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Abstract

The cost of solving an initial value problem for indéxdifferential alge-
braic equations to accuraeyis polynomial inln(1/¢). This cost is obtained
for an algorithm based on the Taylor series method for sgldifferential
algebraic equations developed by Pryce. This result estanmgcent result
by Corless for solutions of ordinary differential equasoiihe results of the
standard theory of information-based complexity give erqyaial cost for
solving ordinary differential equations, being based oiiffar@nt model.
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1 Introduction

We show here that the cost to solve initial value problemséoni-explicit indext
DAE is polynomial in the number of bits of accuracy. This fesutends that of [5]
which showed the cost of solving IVP for ODE is polynomial e number of bits
of accuracy. This result contradicted earlier results thatleled the numerical
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solution of IVP for ODE in such a way as to give exponential ptexity [25]; of
course that model is not realistic.

We use the residual error, or ‘defect’, because it makes théysis simpler.
This is equivalent to local error methods (see e.g. [22])datso easier to explain
to users and is quite practical to implement, given thatinoous extensions are
needed also for other purposes [9]. The residual error @5 alghe IVP for ODE
case, directly connected to the global (forward) error by @Grobner-Alekseev
nonlinear variation-of-constants formula (see e.g. [13]is separates the stabil-
ity of the method (producing a small residual) from the ctinding of the prob-
lem [7, 9]. The Grobner-Alekseev formula has been exteridd¥P for certain
classes of DAE [10, 19].

IVP for DAE are harder to solve in practice than IVP for ODE{ the results of
this paper show that the difficulty is essentially a consfactor, and not a different
exponent in the theoretical complexity.

The analysis assumes that the functions defining the DAE iace\ise ana-
Iytic. This is the key assumption, allowing the use of adigrorder methods (in
fact the chosen order= [(1/2)In(1/¢)| depends on the toleranedor the resid-
ual). In practice, events and singularities of course qere e.g. [16]. We assume
that singularities can be located accurately at negligibl: we also assume that
events arg)(1) apart az — 0 and that accurate location adds at most an extra
factor oflnln(1/¢) to the cost. This assumption will be given detailed justiima
in a forthcoming paper [11].

We also use the fact that orderaccurate solutions may be computed on an
interval of widthh < 1 in O(p?) operations using)(In(1/¢)) bits and therefore
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at costO(p? [ln(l/s)} ). This can be done for IVP, for example, by Taylor series

methods (see e.g. [8, 4, 13]) or Hermite-Obreshkov methddb] and recently it
has been shown to be possible for DAE [17].

The analysis also relies on certain regularity assumpfibasensure that the
error estimates are not fooled; without those assumptithresproblem is in fact
undecidable [15].

2 Theproblem

Consider the following semi-explicit index-1 DAE:
Ye(t) = [(ye(t), ze(t))
0 = g(ye(t); 2e(t))

fort € I = (a,b),y.: I — RF andz, : I — R™. We assume that the Jacobian
9:(Ye, ze) 1S invertible. The initial condition, given by, (a) = yo, z.(a) = 20, iS

(1)
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assumed consistent with the constraintsg@@, zo) = 0.

We assume that andg are analytic functions and that the soluti@n(¢), z.(t))
exists and is unique on the interval of integration. We aksume that if we aug-
ment the DAE with extra ODEs that describe standard funstigsed inf andg,
then the problem is converted to a larger DAE in which the ngmcfionsf andg
involve only the four basic arithmetic operations. Tiusndg in (1) belong to the
class of functions to which automatic differentiation apgl This includes most
functions of practical interest, but excludes, for examgsieI" function.

Other assumptions (detailed later) ensure that the ministapsize is bounded
away from zero, and thus the integration does not ‘grind talt.h

We are interested in computing a numerical solution witHerémces for both
the residual error of the differential equati@, (¢)|| and the residual error of the
algebraic equatiofjds(t)||, with

a(t) = y'(t) = Fy(t), 2() @
&2(t) = g(y(t),z(t)) .

By controlling the magnitude of the residual we also continel forward error. A
relationship between errors can be obtained either by ubm@robner-Alekseev
formula or by using Gronwall’s lemma for the underlying ODE!]. We review
below the second approach.

If the functions f andg are analytic in a neighborhood of the exact solution
path then there exist some positive constdntand L, so that

Hf(yaz) - f(yeaze)H < LlHy - ye” + LQHz - ze” .

