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ABSTRACT

Motivation: Homology search finds similar segments between two
biological sequences, such as DNA or protein sequences. The intro-
duction of optimal spaced seeds in PatternHunter, (Ma et al., 2002),
has increased both the sensitivity and the speed of homology search
and it has been adopted by many alignment programs such as
BLAST. With the further improvement provided by multiple spaced
seeds in PatternHunterll, (Li et al., 2004), Smith-Waterman sensitivity
is approached at BLASTn speed. However, computing optimal mul-
tiple spaced seeds was proved to be NP-hard and current heuristic
algorithms are all very slow (exponential).

Results: We give a simple algorithm which computes good multiple
seeds in polynomial time. Due to a completely different approach,
the difference with respect to the previous methods is dramatic. The
multiple spaced seed of PatternHunterll, with 16 weight 11 seeds, (Li
et al., 2004), was computed in 12 days. It takes us 17 seconds to find
a better one. Our approach changes the way of looking at multiple
spaced seeds.

Contact: ilie@csd.uwo.ca

1 INTRODUCTION

Homology search finds similar segments between two bicébgic

sequences, such as DNA or protein sequences. A signifi@atidn
of computing power in the world is dedicated to performingrsu
tasks. The increase in genomic data is quickly outgrowimgmaer
advances and hence better mathematical solutions areedgiis
the classical dynamic programming techniques of (Needbeamal

seeds that have optimal sensitivity. Impressively, ther@ggh of
PatternHunter increases both the speed and sensitivieyidBa has
been adopted since by the new versions of BLAST, MegaBLAST,
BLASTZ, and other software programs (Brejova et al., 200déN
and Kucherov, 2005; Kisman et al., 2005).

As noticed in (Ma et al., 2002), multiple spaced seeds—sets
of seeds that hit whenever one of the components does so—are
better, and with their introduction in PatternHunterll,i @t al.,
2004), Smith-Waterman sensitivity (Smith and Watermai®1)9s
approached whereas the speed is that of BLASTn.

Quite a few papers have been written about spaced seedsaeval
ting the advantages of spaced seeds over consecutive onelei(B
et al., 2003; Keich et al., 2004; Choi and Zhang, 2004; Li et al
2006), showing that the relevant computational problenesN#?-
hard (Li et al., 2004, 2006), giving exact (exponential)osithms
for computing sensitivity (Buhler et al., 2003; Li et al.,@0 Keich
et al., 2004; Choi and Zhang, 2004; Choi et al., 2004), patyiab
time approximation schemes (Li et al., 2006) or heuristjoathms
(Li et al., 2004; Choi et al., 2004; Yang. et al., 2004; Prapaet
al., 2005; llie and llie, 2007; Kong, 2007), adapting thedsetor
more specific biological tasks (Brejova et al., 2004; Kuokest al.,
2004; Sun and Buhler, 2004; Noé and Kucherov, 2005), or buil
ding models to understand the mechanism that makes spaegsl se
powerful (Buhler et al., 2003; Sun and Buhler, 2004; Prejpaeh
al., 2005).

Finding optimal (multiple) spaced seeds is NP-hard but éven
ding good ones is very difficult. Exhaustive search involtse

Wunsch, 1970; Smith and Waterman, 1981) became overwheIme@(poﬂe”tial'tir}?e steps: _(i) there are .e).<ponentially maegds to
by the task, popular programs such as FASTA (Lipman and Bears be tried and (ii) computing the sensitivity of each takesoman-

1985) and BLAST (Altschul et al., 1990) used heuristic aildpons.

tial time as well. Several approaches (Buhler et al., 200&t lal.,

BLAST used a filtration technique in which positions with gho 2004; Keich et al., 2004) tried to deal with the latter expuiz by
consecutive matches, bits, were identified first and then exten- @PProximating the sensitivity. For the former, the numbeseeds

ded into local alignments. Speed was traded for sensitiiitge
longer initial matches missed many local alignments, helemze-
asing sensitivity, whereas short initial matches produoedmany
hits, thus decreasing speed.

to be considered has been reduced by various heuristic$ ¢Calo,
2004; Yang. et al., 2004; Preparata et al., 2005; Kong, 2b07}t
remained exponential.

The approach here is based on the overlaps between the hits of

A breakthrough came with PatternHunter (Ma et al., 2002)rehe @ Multiple seed. A new measureverlap complexityis introdu-
the hits were no longer required to consist of consecutivé- ma ¢ed and shown to be experimentally well correlated with isitg.

ches. More precisely, PatternHunter looks for runs of 1&eontive
nucleotides in each sequence such that only those spedgified im

Since the new measure is computable in (low) polynomial tives
shall use overlap complexity instead of sensitivity and thkes care

the stringl11x 1% 1 1+ 11x 111 are required to match. Such a ©f the exponential in (ii). A similar approach has been idtreed in

string is called @paced seednd the number df’s in it is its weight
Using this notion, BLAST required a hit according te@nsecutive
seed such as1111111111.

