders are often represented by Hasse diagrams, which are
drawings in the plane (although edge crossings are allowed) so that
u is below and adjacent to v if v covers u. Note that reflexive and
transitive arcs are not shown in Hasse diagrams. See Figure 1.3.

Figure 1.3. The Hasse diagram of an order.

A directed path is a path with all directed edges pointing in one
direction (so all vertices internal to the path have in- and out-degree
equaling one). A directed cycle is a cycle with all arcs directed in the
same direction. A digraph is strongly connected if there is a directed
path connecting every pair of vertices. A weakly connected digraph
has its underlying undirected graph (with no orientations on edges)
connected. A digraph is acyclic if it contains no directed cycle.

The cop number of directed graphs is defined in the analogous
way to the undirected case. The only difference, of course, is that the
players can only move following the orientation of a directed edge.
A version of Cops and Robbers played on orders will be explored in
Exercise 27.
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1.3. Lower Bounds

When graph theorists see a new graph parameter, they usually first
attempt to compute it for the most common graphs such as cycles,
paths, and cliques. The following lemma—whose proof is left as an
exercise—does just that.

Lemma 1.1. (1) Forn > 0 an integer we have that
c(Py) = c(W,) =c(K,) =1,
and for n > 4,
c(Cp) =2.

(2) If G is the disjoint union of G1 and Go written G1 + G,
then
c¢(G1 + Ga) = ¢(G1) + ¢(Ga).
In particular,
c(K,) =n.

Owing to Lemma 1.1 (2), we usually restrict our attention to
connected graphs. For example, one cop is needed for each isolated
vertex, since the robber can occupy one and pass indefinitely. Trees,
which are connected and contain no cycles, are a favourite graph class.
An infinite one-way path (that is, the vertices of the path are just the
non-negative integers, with ¢ joined to ¢ 4+ 1 for all ¢ € N) is called a
ray, and a graph with no ray is called rayless.

Lemma 1.2. (1) A finite tree is cop-win.

(2) The cop number of an infinite tree is either 1 or infinite. It
is 1 exactly when the tree is rayless.

Proof. For item (1), we use the fact that each finite tree contains an
end-vertex (finite trees always contain at least two end-vertices; see
Exercise 4a). Place the cop on an arbitrary vertex. The strategy of
the cop is to move towards the robber on the unique path connect-
ing the cop and robber. Note that with this strategy, d(C, R) never
increases. A simple induction establishes that this is possible in any
connected graph (roughly put, the robber can never “move around”
the cop). However, after some number of rounds (bounded above by
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diam(T)), the robber will move to an end-vertex. After that round,
d(C, R) decreases by one since there is a unique path connecting R
and C. Repeating this argument after at most diam(7") — 1 many
rounds results in d(R,C) = 0, and the cop wins.

A tree of any order with no ray has an end-vertex (see Exercise 9).
Now, in a rayless tree, apply the same winning strategy as the one
used by the cop in a finite tree. If the tree has a ray and only a finite
number of cops are at play, then the robber can always stay a distance
of at least one away from any cop. Hence, no winning strategy exists
for the cops, and the robber wins. O

End-vertices play a critical role in the proof of Lemma 1.2 (1).
They are the simplest examples of corners: vertices x with the prop-
erty that there is some vertex y such that N[z] C N[y]. Corners play
a major role in characterizing finite cop-win graphs. See Section 1.5
and Chapter 2 for more discussion.

See Figure 1.4 for an example illustrating Lemma 1.2 (2). This
tree is formed by attaching a path of each finite length to a root
vertex. The rayless tree in Figure 1.4 has an unusual and vaguely
morbid property: the robber in round 0, by choosing which branch to
occupy, decides how long he wants to live! Infinite graphs demonstrate
many pathological properties, as demonstrated by this example. They
therefore deserve special attention and form the focus of Chapter 7.
We therefore make the following assumption for the remainder of this

Figure 1.4. A rayless tree.



