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Abstract

The cost of solving an initial value problem for index-1 differential alge-
braic equations to accuracy" is polynomial inln(1="). This cost is obtained
for an algorithm based on the Taylor series method for solving differential
algebraic equations developed by Pryce. This result extends a recent result
by Corless for solutions of ordinary differential equations. The results of the
standard theory of information-based complexity give exponential cost for
solving ordinary differential equations, being based on a different model.
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1 Introduction

We show here that the cost to solve initial value problems forsemi-explicit index-1
DAE is polynomial in the number of bits of accuracy. This result extends that of [5]
which showed the cost of solving IVP for ODE is polynomial in the number of bits
of accuracy. This result contradicted earlier results thatmodeled the numerical�Research partially supported by an Ontario Graduate Scholarship.yResearch supported by a grant from the Natural Sciences and Engineering Research Council of
Canada.

1



solution of IVP for ODE in such a way as to give exponential complexity [25]; of
course that model is not realistic.

We use the residual error, or ‘defect’, because it makes the analysis simpler.
This is equivalent to local error methods (see e.g. [22]) butis also easier to explain
to users and is quite practical to implement, given that continuous extensions are
needed also for other purposes [9]. The residual error is also, in the IVP for ODE
case, directly connected to the global (forward) error by the Gröbner-Alekseev
nonlinear variation-of-constants formula (see e.g. [13]). This separates the stabil-
ity of the method (producing a small residual) from the conditioning of the prob-
lem [7, 9]. The Gröbner-Alekseev formula has been extendedto IVP for certain
classes of DAE [10, 19].

IVP for DAE are harder to solve in practice than IVP for ODE; but the results of
this paper show that the difficulty is essentially a constantfactor, and not a different
exponent in the theoretical complexity.

The analysis assumes that the functions defining the DAE are piecewise ana-
lytic. This is the key assumption, allowing the use of arbitrary order methods (in
fact the chosen orderp = d(1=2) ln(1=")e depends on the tolerance" for the resid-
ual). In practice, events and singularities of course occur; see e.g. [16]. We assume
that singularities can be located accurately at negligiblecost: we also assume that
events areO(1) apart as" ! 0 and that accurate location adds at most an extra
factor ofln ln(1=") to the cost. This assumption will be given detailed justification
in a forthcoming paper [11].

We also use the fact that order-p accurate solutions may be computed on an
interval of widthh � 1 in O(p2) operations usingO(ln(1=")) bits and therefore

at costO(p2hln(1=")i2). This can be done for IVP, for example, by Taylor series

methods (see e.g. [8, 4, 13]) or Hermite-Obreshkov methods [4, 12] and recently it
has been shown to be possible for DAE [17].

The analysis also relies on certain regularity assumptionsthat ensure that the
error estimates are not fooled; without those assumptions,the problem is in fact
undecidable [15].

2 The problem

Consider the following semi-explicit index-1 DAE:y0e(t) = f(ye(t); ze(t))0 = g(ye(t); ze(t)) (1)

for t 2 I = (a; b), ye : I ! Rk andze : I ! Rm . We assume that the Jacobiangz(ye; ze) is invertible. The initial condition, given byye(a) = y0; ze(a) = z0, is
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assumed consistent with the constraints, sog(y0; z0) = 0.
We assume thatf andg are analytic functions and that the solution(ye(t); ze(t))

exists and is unique on the interval of integration. We also assume that if we aug-
ment the DAE with extra ODEs that describe standard functions used inf andg,
then the problem is converted to a larger DAE in which the new functionsf andg
involve only the four basic arithmetic operations. Thusf andg in (1) belong to the
class of functions to which automatic differentiation applies. This includes most
functions of practical interest, but excludes, for example, the� function.

Other assumptions (detailed later) ensure that the minimumstepsize is bounded
away from zero, and thus the integration does not ‘grind to a halt’.

We are interested in computing a numerical solution with a tolerance" for both
the residual error of the differential equationkÆ1(t)k and the residual error of the
algebraic equationkÆ2(t)k, withÆ1(t) = y0(t)� f(y(t); z(t))Æ2(t) = g(y(t); z(t)) : (2)

By controlling the magnitude of the residual we also controlthe forward error. A
relationship between errors can be obtained either by usingthe Gröbner-Alekseev
formula or by using Gronwall’s lemma for the underlying ODE [14]. We review
below the second approach.

