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Abstract

In this paper we analyze the problem of adaptivity for one-step numerical methods
for solving ODEs, both IVPs and BVPs, with a view to generating grids of minimal
computational cost for which the local error is below a prescribed tolerance (optimal
grids). The grids are generated by introducing an auxiliary independent variable τ
and finding a grid deformation map, t = Θ(τ), that maps an equidistant grid {τj}
to a non-equidistant grid in the original independent variable, {tj}. An optimal
deformation map Θ is determined by a variational approach. Finally, we investigate
the cost of the solution procedure and compare it to the cost of using equidistant
grids. We show that if the principal error function is non-constant, an adaptive
method is always more efficient than a nonadaptive method.

1 Introduction

The complexity of numerical algorithms is central to the assessment of com-
putational performance. For some algorithms, like in linear algebra, the com-
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plexity is well known and established; for others, like in ordinary differential
equations, the complexity is still open to analysis.

In the former case, the problems are “computable,” meaning that (theoreti-
cally) the exact solution can be obtained after a finite number of operations,
and this operation count then becomes a measure of the complexity. By con-
trast, for problems in analysis we can only compute approximate solutions
converging to the exact solution. This makes an assessment of complexity
more difficult, as the algorithmic complexity will depend on problem charac-
teristics as well as the requested accuracy.

In differential equations, adaptive algorithms are of fundamental importance.
Such algorithms attempt to minimize some (usually coarse) measure of com-
plexity, subject to a prescribed accuracy criterion and the problem properties
encountered during the computation. This is generally done by using nonuni-
form discretization grids in order to put the discretization points where they
matter most to accuracy, while keeping their total number small.

Naturally, for some problems, uniform grids might be optimal from the point
of view of complexity, e.g., if one considers FFT based algorithms for Poisson’s
equation on a rectangular domain. For linear problems, similar considerations
led Werschulz to question whether adaptive methods are more efficient, using
a topological argument to show that the efficiency gain would be limited to a
factor of two, [24, pp. 38–39]. In this paper, however, we will prove that adap-
tivity is better than non-adaptivity. This result holds in a general setting for
linear as well as nonlinear problems in ODEs, whenever sequential algorithms
are used and the accuracy requirement is imposed in terms of some local error
criterion. This is in line with computational experience, which indicates that
adaptive methods are not only far superior, but often necessary in order to
solve problems reasonably fast.

Because the complexity of solving an ODE numerically is a less well defined
notion, and our main concern is adaptivity, we will measure the complexity as
follows. Given a differential equation and a discretization method, we wish to
approximate the solution on some grid such that the local error is below a pre-
scribed tolerance tol. What is the minimal computational cost for achieving
this? In particular, how do we generate grids that achieve the minimal compu-
tational cost while maintaining the desired accuracy of the solution? Finally,
in what sense is such a grid “unique,” and can it be generated algorithmically?

Apart from the accuracy requirement, the grid will depend on certain problem
characteristics as well as what objective is used to make the method adaptive.
Some of these aspects cannot easily be dealt with. For example, if the accuracy
requirement is formulated as an upper bound for the global error, then a
complexity estimate will be seriously affected by the difficulty of obtaining
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realistic a priori global error bounds, [16]. As this has long been understood,
it is common practice that adaptive algorithms control local error estimates
instead, keeping them below a preset tolerance. For this reason, we argue
that a complexity analysis should start from the actual way the algorithms
are constructed and implemented, instead of from the ultimate objective of
global accuracy, however desirable. Furthermore, we believe that analyzing
the complexity of a given problem in the proposed error criterion is a useful
model for numerical practice in ODE solving. It is also a natural approach for
Numerical Analysis.

This further implies that we will not deal with error accumulation in general,
nor with more special cases, such as the possible cancelations of local errors
in the global error accumulation. Instead, when we refer to optimal grids, it
should be clearly understood that the term “optimal” is to be interpreted in
the mathematical sense of optimization: a solution is optimal with respect to a
prescribed objective. In our case the objective is based on various local errors.
Naturally, if the objective is changed, the optimal solution changes too.

In this paper we analyze the complexity of solving ODEs using adaptive one-
step methods based on local error control. The analysis is akin to the approach
developed by Corless [9], but starts from a continuous representation of a local
error. This accounts for the fact that when the grid points are redistributed,
the local error samples will vary. Both initial value and two-point boundary
value problems will be considered, and controllers generating optimal grids
will be developed.

2 Grid deformations

We shall consider the problem of solving an ordinary differential equation,
written as an operator equation

L(u) = f (1)

with either initial or boundary conditions. We seek a solution u(t) on the
interval [0, T ]. For numerical computation, the original problem is typically
replaced by a discrete equation

L∆t(y
∆t) = f (2)

where the discretization parameter ∆t represents a constant step size. The
theory of such methods is well established; in particular the convergence as
∆t → 0 is of central interest, as is the order of convergence. As higher order
methods often can use larger step sizes while still producing accurate results,
higher order methods can be more efficient [9,13,14]. Moreover, by making
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the method adaptive and using a nonuniform grid, efficiency can typically
be further enhanced, by either increasing accuracy, or by reducing work, or
combining both techniques.

