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Abstract. We investigate a combinatorial optimization problem that involves patrolling the edges of an acute
triangle using a unit-speed agent. The goal is to minimize the maximum (1-gap) idle time of any edge, which
is defined as the time gap between consecutive visits to that edge. This problem has roots in a centuries-old
optimization problem posed by Fagnano in 1775, who sought to determine the inscribed triangle of an acute
triangle with the minimum perimeter. It is well-known that the orthic triangle, giving rise to a periodic and cyclic
trajectory obeying the laws of geometric optics, is the optimal solution to Fagnano’s problem. Such trajectories
are known as Fagnano orbits, or more generally as billiard trajectories. We demonstrate that the orthic triangle
is also an optimal solution to the patrolling problem.
Our main contributions pertain to new connections between billiard trajectories and optimal patrolling sched-
ules in combinatorial optimization. In particular, as an artifact of our arguments towards proving optimality of
our results, we introduce a novel 2-gap patrolling problem that seeks to minimize the visitation time of objects
every three visits. We prove that there exist infinitely many well-structured billiard-type optimal trajectories for
this problem, including the orthic trajectory, which has the special property of minimizing the visitation time
gap between any two consecutively visited edges. Complementary to that, we also examine the cost of dynamic,
sub-optimal trajectories to the 1-gap patrolling optimization problem. These trajectories result from a greedy
algorithm and can be implemented by a computationally primitive mobile agent.
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1 Introduction

Patrolling refers to the perpetual monitoring, protection, and supervision of a domain or its perimeter using mobile
agents. In a typical patrolling problem involving one mobile agent, the agent must move through a given domain
in order to monitor or check specific locations or objects. The objective is to find a trajectory that satisfies certain
constraints and/or that addresses quantitative objectives, such as minimizing the total distance traveled or maxi-
mizing the frequency of visits to certain areas. The purpose of patrolling could be to detect any intrusion attempts,
monitor for possible faults or to identify and rescue individuals or objects in a disaster environment, and for this
reason, such problems arise in a variety of real-world applications, such as security patrol routes, autonomous
robot navigation, and wildlife monitoring. Overall the subject of patrolling has seen a growing number of applica-
tions in Computer Science, including Infrastructure Security, Computer Games, perpetual domain-surveying, and
monitoring in 1D and 2D geometric domains.

In addition to its practical applications, patrolling has emerged (not as a combinatorial optimization problem)
in the context of theoretical physics. In particular, the problem of finding periodic trajectories in billiard systems
has been a topic of interest for many years. A billiard system is a model of a particle or a waveform moving inside
a domain (typically polygonal, but also elliptical, convex, or even non-convex region) and reflecting off its bound-
aries according to the laws of elastic collision which naturally translate to geometric conditions. For this reasonthe
problem of finding periodic trajectories in a billiard system is equivalent to finding a closed path in the domain
that satisfies these geometric conditions.
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One important example of a periodic trajectory in billiard systems is the so-called Fagnano orbit on acute trian-
gles, a periodic, closed (and piece-wise linear) curve that visits the three edges of an acute triangle. Fagnano orbits,
named after the Italian mathematician Giulio Fagnano who first studied them in the mid-18th century, arise as
solutions to the optimization problem which asks for the shortest such curve. In this work we explore further con-
nections between billiard trajectories and patrolling as a combinatorial optimization problem. In particular, we are
asking what are the patrolling strategies for the edges of an acute triangle that optimize standard frequency-related
objectives. Our findings demonstrate that a family of Fagnano orbits are optimal solutions to the corresponding
combinatorial optimization problems. This enriches the connection between combinatorial patrolling and billiard
trajectories, a relationship that has also been explored in prior work, e.g., in [13], where certain discrete and com-
binatorial patrolling strategies in a transformed discrete configuration space exhibit reflective path patterns that
resemble billiard dynamics. Our result further supports this connection in continuous two-dimensional geometric
domains.