If the functionsf andg are analytic in a neighborhood of the exact solution
path then there exist some positive constantsL1 andL2 so thatkf(y; z)� f(ye; ze)k � L1ky � yek+ L2kz � zek :
We can chooseL1 = sup kfyk andL2 = sup kfzk. Sincegz is invertible, the
implicit function theorem will givekz(t)� ze(t)k � `1ky(t)� ye(t)k+ `2kÆ2(t)k
where`1 = sup kg�1z gyk, `2 = sup kg�1z k and the suprema exist in an appropriate
neighborhood of the exact solution. By applying Gronwall’slemma [13] on the
compact interval[a; b℄, we obtain that there exists a positive constantK so thatky(t)� ye(t)k� K(ky(a)� y0k+ maxa�s�t kÆ2(s)k+ maxa�s�t kÆ1(s)k) : (3)

If the functionsf andg are piecewise analytic, we assume that, in a neighbor-
hood of the solution,f is Lipschitz continuous in its arguments andgy, g�1z are
bounded in norm on each region where the functions have one analytic formula.
We also assume that the boundaries of these regions are continuous and piecewise
analytic. Under these assumptions a similar result to (3) holds.

In this paper, we consider the Taylor series method developed by Pryce in [20]
and [21], and we analyse it for the fixed order case.
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3 Numerical solution

We shall analyse the cost of the following algorithm: assumewe have obtained at
time tn the values(yn; zn) which satisfy the algebraic constraints more accurately
than the desired tolerance. After generating the Taylor coefficients for the un-
knowns, we predict the values(yn+1; ẑn+1) by computing the Taylor series with a
chosen stepsizehn. Then we correct̂zn+1 by applying one Newton iteration for the
algebraic variables which ensures that the algebraic constraints are satisfied more
accurately. Ifyn+1 and the new value forz, namelyzn+1, satisfy the differential
equation with the residual below the tolerance" then the step is accepted.

3.1 Solution by Taylor series

The method proposed by Pryce in [20] and [21] for solving a general class of DAEs
consists of generating the Taylor coefficients for the differential and algebraic equa-
tions and equating them to zero to solve for the Taylor coefficients of the variablesy andz.

Pryce’s method starts with a pre-processing stage which reveals a certain struc-
ture of the problem. The structure may be used for analysing the DAE: the struc-
tural index and the degrees of freedom for the solution manifold can be computed
based on it. Also, once the structure is known, the system of the Taylor coefficients
can be solved automatically.

The first step of the analysis consists in determining a set ofintegers, called
offsetsof the problem, that indicate which equations to solve for which unknowns.
The next step is to generate the system Jacobian. If at each integration step, the
system Jacobian is non-singular, the method succeeds, and the Taylor coefficients
can be determined up to the desired order.

A critical observation is that at each integration step the current JacobianJ ,
once computed, generates after a few initial stages the Taylor coefficients for the
unknowns iteratively, as solutions of some linear systems which have the same
matrixJ .

For the particular case of semi-explicit index-1 DAE, the offsets of the problem
and the system Jacobian can be easily determined. The offsets are given by the
following vectors withk +m components:d = (1; � � � 1; 0; � � � ; 0) (with the firstk components1) and
 = (0; � � � ; 0).

The system Jacobian is given by:J = � I �fz0 gz �
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and it is non-singular in a neighborhood of the solution since the DAE (1) is of
index 1. This implies that the Taylor series method is successful for our problem.

Assume that the Taylor series for the equations and for the unknowns calculated
at stepn of integration and at timet = tn + h are, respectively,y(t) = Xj�0 yn;j(t� tn)j=j!z(t) = Xj�0 zn;j(t� tn)j=j!F (t) = y0(t)� f(y(t); z(t)) =Xj�0 Fn;j(t� tn)j=j!G(t) = g(y(t); z(t)) =Xj�0Gn;j(t� tn)j=j! :

According to Pryce’s algorithm we have to solve, for each stagej = 0, 1, � � � ,p� 1, the systems(Fn;j = 0; Gn;j = 0) in the unknowns(yn;j+1; zn;j).
The valueyn;0 is given either from the initial condition for the first integration

step or from the previous step for the other steps.
The stagej = 0 is atypical. The equations(Fn;0 = 0; Gn;0 = 0) may be

nonlinear in the corresponding unknownzn;0. The valuezn;0 should be also given
from the initial condition at the beginning or from the valueat the previous step.
Since one Newton correction is applied at the end of the previous step, we shall see
that the conditiong(yn;0; zn;0) � 0 will be satisfied accurately enough so that its
residual does not essentially perturb the algebraic residual for the current integra-
tion step. The stage is completed by takingyn;1 = f(yn;0; zn;0).

The stagesj � 1 are all linear in the corresponding unknowns and involve the
same JacobianJ(yn;0; zn;0).

The approximate solution, given byŷ(t) = pXj=0 yn;j(t� tn)j=j!ẑ(t) = p�1Xj=0 zn;j(t� tn)j=j! ;
satisfies the problem ŷ0(t) = f(ŷ(t); ẑ(t)) + Æ̂1(t)0 = g(ŷ(t); ẑ(t)) + Æ̂2(t) : (4)

The predicted values at timetn+1 = tn + hn areyn+1 = ŷ(tn+1) andẑn+1 =ẑ(tn+1). As proved in the next section, the algebraic residual afterthe Newton
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correction at the step(n � 1) (which equals the algebraic residual for the stagej = 0 at thenth integration step) isO(h2pn�1). This error is assumed negligible
with respect tohpn (a reasonable approximation for small enough tolerance) sothe
residuals arêÆ1 = �1;nhpn andÆ̂2 = �2;nhpn.