In order to consider adaptive methods, we introduce an auxiliary indepen-
dent variable τ , and a deformation map Θ : τ 7→ t such that an equidistant
grid in τ produces a nonuniform grid in t. Instead of computing numerical
approximations uk ≈ u(tk) for equidistant points tk, we compute approxima-
tions uk ≈ u

(
Θ(τk)

)
for equidistant points τk. Variants of such techniques are

common, in particular in adaptive methods for boundary value problems, [8],
[5], but also in special cases of initial value problems, see e.g. [11], [1].

In the literature, a discrete representation of a deformation map is investi-
gated for equidistributing various monitor functions. Monitor functions may
be based on local error estimates, residual estimates, global error estimates or
arclength; the crucial aspect is typically that in order to obtain a convergent
grid generating algorithm based on updating grid cells locally, the monitor
function must only depend on the local grid cell. Such updating algorithms
limit the possibilities of using global error control, which, although desirable,
can often be relatively costly. For a discussion of these topics for BVP we refer
the reader to [4] and references therein and for practical implementation issues
and existing BVP software see, e.g., [4,5,3,7]. Recent advances on alternative
monitor functions for IVP include [18] and its references. Various further issues
connected with global error control may be found in, e.g., [23,15,20].

2.1 Step size modulation

Let the original independent variable t ∈ [0, T ] be written

t = Θ(τ), (3)

with τ ∈ [0, T ]. The function Θ(·) is assumed to be monotonically increasing
and differentiable, and is further assumed to satisfy the boundary conditions
Θ(0) = 0 and Θ(T ) = T . Upon differentiation we have

dt = θ(τ)dτ, (4)

where we have introduced the notation θ(τ) = Θ′(τ). The boundary conditions
imply that the derivative θ is normalized by

1

T

∫ T

0
θ(τ) dτ = 1. (5)

The discretization is now carried out using a uniform grid in τ , with the
sampling correspondence tj = Θ(τj). The corresponding step sizes are (cf.
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Grid deformation map

Fig. 1. Grid deformation map. An equidistant grid in τ (horizontal axis) is mapped
to a nonuniform grid in t (vertical axis) by the function Θ : τ 7→ t. For every choice
of N there is a unique grid with points tj = Θ(jT/N).

(4))
∆tj = tj+1 − tj = Θ(τj+1)−Θ(τj) ≈ θ(τj+1/2)∆τ, (6)

where τj+1/2 = (τj+1 + τj)/2, with interval endpoints τ0 = 0 and τN = T .
Further, we take ∆τ = εN constant, corresponding to using N steps to cover
[0, T ]. Hence εN = T/N . The derivative θ(τ) acts as a step size modulation
function, multiplying the discretization parameter εN . The grid in t is therefore
nonuniform unless θ(τ) ≡ 1. We finally note that

T =
N−1∑

j=0

∆tj = Θ(T )−Θ(0) =
∫ T

0
θ(τ) dτ ≈ T

N

N−1∑

j=0

θ(τj+1/2). (7)

In practice, an algorithm based on the technique outlined above would typ-
ically generate an approximate sequence ϑ = {ϑj+1/2}N−1

0 , with ϑj+1/2 ≈
θ(τj+1/2), such that

1

N

N−1∑

j=0

ϑj+1/2 = 1. (8)

This corresponds to the normalization requirement for the continuous step size
modulation function (5). Although such an approximation is non-unique, a
good approximation can usually be obtained without difficulty. Thus, in prac-
tical computation, one computes a sequence of discrete modulation functions,
starting with a uniform grid, and applies standard techniques of oversampling
from digital signal processing when going from one grid to the next.

Throughout the paper, we shall make extensive use of Hölder means, see e.g.
[12], of both continuous and discrete functions.

Definition 1 Let −∞ ≤ s ≤ ∞. The Hölder s-mean of a function u :
[0, T ] → R+ is defined by

Ms(u) =

[
1

T

∫ T

0
us(t)dt

]1/s

.
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For a positive sequence v = {vj}N−1
0 , the Hölder s-mean is defined by

Ms(v) =


 1

N

N−1∑

j=0

vs
j




1/s

.

Note that M−∞(u) = min u, and M∞(u) = max u. It is further worth noting
that the Hölder mean equals the arithmetic mean, the geometric mean and
the harmonic mean, respectively, for p = 1, 0,−1, and that p = 2 corresponds
to the root mean square. We will, however, also use fractional powers p in the
analysis that follows.

In terms of the Hölder means, the normalization requirements on the step size
modulation function (5) and its discrete approximation (8) can be expressed
as M1[θ] = 1 and M1[ϑ] = 1, respectively.

2.2 Grid density

It is often convenient to consider the inverse of the map Θ as a function in its
own right. Let us therefore introduce the map Φ = Θ−1 and note that

τ = Φ(t), (9)

where again the function Φ(·) is assumed to be monotonic and differentiable,
and satisfying the boundary conditions Φ(0) = 0 and Φ(T ) = T . Denote the
derivative Φ′(t) = φ(t). Then

dτ = φ(t)dt. (10)

The boundary conditions imply that M1(φ) = 1, or

1

T

∫ T

0
φ(t) dt = 1. (11)

Comparing (10) and (4), we see that θ(τ)φ(t) ≡ 1 (see also Figure 1) whenever
t and τ are related according to either (3) or (9), i.e.,

θ(Φ(t))φ(t) ≡ 1 ≡ θ(τ)φ(Θ(τ)). (12)

The function Φ is interpreted as a grid distribution. Using the same sampling
correspondence as before, we obtain

εN = ∆τ = Φ(tj+1)− Φ(tj) = φ(t̄j+1/2) ·∆tj,

6



where t̄j+1/2 ∈ (tj, tj+1) by the mean value theorem. Corresponding to the
differential relation (10), the step size is therefore

∆tj =
εN

φ(t̄j+1/2)
,

where it is evident that φ represents a grid density ; the step size is small when
the density φ is large and vice versa.