The filtration principle has been used before in approxiretiiag

(llie and llie, 2007) for single seeds. Also, (Yang. et ab02; Kong,
2007) contain some other measures well correlated withitsetys
for multiple seeds. However, we take care also of the exgalen
at (i), that is, the exponential number of candidate seedsghé

matching (Karp and Rabin, 1987; Pevzner and Waterman, 1995 Simple algorithm which improves quickly the overlap coexitly

Burkhardt and Karkainen, 2001) but the important noveltyat-

of an initial multiple seed, thus providing a good multipked in

ternHunter was the use of optimal spaced seeds, that iseaspacPolynomial time.
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We provide some results showing the good correlation betwee as follows. Given two DNA sequences and a segde say that

overlap complexity and sensitivity for single seeds. Ouypomial-
time algorithm produces single seeds of sensitivity venselto
optimal. For the multiple seed case such comparison cammogle

simultaneously matches (hits) the two sequences at giveitigpts
if eachl in s corresponds to a match between the corresponding
nucleotides in the two sequences; see Fig. 1 for an examig us

since no optimal multiple seeds are known. We shall compare o PatternHunter’'s seed. Such a match is then extended usisgjal

multiple seeds with previous ones and show them to haverizette
sitivity while our algorithm is much faster. The most imgott test
is to compare against the multiple seed implemented in iP&tten-
terll, which contains 16 weight 11 seeds. While it took (Liadt,

methods to a local alignment.

2004) 12 days to compute this multiple seed, we obtain a bette

multiple seed in 17 seconds. The dramatic improvement idalae
completely different approach. As discussed in the lagi@goour
approach allows looking at multiple seeds in a totally défe way.

A number of problems remain to be investigated such as pgovin spaced seed

guarantees about the correlation between overlap contlard
sensitivity, approximation ratio and exact running timeof heuri-
stic algorithm for approximating the overlap complexityowever,
such problems may be mostly of theoretical interest as intjoea
our algorithms produce very good multiple seeds in verytdioe.

DNA seq.S; AGGCA GTA TATATC
DNA seq.S2 AGGCA GCA TAAATC
matches/mism. === = =c£ = ==4===
Bernoulli seq.R 111 1 1 1 11 111

111+1 1+1 11+111

Fig. 1. Anexample of a hit using PatternHunter’s spaced.s&léd’s in the
seed (the last row) must correspond to matches betweendhersees. The
spaced seed hits the Bernoulli sequenc® (ending) at the third position
from the right.

The paper is organized as follows. The next section formally
introduces multiple spaced seed and all concepts needed lat
Our new measure is introduced in Section 3. Section 4 shows

good correlation between overlap complexity and sengiti@ur
polynomial-time algorithm for computing good multiple dgseis

However, in order to be able to compare spaced seeds and ulti-
mately compute good ones, we need a precise mathematitagset

given in Section 5. In Section 6 we compute better seeds tthan aThe above process will therefore be reformulated as folloves

previous ones. We conclude with a brief discussion in Sectio
More seeds whose sensitivity is discussed in the text arédad in
the Appendix.

Ma et al. (2002); Keich et al. (2004). Assume there are two DNA
sequencesS; and Sz such that the events that they are identi-
cal at any given position are jointly independent and ea@ntev

The content of the paper can be read in several ways, acgordinis of probability p, called thesimilarity level. The sequence of
to the goal of the reader. First, we computed a number of multi equalities/inequalities between the two DNA sequenceasskates

ple spaced seeds that are ready to be used. No understafidimg o
algorithm is necessary for that purpose. Second, our #fgoris
simple and explained in detail for the reader interestedadycing

a more efficient implementation and/or modifying the altiori in
order to solve different problems, such as computing moeeiap
lized seeds. Finally, we provide explanation of the inteitideas
behind our algorithm in order to provide the interested eeadth
in-depth understanding of our approach.

2 SPACED SEEDS

We start with some basic definitions. An alphabet is a finiteemo-
pty set, denoted byl. The set of finite strings oved is denoted
by A*. For a stringz € A*, the length ofz is denoted byz|. For

1 < ¢ < |z|, theith letter ofx is denoted by:[i]. If v = zy, for
somezx,y € A", thenz (y, resp.) is called a prefix (suffix, resp.) of
u. For two stringsw andv, anoverlapbetween: andw is any string
that is both a suffix oft and a prefix ofv.

A spaced seeis any string over the alphabeftl, * }; 1 stands
for a ‘match’ and* for a ‘don’t care’ position. For a seed the
lengthof s is ¢ = |s| and theweight w, of s is the number ofl’s
in s. A multiple spaced seefl is any finite nonempty set of spaced
seeds.

The quality of the spaced seeds is given by their sensitiwvitych,
intuitively, is a measure of their ability to detect similsggments
between biological sequences; see Ma et al. (2002). Thisne d

1 From biological point of view only strings starting and emgliwith 1 are
spaced seeds. The seeds we shall eventually compute shigsépndition.

then into a sequenc® of 1's (corresponding to matches) and 0's
(corresponding to mismatches) that appear with probghiliand

1 — p, respectively. Therefore, given an (infinite) Bernoulindam
sequencer and a seed, we say that hits R (ending) at position

k if aligning the end ofs with positionk of R causes all’s in s to
align with 1's in R; see Fig. 1.