We can choosd.; = sup]||f,|| and Ly = sup||f.||. Sinceg, is invertible, the
implicit function theorem will give

12(8) = ze (D] < Lully(2) = ye(D)] + L2[l02(2)]

where/; = sup||g; g, ||, ¢2 = sup||g; || and the suprema exist in an appropriate
neighborhood of the exact solution. By applying Gronwdifsnma [13] on the
compact intervala, b], we obtain that there exists a positive const&nso that

() = eI K (@) = woll + max, [32()] + max (1)) . @

If the functionsf andg are piecewise analytic, we assume that, in a neighbor-
hood of the solutionf is Lipschitz continuous in its arguments apg g, ' are
bounded in norm on each region where the functions have calgtanformula.

We also assume that the boundaries of these regions arawousi and piecewise
analytic. Under these assumptions a similar result to (B)sho

In this paper, we consider the Taylor series method devdlbgdPryce in [20]
and [21], and we analyse it for the fixed order case.
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3 Numerical solution

We shall analyse the cost of the following algorithm: assuveehave obtained at
time ¢,, the valuedy,, z,) which satisfy the algebraic constraints more accurately
than the desired tolerance. After generating the Taylofficamts for the un-
knowns, we predict the valués,, 1, 2,+1) by computing the Taylor series with a
chosen stepsizk,. Then we correct,, ;1 by applying one Newton iteration for the
algebraic variables which ensures that the algebraic @n&t are satisfied more
accurately. Ify,; and the new value fot, namelyz, 1, satisfy the differential
equation with the residual below the toleramdien the step is accepted.

3.1 Solution by Taylor series

The method proposed by Pryce in [20] and [21] for solving aegelclass of DAEs
consists of generating the Taylor coefficients for the déffetial and algebraic equa-
tions and equating them to zero to solve for the Taylor cdefits of the variables
y andz.

Pryce’s method starts with a pre-processing stage whiaafewa certain struc-
ture of the problem. The structure may be used for analysiadAE: the struc-
tural index and the degrees of freedom for the solution neéthifan be computed
based on it. Also, once the structure is known, the systeimeofaylor coefficients
can be solved automatically.

The first step of the analysis consists in determining a sattefers, called
offsetsof the problem, that indicate which equations to solve foiclwlunknowns.
The next step is to generate the system Jacobian. If at etagration step, the
system Jacobian is non-singular, the method succeedshari@ylor coefficients
can be determined up to the desired order.

A critical observation is that at each integration step theent Jacobian/,
once computed, generates after a few initial stages themagkfficients for the
unknowns iteratively, as solutions of some linear systerh&hvhave the same
matrix J.

For the particular case of semi-explicit index-1 DAE, thisefs of the problem
and the system Jacobian can be easily determined. Thesoffsetgiven by the
following vectors withk + m componentsd = (1,---1,0,---,0) (with the first
k componentd) andc = (0,--- ,0).

The system Jacobian is given by:



and it is non-singular in a neighborhood of the solution sitlte DAE (1) is of
index 1. This implies that the Taylor series method is swsfaéor our problem.

Assume that the Taylor series for the equations and for tkeawns calculated
at stepn of integration and at time = ¢,, + h are, respectively,

y(t) = Dyt —ta)’/j!

j>0
2(t) = anlt—tn) /4!
j20 ‘
F(t) = o0~ fly(t),2()) =D Fu(t —ta)7 /]!
j>0
G(t) = gly(t),2(t)) = > Gt —tz) /5!

720

According to Pryce’s algorithm we have to solve, for eacgsfa= 0, 1, - - -,
p — 1, the system$F,, ; = 0,G, ; = 0) in the unknownsy,, 11, 2n ;).

The valueyy, o is given either from the initial condition for the first integion
step or from the previous step for the other steps.

The stagej = 0 is atypical. The equation&F,,; = 0, G0 = 0) may be
nonlinear in the corresponding unknown,. The valuez, o should be also given
from the initial condition at the beginning or from the valatthe previous step.
Since one Newton correction is applied at the end of the pusvstep, we shall see
that the conditiory(yy, 0. 2n,0) ~ 0 will be satisfied accurately enough so that its
residual does not essentially perturb the algebraic rakidua the current integra-
tion step. The stage is completed by taking = f(yn.0, 2n,0)-

The stageg > 1 are all linear in the corresponding unknowns and involve the
same Jacobiak (y, 0, zn,0)-

The approximate solution, given by

p
Jt) = D ynilt—ta)’ /!

j=0
-1

satisfies the problem
y’(t) = f(y(t)a 2(t)) + (51 (t) (4)
= g(5(t), 2
The predicted values at timg 1 = ¢, + hy, arey,+1 = §(tp+1) andz, 1 =
2(tn11). As proved in the next section, the algebraic residual afterNewton
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correction at the stepn — 1) (which equals the algebraic residual for the stage
j = 0 at thenth integration step) iﬁ(hip_l). This error is assumed negligible
with respect tah}, (a reasonable approximation for small enough tolerancé)eso
residuals aré; = ¢ ,hh anddy = ¢y ,hh.