Although working with the density is equivalent to working with the modula-
tion function, there are some minor differences. In practical computation, we
generate an approximate sequence ϕ = {ϕj+1/2}N−1

0 , with ϕj+1/2 ≈ φ(t̄j+1/2),
such that

∆tj =
εN

ϕj+1/2

.

In view of (12) this sequence should be constructed so that

ϑj+1/2 =
1

ϕj+1/2

,

in which case the condition T =
∑N−1

0 ∆tj yields the normalization condition

1

N

N−1∑

0

1

ϕj+1/2

= 1.

In terms of the Hölder means, the normalization of the continuous step size
modulation function θ and grid density function φ are

M1(θ) = 1 ; M1(φ) = 1, (13)

while the corresponding normalizations of their discrete counterparts are

M1(ϑ) = 1 ; M−1(ϕ) = 1. (14)

The important difference in the normalization of ϕ is due to the fact that
while (8) is a (2nd order) numerical approximation to the integral (5), the
integral (11) cannot be directly approximated in a similar way, due to the fact
that the grid {tj} is non-uniform.

2.3 The nonuniform discretization

The discrete problem, on the nonuniform grid, will be denoted by

L∆t(y
∆t) = f.
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We further assume, as is common, that the exact, global solution u(t), sampled
on the discrete grid points tj can be inserted into the discrete problem. The
sampled exact solution will be denoted by u∆t. We then have

L∆t(u
∆t) = f − r,

where the residual r represents the local truncation error. In the sequel, we
shall make the important assumptions that, pro primo, the step sizes suggested
by the optimization procedure are permissible in the sense that they do not
cause instability in the discretization scheme under consideration; pro secundo,
the discretization parameter εN has been chosen so that the local truncation
error behaves asymptotically as O(εp

N) = O(N−p), where p is the order of the
discretization method.

This requires that we make specific assumptions on the structure of the local
truncation error. A common model is

r = ψ(t)∆tp, (15)

where ψ is the principal error function, and ∆t is the step size. This suggests
a “continuous” model of the local error, r(t) ≈ ψ(t) · (∆t)p(t), which, in terms
of the grid maps discussed above, leads to the model

r(t) = ψ(t)

(
εN

φ(t)

)p

. (16)

Here the actual choice of the number of grid points, N , alone determines where
the functions ψ and φ are to be evaluated. The error can also be expressed as
a function of τ by using (3), viz.,

r(t) = ψ(Θ(τ))
(
εNθ(τ)

)p
. (17)

This model applies to most discretization methods for ODEs, such as Runge–
Kutta methods, as well as to finite difference methods and collocation methods
for solving BVPs.

For example, the representation of the error for collocation methods in the
monomial basis is, according to [2],

u(t)− y(t) = ∆tpj · u(p)(tj)P (
t− tj
∆tj

) + O(∆tp+1
j ) + O(∆tq)

for t ∈ [tj, tj+1]. Here ∆t = maxj ∆tj. One may choose q > p, therefore the
leading error term has a local nature and this is of the desired form. If m is
the order of the ODE and ρ` with 1 ≤ ` ≤ p−m are the canonical collocation
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points, then

P (ξ) =
1

(p−m)!(m− 1)!

∫ ξ

0
(x− ξ)m−1

p−m∏

`=1

(x− ρ`)dx .

The results of this paper apply to numerical methods for which a representa-
tion of the error is only required to satisfy (15) and so is valid for one-step
methods. Further, if the error represents a local error, a local truncation error,
or a residual or defect, is of no importance, as long as the error under study
only depends on the local step size.

For multistep methods, the error depends also on ratios of previous step sizes
to the current step size. In such a case our assumption of an error depending
only on the local step size is violated, and multistep methods are not covered
by the analysis.

In order to consider complexity and a corresponding grid point allocation, we
need to discuss two problems:

(1) The adaptivity problem. For a given local error tolerance, find a grid
map Θ(·) (or Φ(·)) such that the problem can be solved to the requested
accuracy, with the smallest possible number of grid points N . This is
equivalent to minimizing the computational cost, subject to a prescribed
accuracy requirement, by varying the grid map.

(2) Optimal grid generation. For a given a number of points N , find Θ(·)
(or Φ(·)) such that (some norm of) the error r is minimized.

The problems are closely related. The first is a matter of maximizing the step
size without violating an accuracy requirement, while the second problem is
about finding grid point locations that minimize the error. As is common, we
treat the optimal grid generation problem as an optimization problem solved
by a variational approach. Related work for adaptive finite element methods
can be found in [6].

3 Minimization of error

We first analyze the optimal grid generation problem. This can be done either
by determining Φ(t) or Θ(τ).
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3.1 Determination of Φ(t)

For a given number of steps in a grid, N , we wish to find a function Φ(·) that
minimizes the local error in the Ls[0, T ]-norm, for 1 ≤ s < ∞. That is, we
want to solve the optimization problem

min
Φ
‖r‖Ls[0,T ] subject to

∫ T

0
φ(t) dt = T.