We are now in the position to give a rigurous definition forsen
tivity of a spaced seed. Treensitivityof a seeds is the probability
that s hits R at or before positiom; see Ma et al. (2002); Keich et
al. (2004). Note that the sensitivity depends on both thélaiity
level p and the length of the random regien

An intuitive explanation of the reason for which seeds hafe d
ferent sensitivities follows. Recall that the sensitiviti/a seed is
the probability of hitting a random region of a given lendtor two
spaced seeds of the same weight, the expected number of hits i
the same but their sensitivities need not be the same. Thizehna
as the hits of one seed may appear more clustered. A good intui
tive example is searching for the stringga andabc in a random
text. For each occurrence aa, the chance of having another one
sharing two letters with it is /26 whereas starting afresh would
require(1,/26)*. Therefore, the occurrencesatfc are more evenly
distributed and it is more likely to see first abc in the text.

A multiple spaced seed hits a sequerité# and only if one of its
seeds hitsk. The sensitivity of a multiple spaced se€ds defined
similarly, that is, the probability that at least one seed diits R at
or before positiom.

In the light of the tradeoff between search speed and seititt
makes sense to consider only multiple seeds in which allssead
the same weight (they may have different lengths).
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3 OVERLAP COMPLEXITY shifti o[i]
We introduce in this section our complexity measure, thelape 1+1 1 Lrewlxd _3 1
complexity, which will turn out to be well correlated withrsstivity 111 9 o
but much easier to compute. Therefore, it will replace dmitsi 111 _1 1
in our computations. Before introducing it, we give somaiiitite 1%11 0 1
explanation why overlapping hits of a seed are undesirable. 111 1 =2
The hits of a seed can overlap but overlapping hits will detec 111 5 1
a single local alignment. An example showing such a sitnao 1%11 3 1
shown in Fig. 2. 1%11 4 2
111 5 0
111 6 1
hit of good seed 111+1++1+1++-11+111 Fig. 3. An example of the overlap complexity of two seeds:
Iocal_ahgnment 1111101111101111111101 OC(ll**l*l,l*ll):ZG,_SQU[i]:25.
1st hit of bad seed 11+11+11+11+11+1 =
2nd hit of bad seed 11-11+11+11+-11+1
3rd hit of bad seed 11-11+11+11+11+1

pairs ofx 's aligned together. For our example, these arrays are given

Fig. 2. An example showing the intuition behind overlap cteripy; a local below:
alignment is detected by one hit of a good seed whereas a bddwastes”

three hits to detect the same alignment. 4 | -3 -2 -1 01 2 3 45 6
o [1] 5 3 5 5 3 5 5 3 7 5
oweld] | 7 8 T 7T 8 7T 7 8 6 7

Therefore, the sensitivity of a seed is inversely proposlavith
the number of overlapping hits, since the expected numbéitef  The number of overlapping hits (with shiftis then proportional to
is the same. Thus, good seeds should have a low number of ovep*[ (p? + (1 — p)?)7=*[), wherep is the similarity levelp=(l is
lapping hits. The definite proof that (non-uniformly) spaceeds the probability that:. [i] * 's take value 1 andp® + (1 — p)?)7 =+
are better than consecutive seeds, due to (Li et al., 200&)lvies  is the probability that ... [i] pairs of+ s take the same value, 0 or 1.
estimating the expected number of non-overlapping hitsvéver, ~ Choosingp = 0.5 makes this quantity equal &7+ [1==[1 |tis
computing this number in general is as difficult as compusiag-  reasonable to assume that a fixed-size window in considened w
sitivity. Therefore, we look here for simpler ways to detémv evaluating the overlapping hits, that is, the suiff] + o+ [i] + o [7]
numbers of overlapping hits. is assumed to be a constant, sayn our examplec = 13. Then,

We shall define a measure that is independent of the sirgilaritthe number of overlapping hits is proportionalao®+ 1=+« —
level p. Consider two seeds; ands» and denote by [i] the num-  271=< = L2l Sincec is constant, this is proportional witt7
ber of pairs ofl’s aligned together when a copy ef shifted by: which gives our definition of overlap complexity.

positions is aligned against. The shifti takes values froni — |sz| It isimportant to mention that the freedom to convenientigase
to |s1| — 1, where a negative shift meass starts first. Precisely, if the valuep = 0.5 is due to the fact that, even if the optimal seed
we denote may change withp (see Table 1 below), the sensitivity changes very
little.
th = *‘32‘_181%‘32‘_17 . For a multiple seed = {s1, s2, ..., sx}, the overlap complexity
ta, = #9217 i gpulea =71 Hor 1 — [sy] < i < [s1] — 1, is defined by:
then oc(s)= > OC(si,s;).
1<i<j<k

oli] = card{j [ 1 <j < [s1| +2|s2| = 2,1 [j] = t2.[s] = 1} .
Note that the overlap complexity is invariant with respectte

Theoverlap complexityor two seeds is defined as order of the seeds and reversal (assuming all seeds aresedver
simultaneously). This is expected of any measure well taed

[s1|—1 with sensitivity.