An asymptotic evaluation for small, gives

1 ol
10 = aﬁf(yaz)(tn) + O(hy) -
Thus the local error coefficients can be represented asyicgltp as the value at
(yn, zn) Of some fixed function involving multiplication, additiom subtraction of
f, g, their derivatives with respect gpandz up to ordemp andg, !, depending only

onp. A similar expression can be obtained 6y, .

3.2 Newton projection

We wish to satisfy the algebraic equations more accuratey the differential
equations, but we do not want to increase the cost unnedgsd¢ahas been ob-
served in practice [18] that after one Newton iteration tlgelaraic constraints
become sufficiently accurate and this agreement improvidsedslerance — 0.
Sinceg is an analytic function in its variables amd is non-singular for the
exact solution thep, is non-singular in a neighbouhood of the solution, and we can
consider a simplified Newton iteration. If the predictorpste given by(y,, 2, ),
we keepy,, constant and we correct only the algebraic variable, byideriag a
new valuez,, which satisfies

Zp = Zp — le(ynaén)g(ynaén) . (5)
From (5) we obtain that
Hzn - 2n|| < LHg(ynazAn)H (6)

wherel = sup ||g, || andU is a convex open neighborhood of the exact solution
U

on whichg, is invertible andy, ! andg,, are bounded.
ConsiderH (s) = g(yn, Zn+s(2zn—25)). By integrating the functiod” (s)(1—
s) with respect ta on the interval0, 1], we derive the following Taylor expansion:

. . . 1 . . .
9(Yns2n) = 9(Yns 2n) + 92 (Yns 2n) (20 — 2n) + §(Zn —zn)TG(yn, Zn, Zn)(2n — 2n)

where !
Gy, 2, on) = / 21 = 5)g22 (Y 2n + 5(20 — 20))ds .
0
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The first two terms in the Taylor expansion cancel each othertd (5), and by
using (6) we obtain

1 .
19(yn, 2n) |l < EMLQHQ(yn,Zn)HQ, (")

whereM = sup ||g..||-

U

We conclude the analysis of the Newton projection by obsgrthat if the
tolerances is sufficiently small then the residual is small enough torgotee that
(yn, 2,) is in the basin of attraction of the Newton method.

3.3 Error Analysis

We give below estimates for the residual errors (2). Thedwegiin the algebraic
equation at time,, , 1, after the corrector step, is given b || = l9(yn+1, 2n+1)|l-
Using (4) and (7), we obtain

1
162 < §ML2H¢1,nH2hi” :
The residual in the differential equation is
161l = N7 (tn1) = f (Yns1: 24| A
101 + f(Yn+1, Znt1) = F(Unt1, 2o + 95 Unt1s Zng1)02) |

||¢1,n - fZ(yTl+1’ Cn+1)g;1(yn+la 2n+1)¢2,n”hl;z
= wnhg

where(, 1 is close toz,,1. Since the residualld,| at the end of the step is
O(hZF), for small enough tolerance it is enough to control just tifeeéntial
residual, which iD(h}). We require thatp, h}, < e foralln < N.

4 Theminimum cost of the algorithm

We claim that the minimum cost to find an approximate solutigrich satisfies
the desired accuracy with the algorithm described abovehigeed if the residual
error is equidistributed. In order to see this, we need atrésm [5], which we
reproduce below.

For a vector = [41, - - - , ¢ x| we define thes-normas

N 1/s
s = (Z ?ﬁf)
=1
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and theHolder s-meanas

. N 1/s
i=1

Note that thes-norm is not, in fact, a true norm faer< 0, because then the triangle
inequality is not always satisfied. We shall not need thiperty.

We assume that the vector of the error coefficiebis = [y, -- - , ] Satis-
fies some regularity conditions. The first assumption is tifvaite exists a positive
integer Ny such thatM (U y,) < M, (Py,) for Ny > Ny > Ny . This means
that if the mesh is sufficiently fine, the Holder mean doesmmease with further
refinement. The second assumption is that the same propady for the maxi-
mum norm of the local error coefficientsp v || . What we are really assuming is
that the implementation can do this in practice.

Minimax theorem 1 Givenp, N € Nand a vector with positive coefficienis;]1 <;< v,
the following inequality is true:

N
max{ih;h? : > hi=b—a} > (b—a)P|]|_y/, = BPM_y,(T)
1

whereh = (b — a)/N is the average stepsize. The equality holds iff
pih? = hPM_y,, () forall 1 <i < N.