The norm of the continuous representation of the local error function is

‖r‖Ls = εp
N

(∫ T

0

|ψ(t)|s
φ(t)ps

dt

)1/s

,

where | · | is the (vector) norm at a fixed time t. The constant factor εp
N will

not have any influence on the minimizer, and we can equivalently solve the
constrained optimization problem

min
Φ

∫ T

0

|ψ(t)|s
φps

dt subject to
∫ T

0
φ dt = T. (18)

Introduce the Lagrangian L(Φ, φ) = |ψ|s/φps−λφ. An optimal Φ must satisfy
the Euler–Lagrange equation

d

dt

∂L

∂φ
− ∂L

∂Φ
= 0. (19)

As the Lagrangian does not explicitly depend on Φ, this condition reduces to
∂L/∂φ = const. where the constant is determined by the constraint. Straight-
forward calculation leads to the alternative characterizations

φ̂s(t) =
|r(t)|s

M1

(
|r(·)|s

) ; φ̂s(t) =


 |ψ(t)|
M s

ps+1

(
|ψ(·)|

)



s
ps+1

. (20)

Both expressions of the optimizer, denoted φ̂s for the Ls-norm, are based on
the standard local error model |r| = |ψ|εp

N/φp, and the second characterization
also allows the limit s →∞ to be considered; for the L∞-norm we have

φ̂∞(t) =




|ψ(t)|
M 1

p

(
|ψ(·)|

)




1
p

. (21)

We summarize the results obtained so far in a theorem.
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Theorem 1 (Ls-optimal grid) Let p be the order of the method, let | · | be a
given vector norm, and let 1 ≤ s ≤ ∞. The optimal grid generation problem

min
φ
‖r‖Ls[0,T ] subject to

∫ T

0
φ(t) dt = T, (22)

where |r(t)| = |ψ(t)|εp
N/φ(t)p, has a unique solution

φ̂s(t) =


 |ψ(t)|
M s

ps+1

(
|ψ(·)|

)



s
ps+1

; φ̂∞(t) =




|ψ(t)|
M 1

p

(
|ψ(·)|

)




1
p

. (23)

where the optimizer φ̂ is independent of the number of points in the grid and
of the accuracy requirement.

Further, we note that the optimal grids correspond to a grid that equidistrib-
utes the local error:

Theorem 2 (Equidistribution principle) Let N be the number of grid
points and let εN = T/N . For the optimal grid in the L∞ norm, the minimum
local error is ‖r̂‖L∞[0,T ] = εp

N ν̂∞, where

ν̂∞ = M 1
p

(
|ψ(·)|

)
. (24)

The local error is equidistributed, i.e., |r(t)| ≡ εp
NM 1

p

(
|ψ(·)|

)
. In the Ls norm,

the minimum local error is ‖r̂‖Ls[0,T ] = εp
N ν̂s, where

ν̂s = T
1
s M s

sp+1

(
|ψ(·)|

)
.

The error is non-constant but satisfies the equidistribution principle

∆tn|r(tn)|s ≈ εNM1

(
|r(·)|s

)
. (25)

Proof. The assertions on the minima follow immediately by inserting the
optimal φ̂ into the definition of the asymptotic local error model. As for the
equidistribution principle, it is only necessary to consider the Ls case. Then

∫ tn+1

tn
|r(t)|s dt =M1

(
|r(·)|s

) ∫ tn+1

tn
φ̂s(t) dt

=M1

(
|r(·)|s

) ∫ τn+1

τn

dτ = M1

(
|r(·)|s

)
εN .

Hence we have ∆tn|r(tn)|s ≈ const. for the optimal grid; the local error con-
tribution to the Ls-norm is the same on each subinterval.

11



3.2 Determination of Θ(τ)

The determination of Θ is analogous but leads to a different characterization.
Again, we minimize the local error in the Ls norm. The optimization problem
now reads, in view of the differential relation (4),

min
Θ

∫ T

0
|ψ

(
Θ(τ)

)
|sθps+1(τ) dτ subject to

∫ T

0
θ(τ) dτ = T, (26)

where ψ
(
Θ(τ)

)
is now considered as a function of τ . The derivation is analo-

gous to the case for Φ, but as the Lagrangian now depends on Θ as well as θ,
one would have to require that ψ is differentiable. In order to avoid this, we
prefer a different approach. Note that if ps ≥ 0,

1

T

∫ T

0
|ψ

(
Θ(τ)

)
|s/(ps+1)θ(τ) dτ ≤

(
1

T

∫ T

0
|ψ

(
Θ(τ)

)
|sθps+1(τ) dτ

) 1
ps+1

. (27)

Applying the differential relation (4), rewriting the integrals as integrals over
time t, we find

T
1
sM s

ps+1

(
|ψ(·)|

)
≤ ‖r‖s. (28)

Further, equality holds in (27) if and only if |ψ
(
Θ(τ)

)
|s/(ps+1)θ(τ) = C. The

error is therefore minimized by Θ̂, characterized by the differential equation

Θ′(τ) =


 |ψ

(
Θ(τ)

)
|−1

M s
ps+1

(
|ψ

(
Θ(·)

)
|−1

)



s
ps+1

, (29)

with initial condition Θ(0) = 0, and where the constant is determined by the
normalization requirement for Θ′. Just as in (20), the optimizer also has a
representation in terms of the error,

Θ′(τ) =
|r

(
Θ(τ)

)
|−s

M1

(
|r

(
Θ(·)

)
|−s

) . (30)

We summarize in the following theorems.