OC(s1,80) = 3 271
i=1—|s2]

4 SENSITIVITY OF LOW-OVERLAP SEEDS

An example is shown in Fig. 3. Note that the measure is synicnetr We show here that the overlap complexity is, experimentalisil
thatis,0C(s1, s2) = OC(s2, s1), for any seeds; andsa. correlated with sensitivity for single seeds. We considefable 1
The definition of the overlap complexity deserves a few com-the top sensitivity seeds of (Choi et al., 2004) (that isdseeith
ments. Note that the “importance” (we should say “weightt’ thiat highest sensitivity among those with a given weight); ttsginsi-
would be confused with the weight of the seeds) of the number otivity ranks for similarity levels65%, 70%, . ..,90% are given in
pairs of1's aligned together for each shift doubles with each paircolumns2, 3, ..., 7, respectively. As mentioned earlier, the top sen-
of 1's. While this may look as a reasonably natural definitioeyéh  sitivity seed may change with the similarity leyelFor instance, the
is a good intuitive reason behind it. For a shiftdenote byo.[i] first line for weight 11 corresponds to PatternHunter’s sekith is
the number ofl’s aligned against’s and byo..[i] the number of  the best for similarity level$5% and70%, second best for5%,
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Table 2. The sensitivity of the top overlap complexity seeds for vaésg9

80%, and85%, and only third best fo60%. However, the diffe- to0 18, similarity 70%, and length of random region 64.

rences between the sensitivities of these top seeds for fatheo

similarity levels considered is very small, a crucial olaéion for

our approach, which is independent of similarity level. weight
The last column of Table 1 gives the overlap complexity rank.

In all cases, at least one top sensitivity seed is on top obtee-

lap complexity ranking. Note that the seeds with the lowestlap

complexity are on top of the overlap complexity ranking.

optimal sensitivity of a  difference
sensitivity top overlap seed to optimal
9 0.729156 0.729156 0.000000
10 0.595740 0.595740 0.000000
11 0.467122 0.467122 0.000000
12 0.356430 0.356430 0.000000
13 0.264750 0.264750 0.000000

Table 1. The top sensitivity seeds from (Choi et al., 2004); a ‘-’ meant 14 0.193514 0.193514 0.000000
in top 20. The last column gives the overlap complexity rabikly rankings 15 0.138660 0.138333 0.000327
are shown, not the seeds. Each line corresponds to one seed. 16 0.098942 0.098942 0.000000
— 17 0.070004 0.070004 0.000000
. sensitivity rank overlap 18 0.049146  0.049146  0.000000

weight under a similarity level complexity

65% 70% 75% 80% 85% 90% rank

1 1 1 1 1 1 1

9 2 2 2 2 2 2 1
4 4 4 4 4 4 1 The one of (Choi and Zhang, 2004) runs in tidén¢22¢“~*)), for
111 1 1 1 1 seeds of lengtli and weightw. The other two have running times

10 2 2 4 6 8 9 1 O(nl?2°=) for (Keich et al., 2004) and(nw2‘~") for (Buhler
8 6 2 2 2 ° = etal., 2003).

1 1 2 2 2 3 1 . . . .

1 5 2 1 1 1 1 5 For multiple seeds, (Li et al., 2004) gave a dynamic programgm
6 3 3 5 5 6 5 algorithm that runs in time ((k + L +n) S, £;2%7"), where
1T 1 1 1 1 1 1 k is the number of seed§;’s are the lengths of the seeds ahd=

12 2 2 2 5 3 2 2 maxi << li.

6 3 3 2 4 4 1 Therefore, finding optimal seeds by trying all seeds of amgive
1 3 7 - - - 2 weight (and length) and selecting the best is computatiprely

13 2 1 1 2 2 2 1 expensive. In fact, it has been shown by (Li et al., 2004) tdiBe
v 2 2 1 1 1 6 hard for an arbitrary distribution.

1 3 7 - - - 1 Some heuristic algorithms for computing good multiple sese:

14 2 1 1 1 1 1 1 presented in (Yang. et al., 2004) and (Kong, 2007). As with ou
5 2 2 38 8 6 L approach, they find some measures that are well correlatéd wi
12z - 4 similarity but they still need to consider exponentiallyngaeeds.

15 14 1 2 5 5 4 39 : o .

-5 1 1 1 1 1 We shall compare our seeds with theirs in the next section.
T 9 - - - 11 The heuristic algorithm we derive from our overlap compiexi
7 1 2 6 13 20 1 is very simple: compute the seed with the lowest overlap com-

16 -7 1 1 1 3 1 plexity. This produces very good multiple seeds but we need t
. - 5 2 2 1 26 consider exponentially many candidates. To reduce the lmmp
1 3 - - - - 1 xity of this step, we shall start with a fixed seed and repépated

17 6 1 2 4 4 5 1 modify it to improve its overlap complexity. Each improvemeon-

- -1 1 1 1 2 sists of swapping 4 with a* as long as the overlap complexity
1 4 - - - - 36 improves. Moreover, we greedily choose a swap that prodtiees
18 -1 : § 13 12 122 greatest improvement. The number of such swaps in each séed w

be bounded by the weight of the seeds.

We shall say thatl flippedis * and vice versa. For a seed
and two positiong, j, we denote byflip(s, i, j) the seed obtained
from s by flipping the letters in positions and 5. For instance,
flip(1x11%11,3,5) = 1+x+1111. With this notation, the algo-

) . rithm MuLTIPLESEEDS s described in Fig. 4. Remarkably, Pat-
ferences are zero. The correlation between the two measires , . . . .
ternHunter's seed is obtained by performing only 4 swapshé t

remarkable. . . ?
. . Igorithm MULTIPLESEEDS11, 18); Fig. 5. Th n n
We cannot make the same comparison for multiple spaced seetgsgo It v Seepg11, 18); see Fig. 5 Is can be done

. . : y hand!
since there are no optimal muiltiple spaced seeds known. Let us discuss briefly our choice of the initial seeds in step 6

These are consecutive seeds and have very low sensitivitg. O
5 A POLYNOMIAL-TIME ALGORITHM would imagine that starting from different seeds, e.g.,doan,
The exact algorithms for computing sensitivity are all expatial,  would produce better results. Somewhat unexpectedly tigs dot
see (Buhler et al., 2003; Keich et al., 2004; Choi and Zhafg4?, seem to be the case and we preferred to keep a simple, degicnin
which is expected since the problem is NP-hard (Li et al.,6200 and ultimately reliable choice.