An asymptotic evaluation for smallhn gives�1;n = 1p! dpdtp f(y; z)(tn) +O(hn) :
Thus the local error coefficients can be represented asymptotically as the value at(yn; zn) of some fixed function involving multiplication, addition or subtraction off , g, their derivatives with respect toy andz up to orderp andg�1z , depending only
onp. A similar expression can be obtained for�2;n.

3.2 Newton projection

We wish to satisfy the algebraic equations more accurately than the differential
equations, but we do not want to increase the cost unnecessarily. It has been ob-
served in practice [18] that after one Newton iteration the algebraic constraints
become sufficiently accurate and this agreement improves asthe tolerance"! 0.

Sinceg is an analytic function in its variables andgz is non-singular for the
exact solution thengz is non-singular in a neighbouhood of the solution, and we can
consider a simplified Newton iteration. If the predictor step is given by(yn; ẑn),
we keepyn constant and we correct only the algebraic variable, by considering a
new value,zn, which satisfieszn = ẑn � g�1z (yn; ẑn)g(yn; ẑn) : (5)

From (5) we obtain thatkzn � ẑnk � Lkg(yn; ẑn)k (6)

whereL = supU kg�1z k andU is a convex open neighborhood of the exact solution

on whichgz is invertible andg�1z andgzz are bounded.
ConsiderH(s) = g(yn; ẑn+s(zn�ẑn)). By integrating the functionH 00(s)(1�s) with respect tos on the interval[0; 1℄, we derive the following Taylor expansion:g(yn; zn) = g(yn; ẑn)+gz(yn; ẑn)(zn� ẑn)+ 12(zn� ẑn)TG(yn; zn; ẑn)(zn� ẑn)

where G(yn; zn; ẑn) = Z 10 2(1� s)gzz(yn; ẑn + s(zn � ẑn))ds :
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The first two terms in the Taylor expansion cancel each other due to (5), and by
using (6) we obtain kg(yn; zn)k � 12ML2kg(yn; ẑn)k2 ; (7)

whereM = supU kgzzk.
We conclude the analysis of the Newton projection by observing that if the

tolerance" is sufficiently small then the residual is small enough to guarantee that(yn; ẑn) is in the basin of attraction of the Newton method.

3.3 Error Analysis

We give below estimates for the residual errors (2). The residual in the algebraic
equation at timetn+1, after the corrector step, is given bykÆ2k = kg(yn+1; zn+1)k.
Using (4) and (7), we obtainkÆ2k � 12ML2k�1;nk2h2pn :
The residual in the differential equation iskÆ1k = kŷ0(tn+1)� f(yn+1; zn+1)k= kÆ̂1 + f(yn+1; ẑn+1)� f(yn+1; ẑn+1 + g�1z (yn+1; ẑn+1)Æ̂2)k= k�1;n � fz(yn+1; �n+1)g�1z (yn+1; ẑn+1)�2;nkhpn=  nhpn
where�n+1 is close tozn+1. Since the residualkÆ2k at the end of the step isO(h2pn ), for small enough tolerance it is enough to control just the differential
residual, which isO(hpn). We require that nhpn � " for all n � N .

4 The minimum cost of the algorithm

We claim that the minimum cost to find an approximate solutionwhich satisfies
the desired accuracy with the algorithm described above is achieved if the residual
error is equidistributed. In order to see this, we need a result from [5], which we
reproduce below.

For a vector	 = [ 1; � � � ;  N ℄ we define thes-normask	ks =  NXi=1  si!1=s
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and theHölder s-meanasMs(	) =  1N NXi=1  si!1=s :
Note that thes-norm is not, in fact, a true norm fors < 0, because then the triangle
inequality is not always satisfied. We shall not need this property.

We assume that the vector of the error coefficients	N = [ 1; � � � ;  N ℄ satis-
fies some regularity conditions. The first assumption is thatthere exists a positive
integerN0 such thatMs(	N2) � Ms(	N1) for N2 > N1 � N0 . This means
that if the mesh is sufficiently fine, the Hölder mean does notincrease with further
refinement. The second assumption is that the same property holds for the maxi-
mum norm of the local error coefficients,k�Nk1. What we are really assuming is
that the implementation can do this in practice.