Theorem 3 Let p be the order of the method, let | · | be a given vector norm,
and let 1 ≤ s < ∞. The optimal grid generation problem

min
Θ
‖r‖Ls[0,T ] subject to

∫ T

0
Θ′(τ)dτ = T, (31)

where |r(t)| = |ψ(Θ(τ))|εp
NΘ′(τ)p, has a unique solution, Θ̂s, satisfying (29).
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The corresponding result for the L∞ norm is

Θ̂′
∞(τ) =



|ψ

(
Θ̂∞(τ)

)
|

M 1
p

(
|ψ(·)|

)



− 1

p

(32)

with initial condition Θ∞(0) = 0. The optimizer is independent of the number
of points in the grid and of the accuracy requirement.

As before, the optimal grids correspond to a grid that equidistributes the local
error. The minima ν̂∞ and ν̂s remain identical to those given in Theorem 2.
The equidistribution is different in the Ls norm, however.

Theorem 4 (Equidistribution principle) Let N be the number of grid
points and let εN = T/N . For the optimal grid in the Ls norm, the error is
non-constant but satisfies the equidistribution principle

∆Θ̂n|r(Θ̂(τn))|s ≈ εNM1

(
|r(Θ̂(·))|−s

)
. (33)

Let ∆τ be the uniform auxiliary step size. The step size on the nonuniform
grid which minimizes the error is generated with the optimal step modulation
function, θ̂, delivered by Theorem 3,

∆t(t) = θ̂(τ)∆τ .

To this step size there corresponds a local error

r(t) = |ψ(t)|∆tp(t) = M 1
p

(
|ψ(·)|

)
∆τ p (34)

which is constant along the interval of integration.

A discrete formulation of the minimax version of Theorem 3 has been given
in [9,10]. The reason for preferring the continuous representation (16) here, is
that the optimization problem then has a unique solution which is always in-
dependent of the number of sampling points as well as of their actual locations.
In particular, in the continuous setting the Hölder mean of the local principal
error function, M 1

p
( |ψ(·)| ), is independent of the grid, being a characteristic

of the problem, the method and the order only. The solution can therefore
be used for any accuracy requirement and generate grids with any desired
number of points.

Finally, we note that the constraint together with (32) leads to

M 1
p

(
|ψ(·)|

)
= M− 1

p

(
|ψ(Θ̂(·))|

)
.

This is in full agreement with the discrete formulation in [9].
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3.3 Numerical computation of Θ (Initial Value Problems)

Comparing the characterizations of Φ̂∞ and Θ̂∞, we note that the former can
in effect be approximated directly, while the latter requires the solution of
the differential equation (32). We therefore believe that Φ is better suited for
adaptive BVP solvers, with Θ being preferred for IVPs.

Let us consider the numerical solution of (32), rewritten as

Θ′ = γ · |ψ(Θ)|−1/p, (35)

where γ is constant. Using the explicit Euler method, noting that the inde-
pendent variable is τ and using step size ∆τ = εN , we obtain the recursion

Θn+1 −Θn = εN · γ · |ψ(Θn−1)|−1/p.

As Θn = tn and εN · γ = tol1/p, we have

∆tn =

(
tol
|ψn−1|

)1/p

, (36)

with ψn−1 ≈ ψ(tn−1). Since ψ
−1/p
n−1 = ∆tn−1r

−1/p
n−1 we derive

∆tn =

(
tol
|rn−1|

)1/p

∆tn−1 , (37)

which we recognize as the elementary deadbeat controller; this is the most fre-
quently used step size controller in IVP solvers. Under additional smoothness
conditions on ψ, other, more advanced controllers can be seen to be compati-
ble with the solution of the differential equation defining Θ. These include PI,
PID controllers and digital filters, see [21].

3.4 Numerical computation of φ (Boundary Value Problems)

Let us briefly describe a computational process for generating the grid in a
BVP, [19]. As no a priori information is available, one starts from an equidis-
tant grid. This is usually coarse and has a relatively small number of grid
points, say N = 30. A new, nonuniform grid is generated by solving the BVP
on the coarse, uniform grid, and obtaining an error estimate on that grid. The
error estimate is then used to update the grid and construct a nonuniform
grid. Ideally, only one such update should be carried out, but the subsequent
error estimate obtained on the nonuniform grid will indicate whether more
updates are needed.
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Let ϕ denote the original, uniform grid. After solving the problem on this grid,
we obtain an error estimate r on this grid. This vector is non-constant. Under
the assumption |rj| = |ψj|∆tpj , together with ∆tj = εN/ϕj+1/2, the simplest
update of ϕ is

ϕ̂ := ϕ · |r|1/pγ, (38)

where the dot indicates pointwise multiplication of the vectors, and where
the scalar γ is chosen so that the normalization M−1(ϕ̂) = 1 is preserved.
Note that this update can only be successful provided that the error depends
exclusively on the local step, and that the update is the BVP counterpart
to the deadbeat controller (37) for IVPs. More advanced controllers, such as
those in [21] may also be employed.

Finally, and most importantly, we note that if the updating (38) is applied
repeatedly, the density ϕ keeps changing until the error |r| is constant. In
other words, when this grid generating scheme is convergent, it converges to
an equidistributed error. Naturally, the control algorithm must check for this
convergence.