The opposite is shown in Table 2 where the highest sengitivit
of the seeds with lowest overlap complexity is shown. (Theey
be several seeds with lowest overlap complexity.) Almoktid
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MULTIPLESEEDSw, k)

- given: the weightv and the number of seeds
- returns: a multiple seefl with k& seeds of weighi and high
sensitivity
/I find the length of the seeds — half are equally spaced
/l'in the intervalm.. M, the others have length/

1. m = round_up(%¥) /I shortest seed
2. M =25 /l'longest seed
3. h=20m /1 float
4. forifrom1tokdo
5. £; «— min(round_up(m + i X h), 25)
6. P e
7. S —{s1,82,...,8}
/I swapl’s and* s to improve sensitivity
8. swaps— 0
9. while ((3 ryi, j With OC({s1, ..., $r—1,flip(sr,, ), Srs1,
.., 8k}) < OC(9)) and (swaps< k x w)) do
10. choose a triplér, 4, j) that reduce®©C(.S) the most
11. S — {s1,...,8r—1,flip(sr,%,7), Sr+1,-.., Sk}
12. swaps— swaps+ 1
13. return(S)
Fig. 4. The MULTIPLESEEDS algorithm which, given the weight and

lengths of the seeds, computes a multiple seed with low ayedmplexity
and, therefore, high sensitivity.

intermediate seeds pairs swapped

xxxxxx 11111111111 (1,12)
Ix»xxxx1111+%111111 (3,15)
1+ 1+ ***1111+x11+x111 (279)
111*+*xx1x171%11x111 (5,11)

111%21»+1+x1x»»11+111

Fig. 5. Intermediate seeds computed byMIPLESEEDS11, 18) to find
PatternHunter's seetil1* 1+ 1x1x+11x111. The flipped positions are
given in the right column..

Concerning the swapping technique, it is trickier to giveoad)
intuitive explanation. First, such swaps may change verghibe
overlaps and thus have the potential of improving the opectam-
plexity. Second, any seed can be transformed into any otest s

of RAM which prevented us from computing the sensitivity of
ger seeds. We believe that the addition of longer seeds te 6m
our multiple seeds would increase the sensitivity but tesds to be
tested.

Our choice of seed lengths turns out to be very good as we shall
see below. However, for one seed we need to consider alHemgt
aninterval. In a few cases below we shall do the same for tedsse

We have shown in the previous section good correlation baiwe
overlap complexity and sensitivity but now we compute anrapp
ximation of the overlap complexity. Still, the seeds we abtsave
high sensitivity as shown in Table 3. We give also the timeiiregl
for computing each seed.

Table 3. The sensitivity of the single spaced seeds computed by k-
LESEEDScompared to the optimal sensitivity for weights 9 to 18, &anity
70%, and length of random region 64. For each weighthe best length in
the interval3 .. 3 was chosen.

weight optimal swap difference time

sensitivity  sensitivity to optimal  (sec)
9 0.729156 0.726279 0.002877 0.01
10 0.595740 0.594758 0.000981 0.01
11 0.467122 0.467122 0.000000 0.01
12 0.356430 0.354035 0.002395 0.04
13 0.264750 0.264512 0.000238 0.04
14 0.193514 0.192711 0.000803 0.09
15 0.138660 0.138333 0.000327 0.16
16 0.098942 0.098865 0.000076 0.17
17 0.070004 0.069874 0.000130 0.33
18 0.049146 0.048946 0.000200 0.58

Let us consider the time complexity of the UWTIPLESEEDS
algorithm. Computing the lengths and initial seeds in steps 6
takesO(kw) time. To perform a swap, all possibilities for the triple
(r,1,7) in step 9 are considered, thatE:,f:1 w(l; — w). For each,
we compute the new overlap complexity (¢, Zle 4;) time.
(This is because the overlap complexity of two seeds is coeapin
time the product of their lengths and here we need only to tepda
the pairs containing the seedl.) If we setL = maxi<i<k li,
then the total time complexity of the M. TIPLESEEDSalgorithm
is O(k* L*w? (L — w)). If we assume that, in practick,is bounded

with the same length and weight using few such swaps and-thereand[ is linear inw, then it become® (w®).

fore we may potentially reach those seeds with very low ayerl
complexity we are looking for. Finally, and most convindingt
works very well in practice.