Minimax theorem 1 Givenp;N 2 N and a vector with positive coefficients[ i℄1�i�N ,
the following inequality is true:maxf ihpi : NX1 hi = b� ag � (b� a)pk	k�1=p = �hpM�1=p(	)
where�h = (b� a)=N is the average stepsize. The equality holds iff ihpi = �hpM�1=p(	) for all 1 � i � N:

We give a proof by linearization below. A proof based on Hölder’s inequality
can be found in [6].

Proof. The following inequality is valid for allaj > 0 (see e.g. [3])max1�j�N bj � PNj=1 bjajPNj=1 aj
and the equality holds iff thebj are all equal. By choosingaj =  �1=pj andbj = 1=pj hj , we derive( max1�j�N  jhpj )1=p = max1�j�N  1=pj hj � b� aPNj=1  �1=pj (8)

with equality iff  jhpj are all equal. We conclude by applying the powerp in (8).
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As in the standard theory of computational complexity [25],we ignore memory
hierarchy, overheads and interpolation costs. We measure the cost of the algorithm
by the number of arithmetic operations [8].

The cost per step for this method with a fixed order is the same for all steps
and consists of the cost to obtain the Taylor series plus the cost of one Newton
projection. The cost of computing a solution increases thenwith the number of
steps to go fromt = a to t = b .

A mesh is called optimal if it takes the minimum number of steps to go froma
to b while satisfying the tolerance.

By analogy with [5], we obtain:

1. The solution of the minimax theorem gives also the optimalmesh for the
algorithm considered in this paper ihpi = �hpM�1=p(	) = " for all 1 � i � N
and the corresponding total number of stepsN = b� a�h = (b� a) � (M�1=p(	N ))1=p"�1=p : (9)

2. Computing the solution of (1) on a fixed step size mesh with an error tol-
erance" is more expensive than computing the solution with the same tol-
erance on an equidistributed mesh for the algorithm analysed. The cost for
a fixed step size mesh is greater than the cost on an equidistributed mesh by
a factor ofk	fixk1=(M�1=p(	ad))1=p. This factor is asymptotic to1 asp!1, but for realistic values ofp may be quite substantial.

Remark.Equidistribution ensures that the mean stepsize controls the integra-
tion (the minimum stepsize is related to the maximum n); assumed bounded here,
this ensures that the integration does not grind to a halt.

Theorem 1 The minimal cost of obtaining the solution with error" of the IVP for
(1) using Pryce’s method is polynomial in the number of digits of accuracy. It is
reached on the equidistributing mesh and is bounded above byC(b� a)e24 � (M�1=p(	N ))1=phln(1=")i4: (10)

If the Hölder p-mean of the local error coefficients depends weakly on the or-
der p of the method, then the minimum is given by (10) and is reachedfor p =d(1=2) ln(1=")e.
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Proof. Computing the solution with Taylor series to orderp and precision"
for one step takesC1p2�ln(1=")�2 operations. Indeed, the cost of generating and
computing the Taylor series withp terms using automatic differentiation isO(p2)
(see [8]). Also, doing arithmetic with precision", that is with

�ln(1=")� digits

of accuracy, costsO(�ln(1=")�2) if the naive algorithm for multiplication is used.
The constantC1 depends on the dimension of the problem (k andm).

The cost of the Newton projection is independent ofp and isO(�ln(1=")�2),
with the constant depending on the dimension of the problem.

Thus, overall, the cost of one step isCp2�ln(1=")�2. By using (9), we obtain
the total cost (the number of steps times the cost for one step) on the equidistributed
mesh C(b� a) � (M�1=p(	N ))1=phln(1=")i2p2"�1=p : (11)

Under the hypothesis on the local error coefficients, we find that the total cost
(11) reaches a minimum for the valuep = (1=2) ln(1="), given byC(b� a)e24 � (M�1=p(	N ))1=phln(1=")i4
Since the Taylor series method allows a variable order, we can choosep = d(1=2) ln(1=")e.

If the order isp = d(1=2) ln(1=")e and if the dependence of the Hölder mean
of the local error coefficients onp is not weak, then (10) gives an upper bound for
the minimal cost.

Remarks. The cost of computing the solution on a fixed step size mesh isalso
polynomial in number of digits of accuracy (it is obtained byreplacing the Hölder
mean norm by the infinity norm in (10)).

By using asymptotically faster multiplication (e.g. FFT methods, [2]) we may

reduce the bound on the minimum cost toO(ln[ln(1=")℄hln(1=")i3), ignoring fac-

tors of ln[ln(1=")℄2 from event location.

5 Conclusions

We have obtained that the cost of approximating the solutionof the semi-explicit
index-1 DAE (1) with the Taylor series method developed by Pryce is a polynomial
in the number of digits of accuracy. We have shown that nonadaption is more
expensive than adaption depending on the ratio of the maximum norm of the vector
of local error coefficients to their Hölder mean.

Future work will consider polynomial cost in the number of digits of accuracy
for computing the solution for high index DAE.
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