Once the new density function has been determined, we also determine the
necessary number of steps, N̂ , such that ‖r‖∞ = tol. It then remains to
generate the grid with N̂ points; this is accomplished by oversampling the
sequence ϕ from N to N̂ points. Here we note that, as the (continuous) de-
formation and density functions are independent of the accuracy requirement,
the “shape” of ϕ remains unchanged when changing from N to N̂ points.

A good way of oversampling ϕ is to use standard techniques from signal
processing, e.g. spline interpolation. The spline is evaluated at N̂ equidistant
points. Note that this step makes use of the fact that the sequence ϕ can be
mapped from the independent t variable, to the independent τ variable with-
out affecting its function values. (This means that we identify ϕ with 1/ϑ, see
(12), and actually perform the oversampling on ϑ, [19].) Therefore, equidistant
interpolation is sufficient, and once the prolonged vector ϕ is found, the grid
points as well as step sizes are uniquely determined by this process, although
a different choice of oversampler may produce a slightly different grid.

It is clear that there could be several grids that produce solutions within a
given tolerance, and it is therefore important to clarify in what sense there is
a “unique” optimal grid. The following facts of the adaptivity studied here are
of importance:

• Given an ODE with a sufficiently smooth exact solution, and a discretization
method, there is a smooth, continuous principal error function (monitor
function), associated with that method and the exact solution of the ODE

• A smooth monitor function gives rise to a unique, monotone, C0 modulation
function θ(τ), or density function φ(t), which is optimal with respect to local
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error control in the sense that it satisfies the Euler–Lagrange equations
• Given a continuous modulation function θ(τ), there is, for every N , a unique

grid obtained by equidistant sampling of θ in the τ variable
• The continuous modulation function θ is independent of N , i.e., the same

modulation function is optimal for all accuracy requirements
• A grid generation process will approximate the N samples of the continuous

modulation function θ, at equidistant points in τ , by a discrete sequence {ϑ}
• To every discrete approximation {ϑ} there corresponds a unique grid, with

unique, computable step sizes
• Although there are many approximating sequences, a convergent process

(N → ∞) produces similar grids, in the very same sense as a convergent
discretization method produces similar numerical solutions to an ODE for
different step sizes

Thus, although no discrete approximation to a continuous function is ever
unique, an approximation process converging to a unique limiting function
will, for N sufficiently large (as needed to accurately reproduce the solution
of the differential equation), produce similar grids that effectively lead to the
same computational results. For “optimal grids,” the only issue of practical
significance is therefore that the limiting, continuous modulation (density)
function is unique.

4 Minimization of computational cost

In practical computations, it is common to prescribe an upper bound for the
local error, tol, and construct controllers that equidistribute the local error.
The adaptivity problem is to find Θ (or Φ) such that the problem is solved,
to the requested accuracy, with the minimum number of grid points. For local
error control, this problem has the same solution as the optimal grid generation
problem, see Theorem 2.

4.1 Minimizing the number of grid points

Take a grid of N points, with a corresponding εN = T/N . If the solution is
smooth enough and N sufficiently large to produce an asymptotic behavior,
then the norm of the local error on the non-uniform grid can be expressed as
‖r‖s = εp

Nνs. If we require that ‖r‖s ≤ tol, then the necessary number of
steps in the grid is

Ns ≈ T
(

νs

tol

)1/p

. (39)
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As T and tol are constants, the minimum number of grid points N̂ , is ob-
tained for the minimum value of νs, denoted by ν̂s. From Theorem 2, we obtain
the following result.

Theorem 5 (Minimum number of grid points) The minimum number
of steps in a grid to solve the problem (1) to accuracy tol is

N̂s = T 1+ 1
sp

(M s
sp+1

(|ψ(·)|)
tol

)1/p

; N̂∞ = T



M 1

p
(|ψ(·)|)
tol




1/p

. (40)

4.2 Time complexity

In the model of computation considered in this paper, we ignore memory
hierarchy, overheads and interpolation costs, as it is common in the standard
theory of information-based complexity, see e.g. [24]. The time complexity of
the algorithm will be measured either by the number of function evaluations or
by the number of arithmetic operations. Furthermore, we assume a sequential
model of computation. We consider the following cost model W = c(p)N ,
where N is the number of grid points and the cost per step, c(p), is a constant
depending on the method, its order and the dimension of the problem. This
model applies to both IVPs and BVPs.

Assuming that no steps are rejected, the cost of an algorithm of constant
order for initial value problems is linear in the size of the grid, i.e. O(N).
On the other hand, methods for BVPs require solving some linear system
of dimension kN . The kN × kN matrix of the system is typically a “band
matrix” (e.g., almost block-diagonal matrix for collocation methods) with a
fixed bandwidth, depending only on the order of the method and the dimension
of the differential system. Therefore the cost of these methods is also O(N).

By direct application of Theorem 5 the minimum cost to solve the problem (1)
with the given method at order p while the local error satisfies the accuracy
tol in the Ls–norm, is

Ŵs = c(p)T 1+ 1
sp

(M s
sp+1

(|ψ|)
tol

)1/p

, (41)

while in the L∞–norm, the minimum cost is

Ŵ∞ = c(p) T



M 1

p
(|ψ|)

tol




1/p

. (42)

This may be used to estimate how much more efficient an adaptive method is
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compared to a nonadaptive method, solving the problem to the same accuracy
on a uniform grid. Using a fixed step size, the necessary number of grid points
is, for the L∞ norm, Nfix,∞ = T‖|ψ|‖1/p

∞ tol−1/p. Therefore the cost of the
algorithm on a uniform grid is

Wfix,∞ = c(p) T

(‖|ψ|‖∞
tol

)1/p

.