It is possible that the swaps can be improved, or done diffsre

It may be useful to briefly summarize the steps of our approach
to constructing multiple spaced seeds. Finding the optimatiple
spaced seed for a given weight and number of seeds invol@s tw
exponential stages: (i) there are exponentially many cateliseeds

For instance, we did not perform more than one swap at the timand (ii) computing the sensitivity of each requires expdia¢time
as that would slow down the algorithm, even if it would remain as well. The exponential at (i) hides in fact two exponestiél 1)

polynomial.

there are exponentially many lengths sets and (i.2) for éaugth

Note that our whole approach with overlap complexity works set, there are exponentially many multiple seeds. Firstguess

within fixed length for seeds. When given only a fixed weighd an
number of seeds, a problem we need to solve is finding a gogthlen

the length set (steps 1-5 of BATIPLESEEDS); this takes care of the
exponential at (i.1). Second, we start with some fixed valoethe

set of the seeds. Trying all possible lengths is impractida came
up with a simple but efficient choice, see steps 1 to 5 in the-alg
rithm. Essentially, we set half of the lengths equal to 25 #red  using overlap complexity that is computable in polynomiale as
other half “equally” spaced betweégt’ and 25. (The code in lines well. This way the exponential at (ii) is avoided. Insteadesziting
1 to 5 makes our choice precise.) The number 25 depends on tlfeandidates we directly build a multiple spaced seed asnedjur his
computer. Our tests were performed on a laptop with only 58 M s totally different from previous approaches.

seeds (step 6), and this eliminates the exponential at Gigally,
we repeatedly modify (polynomially many times) this mukigeed
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6 BETTER MULTIPLE SEEDS

We compare in this section our multiple seeds with the onagpce
ted by other approaches. In Table 4 we compare our seedsheith t
best of (Yang. et al., 2004) and (Kong, 2007). We picked ttst be
multiple seed of (Yang. et al., 2004) and compared it witrsdor
several similarity levels. The ones of (Kong, 2007) were potad
for a specific similarity level and we give the sensitivity those.
Our seeds are better for all levels. Note that our methodfoosing
the length setin steps 1 to 5 of the algorithnu M IPLE SEEDSWoOTr-
ked well even for two or three seeds. Only in the second lastthie
lengths given by it would produce a multiple seed of sligthohyer
sensitivity and we had to use an interval of lengths. Thisilisvery
fast.

Table 4. Comparing the seeds computed byuMIPLESEEDS with pre-

vious multiple seeds; first group (lines 1 to 5): best of (Yaeigal., 2004),
8 seeds, weight 12; second group (lines 6 and 7): best of (K&®@y7), 3

seeds of weight 9; third group (lines 8 and 9): best of (Korif)73, 2 seeds
of weight 11. The similarities for which Kong’s seeds werenputed are
given in parentheses. For the second last line, we considbeeinterval

16..19 for lengths.

their
sensitivity
0.287255 (60%)
(Yang. et al., 2004)0.500277 (65%)

former
multiple seeds

sensitivity of ~ time
our multiple seed (sec)
0.313090 (60%)
0.538023 (65%)

Table 5. Our multiple seed with 16 weight 11 seeds. It was computedin 1
seconds and it has higher sensitivity than PatternHurgeariultiple seed;

see Table 6.

16 seeds of weight 11

{ 111%11%+11%1111,
111%1%11%1+1111,
11% 1% 11+ 1% 1xx 1111,
1110 %% 1rx1x 1% 15 11,
112# 1% 11 Dxwx Lxxx 111,
1% 1 Dx*xx11x%11% %11,
11x11x*Dx*xxlxxTx%*x1111,
R I o I
R N N I L I
R B L IR I I e I
R o L I o K I
R B O I K I
R I S I I I I
N N N N o I I
I I I I I o I
11*1*xQ*x***xTx*x]**x11*x**x111

}

Table 6. The sensitivity of our multiple seed of weight 11 from Table 5
compared to that of (Li et al., 2004) for length of random oegb4.

sensitivity of  sensitivity of

sensitivity of

8seedsof  0.727770 (70%) 0.765212 (70%3).50
weight 12 0.897822 (75%) 0.920984 (75%)
0.977895 (80%)  0.985577 (80%)
(Kong, 2007) 0-185211 (50%) 0185472 (50%) 0.06
3(2) seeds of 0:972460 (75%) 0.977626 (75%) 0.05
weight 9 (11) 0.038393 (50%) 0.038554 (50%) 0.29
0.815865 (75%) 0.823314 (75%) 0.02

similarity the 16 seeds of our 16 seeds  our 32 seeds

(Lietal.,2004) inTable5 (see Appendix)
60% 0.566640 0.578242 0.699776
65% 0.781508 0.792108 0.877349
70% 0.924114 0.930081 0.967602
75% 0.984289 0.986152 0.995271
80% 0.998449 0.998716 0.999702
85% 0.999951 0.999963 0.999995
90% 1.000000 1.000000 1.000000
time 12 days 17 sec 171 sec

The most difficult test is comparing with the multiple seetif o
et al., 2004), the sensitivities of which were kindly praddby the
authors (Li, 2007; Ma, 2007). The multiple seed of 16 weight 1
seeds in (Li et al., 2004) — which is implemented in the besato
logy search software, PatternHunterll — took 12 days to agmp
greedily, that is, assuming the firsseeds are known, the + 1)th
seed is selected by exhaustive search in a length intervdlasat
maximizes the sensitivity of all+ 1 seeds. Remarkably, ML.TIP-
LESEEDScomputes a better multiple seed in 17 seconds! Itis showf CONCLUSION AND FURTHER RESEARCH
in Table 5 and the comparison with the one of (Li et al., 2084) i The introduction of optimal spaced seeds in (Ma et al., 26612)
provided in columns two and three of Table 6. The last colurhin o lowed by multiple spaced seeds in (Li et al., 2004) revohitied
Table 6 contains the sensitivity (significantly higher) ofnaltiple homology search. It is therefore important to compute goadt m
seed consisting of 32 weight 11 seeds which we computed $n lestiple spaced seeds fast. The optimal ones are hard to corapdte
than 3 minutes. The multiple seed itself is given in the Agjben research has been done for finding faster ways to computékass