We give a proof by linearization below. A proof based on Hilsl inequality
can be found in [6].
Proof. The following inequality is valid for alt; > 0 (see e.g. [3])

Z;'V:l bja;
maXN b > ~
1<5<
7= 2 =19

and the equality holds iff thé; are all equal. By choosing,; = zﬁ;l/p andb; =
qp;/phj, we derive

b—a
Zé\;l ij*l/ﬁ

with equality iff z/)jh};? are all equal. We conclude by applying the poweén (8).

1/p
max ;h?)/P = max ¢./Ph; >
(1§j§N¢” ) 1§j§N¢? ’=

(8)



As in the standard theory of computational complexity [264,ignore memory
hierarchy, overheads and interpolation costs. We mealeareost of the algorithm
by the number of arithmetic operations [8].

The cost per step for this method with a fixed order is the samalf steps
and consists of the cost to obtain the Taylor series plus disé @ one Newton
projection. The cost of computing a solution increases thigh the number of
stepstogofromt=atot=15.

A mesh is called optimal if it takes the minimum number of stepgo froma
to b while satisfying the tolerance.

By analogy with [5], we obtain:

1. The solution of the minimax theorem gives also the optimakh for the
algorithm considered in this paper

pihl = hPM_y,,(F) =eforall1 <i< N

and the corresponding total number of steps

N =57 = o) (Moyp(Pn) 777 ©)

2. Computing the solution of (1) on a fixed step size mesh witlergor tol-
erancee is more expensive than computing the solution with the sarhe t
erance on an equidistributed mesh for the algorithm andly$ée cost for
a fixed step size mesh is greater than the cost on an equidistli mesh by
a factor of||\11fm||Oo/(M,1/p(\I/ad))1/”. This factor is asymptotic té as
p — oo, but for realistic values gf may be quite substantial.

Remark. Equidistribution ensures that the mean stepsize contnelsntegra-
tion (the minimum stepsize is related to the maximg; assumed bounded here,
this ensures that the integration does not grind to a halt.

Theorem 1 The minimal cost of obtaining the solution with erroof the IVP for
(1) using Pryce’s method is polynomial in the number of digit accuracy. It is
reached on the equidistributing mesh and is bounded above by

2

O — )5 - (M1 () (1 /2)] (10)

If the Holder p-mean of the local error coefficients depends weakly on the or
der p of the method, then the minimum is given by (10) and is reafired =

[(1/2) In(1/€)].



Proof. Computing the solution with Taylor series to orgeand precisiore
for one step take€';p? [In(1/¢)] > operations. Indeed, the cost of generating and
computing the Taylor series withterms using automatic differentiation @(p?)
(see [8]). Also, doing arithmetic with precisian that is with [In(1/¢)] digits
of accuracy, costé( [ln(l/a)]2) if the naive algorithm for multiplication is used.
The constant’; depends on the dimension of the problénagdm).

The cost of the Newton projection is independenp@nd iSO([ln(l/s)]Q),
with the constant depending on the dimension of the problem.

Thus, overall, the cost of one step(%?[In(1/¢)] 2, By using (9), we obtain
the total cost (the number of steps times the cost for ong stetne equidistributed
mesh

Ob—a)- (M (0x))7 [In(1/6)] 9277 v

Under the hypothesis on the local error coefficients, we firad the total cost
(11) reaches a minimum for the valpe= (1/2) In(1/¢), given by

62 1/ 4
C(b— ) - (M1 (On)) /7 In(1/)]
Since the Taylor series method allows a variable order, wekaose) = [(1/2) In(1/¢)].

If the order isp = [(1/2) In(1/¢)] and if the dependence of the Holder mean
of the local error coefficients gmis not weak, then (10) gives an upper bound for
the minimal cost.

Remarks The cost of computing the solution on a fixed step size mealsis
polynomial in number of digits of accuracy (it is obtainedreplacing the Holder
mean norm by the infinity norm in (10)).

By using asymptotically faster multiplication (e.g. FFTuhu?Is, [2]) we may

reduce the bound on the minimum cos@@ln[In(1/¢)] [ln(l/s)} ), ignoring fac-
tors of In[In(1/¢)]? from event location.

5 Conclusions

We have obtained that the cost of approximating the soluifdihe semi-explicit
index-1 DAE (1) with the Taylor series method developed bycBiis a polynomial
in the number of digits of accuracy. We have shown that ngptémta is more
expensive than adaption depending on the ratio of the mawimarm of the vector
of local error coefficients to their Holder mean.

Future work will consider polynomial cost in the number dfit of accuracy
for computing the solution for high index DAE.
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