The efficiency of adaptivity can now be calculated as the ratio between the
cost associated with the adaptive method and that of the fixed-grid method.

Theorem 6 (Efficiency gain) The efficiency gain due to adaptivity is

Wfix,∞
Ŵ∞

=


 ‖|ψ|‖∞
M 1

p
(|ψ|)




1/p

. (43)

The gain depends only on the method order p and on the principal error func-
tion |ψ|. It is independent of the accuracy requirement and the number of grid
points.

Remark. Note that for p > 0 it holds that

M 1
p
(|ψ|) ≤M∞(|ψ|) = ‖|ψ|‖∞, (44)

with equality if and only if |ψ| is a constant function. (In that exceptional
case, local error equidistribution occurs on a uniform grid.) From Theorem 6
above it therefore follows that, if |ψ| is nonconstant, an adaptive method is
always more efficient than a nonadaptive method. This supports “conventional
wisdom” and resolves the complexity controversy, [24, p. 124]. Moreover, the
efficiency gain may be arbitrarily large, as will be demonstrated in the next
section.

The cost of finding the optimal grid is not covered by the analysis above. For
algorithms solving IVPs, local error equidistribution is very inexpensive, and
existing step size controllers, see e.g. [21,22], closely approximate the optimal
grid. However, there are special classes of problems, where the usual step size
selection schemes interfere with or destroy desirable properties, e.g. in geomet-
ric integrators for time-reversible problems. Reversible step size controllers are
then successfully used to overcome this difficulty [11], but may not be optimal
in the sense of the present analysis. Nevertheless, adaptivity is known to pay
off also in such cases.

For solving BVPs with global methods, current codes generate a sequence of
grid and solution computations before choosing a fine enough grid on which
the solution meets the desired accuracy, see Section 3.4. The convergence of
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the sequence of grids is monitored, and is normally observed in practice for
carefully selected monitor functions, [19]. Related theoretical results concern-
ing convergence of adaptive grids for finite element methods can be found in
[17].

For efficiency, in practice most of the Newton iterations are done on coarse
grids such that only one Newton iteration is needed on the final grid. Suppose
n such coarse grids are generated and on each grid i, of size Ni, si Newton
iterations are performed. The relative cost of generating the equidistributed
grid, defined as the ratio between the cost of equidistribution to the cost of
computing the solution on the optimal grid, is therefore (1/N̂∞)

∑n
i=1 siNi.

A fraction of the efficiency gain may be used to cover the relative cost of
equidistribution, thus adaption again pays off. We note that the efficiency
gain may be arbitrarily large (depending on the problem).

5 Numerical results

We illustrate the results by demonstrating their implications for a few simple
computational problems.

Example 1. We first consider the theory’s implications for a scalar initial
value problem,

y′ = λ(y − Aeiωt) + iω Aeiωt; y(0) = 0, (45)

with solution y(t) = A(eiωt − eλt), for some amplitude A and a real λ < 0. In
order to separate the treatment of the transient and the steady state solution,
we first consider the case ω = 0, for which y = A(1−eλt), and y(p) = −λpAeλt.
We assume that the local error is of the form ψ = κpy

(p), which here gives
ψ = −κpλ

pAeλt, where κp is the “error constant” of the method. Theorem 5
then gives

N̂∞ = p
(

κpA

tol

)1/p

· (1− eλT/p). (46)

When |λT | is small, this can be approximated by

N̂∞ ≈ |λT |
(

κpA

tol

)1/p

, (47)

implying that work grows approximately linearly in time during the non-stiff
phase. This also represents the work when a constant step size is used to
integrate the problem T units of time.

For a stiff problem, however, when λT ¿ −1, and the transient decays into
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Fig. 2. Minimum number of steps in model problem (45). Steep dashed line on the
left indicates the necessary number of steps vs |λT | for a nonadaptive method to
keep the local error less than tol. This equals the number of steps for short range
integration, (47). Solid curve indicates required number of steps for a stiff adaptive
method, (46). The upper bound is indicated by the horizontal dashed asymptote.
Dotted curve indicates the number of points needed by an adaptive non-stiff method,
which for stability reasons must use step sizes |∆tλ| ≤ O(1). This stability condition
is indicated by the dash-dotted slanted line to the right. Both the non-stiff and the
stiff adaptive methods are seen to be more efficient than a constant-step method.
However, if |λT | is large, the stiff adaptive method becomes vastly more efficient
than any one of the alternatives.

an equilibrium, we find that

N̂∞ ≤ p
(

κpA

tol

)1/p

, (48)

as long as the requested step sizes do not lead to numerical instability. This
implies that a finite number of steps is sufficient for an adaptive stiff method,
no matter how long the range of integration is. For λT/p ¿ −1, the efficiency
gain, given by the ratio of (47) to (48), is therefore approximately |λT/p| and
can be arbitrarily large. The bounds are illustrated in Figure 2 for κpA = 1,
tol = 10−4 and p = 6.