We computed then, for the same weight 11, any number of seedsptimal but still good seeds. Our approach is much fasterpaod
between 1 and 16 and compared their sensitivity for sintjldevel duces better multiple seeds than the existing ones. Thish@sn
70% with those of (Li et al., 2004) in Table 7. We give also the by comparing our results with the best previous ones.
time required by each computation. The multiple seeds amngn We believe that the dramatic improvement brought by our
the Appendix. Note that the sensitivity of our multiple seedth approach allows looking at multiple seeds in a different vo@yond
13, 14, and 15 seeds are higher than the sensitivity of the ohe the improvement in homology search simply due to better imult
(Li et al., 2004) with an extra seed, that is, 14, 15, and 1@lsee ple seeds. So far, as computing good multiple spaced seexda wa
respectively. very time-consuming task, the seeds were first computedraerd t

We should mention that the implementation oM IPLESEEDS
is straightforward and we used the dynamic programmingrélgo
of (Li et al., 2004) for computing sensitivity. The runnirigies can
probably be improved but our focus is on fast algorithms astcbn
efficient implementation.




Multiple spaced seeds

Table 7. The sensitivity of our multiple seeds wittseeds] < i < 16, of
weight 11, compared to that of (Li et al., 2004) for similarit0% and length
of random region 64. The ones for> 3 are computed by the algorithm
MULTIPLESEEDSas given whereas far= 1, 2 an interval for lengths was
considered.

i sensitivity of sensitivity of time to
number the first seeds of 1 seeds compute
of seeds (Lietal.,2004) computed heréseeds (sec)

1 0.467122 0.467122 0.01

2 0.620034 0.621992 0.88

3 0.701920 0.705694 0.09

4 0.754809 0.758224 0.20

5 0.791461 0.797473 0.52

6 0.818647 0.825245 0.82

7 0.839900 0.845990 1.33

8 0.856520 0.863893 1.96

9 0.870671 0.877309 2.95

10 0.882106 0.888385 3.89

11 0.891927 0.898855 5.40

12 0.900161 0.907064 7.50

13 0.907335 0.914018 9.87

14 0.913581 0.920340 11.68

15 0.919134 0.925966 16.17

16 0.924114 0.930081 17.26

hard-coded in the homology search software. With our agbroa
testing of many seeds for a given purpose becomes possilse, A
the swapping technique we used for fast improvement of agerl
complexity may be useful for fast improvement of other, #pec
properties as well.

While our experimental results are very good, the theoryus s
port them needs development. Problems include provingagtees
for the correlation between overlap complexity and serisitifin-
ding bounds on the approximation ratio of our heuristic gthm
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APPENDIX

The multiple seed used in Table 4 for comparison with the dne o
(Yang. et al., 2004):




Lucian llie and Silvana llie

111+1+11+1+11111

1111+ 111+ 1# 1%+ 111
11110 # % ks Tww 104 %1% 111
11##11# 1# Twkkk* 111111

b I B I I e I I
111# %1 1**x*x*x1x11**x1x1x11
111 1 *x* T x*x*xT* T x1x*x111
N I I I e I

The multiple seeds used in Table 4 for comparison with thes one
of (Kong, 2007); they are given in the same order in which the
sensitivities are given in Table 4:

11+1+111+111
111* T xskxQxskxIxkx]x1]
N R R o o I

11+1+111+111
N R e o o I
T11* xskxJxkxkxIxskTohxkx]x]]

111+ 11%%11+1111
111+ 11#*1#1* 1%+ 111

111+111%%1%1111
T1x1xQx*x ] 1 x*kxkx1x*x1%111

Our multiple seed of 32 weight 11 seeds the sensitivity ofcivhi

is given in the last column of Table 6; the time needed to cdmpu
all 32 seeds was 171 seconds:

111#11%11%%1111
11%1+111%11% %111
111#%#11%1%11%111
1111%1%11% %1+ 1%11
111#%#11xx 1% % 11%111
11%11#%%11% 1+ 111%1

1111% 1ex 1% 1x 1#%111
11%11# e 1xw % 121111
1111##4xx1x%111% 1511

111 Tewxxx1114%%11511
111% Tox 1lwwss 1ax 15111
111 1# LTeww1xTan1ex1x11
11x1x*x11* T *x*x1x*x1111
B I I I e I o I
111* 1 *xQxskxskx]x]x*x1xx111
b N o o I o e
N o I N N R o I
T1x 1 **x* T THkxkxskx]x]x*x111
N o I o I e e I
T1x 1 **x*xQx*xTHhx*xTxx*x1%111
T1x*11x* T xQxskxskx*xT1Ix]1x11
I o I I I I e I
11*x11**xQxskxkx*xIxTx T x1x11
T1x1*x 1 **x*x*IxTHkxkx]1xx11
N N N o I e e I
111 ***x* T x*kxskx]x*xTxTxx11
N N N e o I o o I
N N e R I I o
I 11 x 1] x*Thxskx]x*x11x11
111*x*1*Q#x*x ] T x*xTxx11*1
I N R I o o o I
Tlx* 1 Qx*x*Tkx ] 1 x*xx111%1