For the steady state solution y = Aeiωt the situation is different. Take y(0) = A
to eliminate the transient. A similar calculation then shows that

N̂∞ = |ωT |
(

κpA

tol

)1/p

. (49)

Qualitatively similar to (47), this is independent of the magnitude of |λT | as
long as the requested step sizes do not lead to numerical instability, but the
number of steps grows linearly with time T . If |ω/λ| ¿ 1, the problem is stiff
and the number of points behaves like the dotted curve in Figure 2, although
the time step will be limited by ω and not by λ as in the case of a non-stiff
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Fig. 3. Number of steps as a function of the range of integration. When an adaptive
stiff solver is used to solve a chemical kinetics problem that settles into equilibrium,
work is plotted as a function of integration end point T . The number of steps for
T = 5 is 42, while 78 points are used for T = 1020.

solver. The efficiency gain due to adaptivity is then essentially determined by
the ratio |λ/ω|, as long as λT ¿ −1.

Example 2. Because Example 1 above is only a theoretical model problem,
we solved a chemical kinetics problem,

y′1 = 1− y1 − my1y2

a + y1

y′2 =
my1y2

a + y1

− y2

with m = 0.16 and a = 0.25, and initial conditions y1(0) = 0.5 and y2(0) =
0.02, respectively, on the interval [0, T ]. The solution settles to an equilibrium
after some 5 time units. The problem was solved using Matlab’s stiff solver
ode23s, with default settings, over time intervals ranging from T = 5 to
T = 1020, in order to demonstrate the qualitative behavior predicted by (48)
in an adaptive solver. The number of steps used by the code is shown as
a function of the choice of endpoint T in Figure 3. According to theory, the
work needed to meet the tolerance is bounded. In practice, the code uses some
safety measures to restrain the step size and make sure that a solution can be
plotted. But this has only minor effects; the necessary number of steps for the
interval [0, 5] is 42, and less than twice the number of steps are needed for the
interval [0, 1020].

Example 3. In the previous example total work for integrating a transient
is finite, independent of the range of integration. This result is however only
practically relevant in a problem that does not settle into an equilibrium.
Consider the van der Pol equation with initial values y1(0) = 2 and y2(0) = 0,
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Fig. 4. Stiff van der Pol problem. The number of steps N needed to cover a full
period [0, T ] is plotted vs integration range T = 5µ/3, where the stiffness controlling
parameter µ ∈ [102, 106]. Total work is effectively bounded independent of of µ as
predicted by theory.

y′1 = y2

y′2 = µ · (1− y2
1)y2 − y1

for values of µ in the range [102, 106]. The problem has a periodic limit cycle

with period just short of 2µ, and the problem becomes stiffer for larger values
of µ. A step size ∆t ∼ O(1/µ) is needed in order to resolve the sharp transition
regions; and only an adaptive method can ever exceed such a step size. A good
stiff solver can, on the other hand, reach step sizes as large as O(µ) during the
phases when the solution is in a quasi-equilibrium. This indicates that while a
nonadaptive method needs on the order of O(µ2) steps to solve the problem,
an adaptive method should be able to solve the problem in a finite number
of steps, independent of µ, if our claims are correct. (This also implies that
the efficiency gain for adaptation is a most significant factor on the order of
O(µ2)). Figure 4 shows the number of steps used by ode23s, run with default
settings, plotted vs. the range of integration when a full period of the solution
was computed.

Example 4. Finally, a simple adaptive two-point BVP solver was imple-
mented in Matlab for solving the problem

u′ = v

v′ = A · sin(ωt)

subject to the boundary conditions u(0) = u(1) = 0, and with the parameters
A = 10, ω = 10, at a local error tolerance tol = 10−5. This is a simple
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Fig. 5. Adaptive two-point BVP solver. Left graph shows initial uniform grid
(φ(t) ≡ 1) as well as how the optimized grid density φ̂∞(t) varies on [0, 1]. error
on the nonuniform grid, nearly equidistributed on [0, 1]. Further grid updates bring
the local error closer to equidistibution, but the added benefits are marginal.

quadrature problem and may be considered as a 1D “Poisson equation.” It
was solved on a coarse, uniform grid of 30 points, using the midpoint method.
The coarse grid is employed to obtain a local error estimate, which is then used
to calculate the optimal ϕ̂∞. The error magnitude determines the necessary
number of grid points, N̂∞, for the tolerance tol. The nonuniform grid is
constructed by oversampling ϕ̂∞ from the original 30 points to N̂∞ = 136
points, as determined by the accuracy requirement. Finally the problem is
solved on that nonuniform grid. Figure 5 shows the results. As 161 steps
would have been necessary on a uniform grid, the adaptive method yields an
efficiency gain of 18%.

6 Concluding remarks

In this paper we have studied the computational cost of adaptive methods
for ODEs. In particular we study adaptive techniques based on various local
error estimates to control the step size, in order to give an analysis that reflects
computational practice.

Contrary to previous claims, we show that such adaptive techniques are always
beneficial, and that the efficiency gain is given by the ratio ‖|ψ|1/p‖∞/M1(|ψ|1/p)
which is always greater than one, and is potentially arbitrarily large.

However, it is only problems with widely varying time constants (stiff prob-
lems) or with steep gradients (e.g. BVPs with steep boundary layers) that will
be solved in a vastly more efficient way; for smooth, regular problems the gain
may be small or moderate.
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Optimal grids for local error control are also characterized, and numerical
examples show that current computational methods come close to generating
optimal grids with respect to local error control. These simple examples also
show that adaptivity is necessary in order to solve the problems numerically
with a reasonable computational effort.
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