The seeds used to obtain the sensitivities in Table 7; theidirs
PatternHunter’s seeds; the set of 16 seeds is given in Table 5

1 seed

111*1%* 1% 1% 11111

2 seeds

111* 1% 1x%1x11%111
1210 %% x Lox Lorx1x 1% 111

3 seeds

111111*%1%1111
11x11*IxxsxIxxx1x1%x111
b R R o N I e

4 seeds

111%111%%1%1111

11%11# Taxxx1x16%1111

b I I I I o I
b I o I I e e

6 seeds

111+11+11*1%111

11+ 1% 1#*11%% 11111

111 x %% DxkxIxlxxx11x11
N R R I o I e
b N o N I e I e
b I R R N I I e

8 seeds

11%111+1%1+1111

1111% 1ex1xx11#%111

11% 11wkx11xx 1xx 1111
T11** 1 ****x*xTxTx*xx1x111
R I I o I I e e
B I I I I I I e
T11*T***xQxxxx]Qx*x1x11*1
b I o I o o I

10 seeds

111%1%11%111%11
1%111##11% 1% %1111
1111%##%11%% 11# 1% 11

111% 11swxxx1x 1ox11x11
T11*1**xQx*Tx*x*xx1x1x111
I I e e o o I
Tlx*IxTx*xQxxxxx T 1x*xx1171
T1*x1*x1*xQx*xQxxxxIxTxT1x%x11
B N N o o I e e e
T11**Qx*xQxxIxTxxxx]1xx1171

12 seeds

111%11%1%1%1111
111%1#111%% 1% %111

111% 11##%%115 1111

11115 #% 1ex11x 1o%1x11

1% 1x Tlwxxn 1x Towx11x11
T11*T**x*Tx*x*xTx*x1xx1x111
b I I e o I e e
B N e o I N o e I
Tlx*Tx*xQx*x]xQx*xxT11xx111
B I I o o I o e e
B I I o I I o I
T11*T**x* T x*x*xxx]x]1x]1x1]

14 seeds

111%11%1%%11111
1111#%11%1%1%111

111+ 111#%%%11+111

111% Twwwx 11 1x1111

11 12%wx Ix10wxx1x1x11
11dx*x*1xx1x*x1*x1x*x%x1111

b R I I e I e
I 1x1**Qxl**xx1xx11*1x%x11
b N I e
b R B e I I I e
N N R R N N R e e
B I N e I I e
b I R B o I I e
11*1x*1xxxQxx1*x*x11**1%x11

5 seeds

111%11%11%1%111
1111%# 1% 15 1o%%11x11
11x1xQx*xQx* T x1x*x1111
N N o I I e I I
111* 1 x*Tkxxskxskx]x]x*x111
7 seeds

111#11%1%1%1111
1111###11%% 1+ 1%111

111% Tewxx11x Tex11x%11
111 **x*1*THx*xTHxx*xx]1x111
N I R I I I o I
N R o I I I e I
111 T x*THkxskxIxskx*x]x11x11
9 seeds

111#11%1%1%1111
11%1x1111% % 1#%111

11% 11sxxx 1% 11#%1111

1110% %% Laws1x 1aL1ex 1511
N R I I I I e
N N R o I o o I I
111 *T*xskxkTohxskx]x*xT11x11
N N N e I I I
111**x* T x*kxskx*xTxTxTxx*x111
11 seeds

111%11%1x1%1111
111#1#111%%%11%11

11 1# 1ex1xx 11#%1111

111 11e% 1w Ix s 1 1x11

110 % Lexwx11s%1ex11511

b e N o o I e
Tlx*11x*xQxskx*xT*T1x*x*x111
T1x 11 *xQx*THkx*xTohxskx]x]x]1]
N R N o I I e I
111 *x* T xskxkx*xThx]x]11x1*1
111 x* T THkx*kTohxskx]xx11x11
13 seeds

111#11%11%1%111

11% 11+ 1% 1% 1% 1111

111 1% 1ex1x% 115111
111%11%%10s %% 1 1% 11
1111%# Texx1x 1a 1exx111

T1x 1 **x*x*x 11 x*1*x1*%111
b I N o o I I e
I R B e I I e e
T 11 *x*kx*xTohx*xTrx]x]x*x111
R N e I I e e I
N I e I o I I
T 11xQx*xQxkxkx ]l x*x11x11
N N e o e I o I
15 seeds

111+%1+1111+111

11111+ 1+ 1%%1111
1111##11#1*1* 1% %11

11+ 1+ 1% 11#*1%%% 1111

T11# 10w www 1Tx* 1% 1511

111+ dx**Qx*xIx1**x1%111

I I e I I I I I
11 Ax 11 **x**x1*x*x11**111
N R N N R T N e
I N N N I e
R B I o I I I e
I I I I I I I e
I I R N R I I I
R R R R o I I I e
I I R N o I I