Billiard trajectories are characterized by piecewise linear motion, obeying the laws of geometric optics upon
reaching the boundaries of the domain. The fact that trajectories remain linear, except at the boundaries, is due to
the uniform speed in the medium. Similarly, straight-line motion ensures minimal travel time, as speed is assumed
to be constant. The reflection rule, which follows the laws of geometric optics, is a local property that applies
only when the trajectory reaches a boundary. This guarantees that at each reflection point, and locally, movement
occurs in the shortest possible time. As a result, a closed billiard trajectory corresponds to the shortest travel path
that visits a specific sequence of reflection points. However, this does not directly imply that the same billiard
trajectory is optimal for patrolling the associated boundary segments. This is because one must first show that the
optimal patrolling strategy must be periodic and cyclic. In this regard, our contribution clarifies the connection (at
least for billiard trajectories in triangles) by introducing a new patrolling problem in which efficiency is measured
not by consecutive segment visits but by the time gaps between every three visits.

2 Related Work

Patrolling problems are a fundamental class of problems in computational geometry, combinatorial optimization,
and robotics that have attracted significant research interest in recent years. Due to their practical applications,
they have received extensive treatment in the realm of robotics, see for example [1,6,14,15,22,31,41], as well as
surveys [3,23,35]. When patrolling is seen as part of infrastructure security, it leads to a number of optimization
problems [27], with one particular example being the identification of network failures or web pages requiring
indexing [31].

Combinatorial trade-offs of triangle edge visitation costs have been explored in [19]. In contrast, the current
work pertains to the cost associated with the perpetual monitoring of the triangle edges by a single unit speed
agent. Numerous variations of similar patrolling problems have been explored in computational geometry, which
vary depending on the application domain, patrolling specifications, agent restrictions, and computational abil-
ities. Many efficient algorithms have been developed for several of these variants, utilizing a range of techniques
from graph theory, computational geometry, and optimization, see survey [9] for some recent developments.
Some examples of studied domains include the bounded line segment [25], networks [41], polygonal regions [38],
trees [11], disconnected fragments of one dimensional curves [8], arbitrary polygonal environments [33] (with a
reduction to graphs), or even 3-dimensional environments [16].

Identifying optimal patrolling strategies can be computationally hard [12], while even in seemingly easy setups
the optimal trajectories can be counter-intuitive [26]. The addition of combinatorial specifications has given rise
to multiple intriguing variations, including the requirement of uneven coverage [7,34] or waiting times [13], the
presence of high-priority segments [32], and patrolling with distinct speed agents [10]. Patrolling has also been
studied extensively from the perspective of distributed computing [30], while the class of these problems also
admit a game-theoretic interpretation between an intruder and a surveillance agent [2,18].

Maybe not surprisingly, the optimal patrolling trajectories that we derive are in fact billiard-type trajectories,
that is, periodic and cyclic trajectories obeying the standard law of geometric optics, and which are referred to
as Fagnano orbits specifically when the underlying billiard/domain is triangular. Fagnano orbits have been stud-
ied extensively both experimentally [28] and theoretically [39]. Billiard-type trajectories have been explored in
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equilateral triangles [4], obtuse triangles [21], as well as polygons [40]. More recently, there have been studies on
ellipses [17] and general convex bodies [24], or even fractals [29] and polyhedra [5], with the list of domains or
trajectory specifications still growing.

3 Main Definitions and Results

A patrolling schedule S (or simply a schedule) for triangle ∆ with edges (line segments) E = {α,β,γ} is an infinite
sequence {si }i≥0, where each si is a point on a line segment of E that we also denote by e(si ), i.e. e(si ) ∈ E for each
i ≥ 0. For notational convenience, we will also use symbols the α,β,γ to denote the lengths of the corresponding
edges. Similarly, si s j will denote the segment with endpoints si , s j as well as its length. When e(si ) = δ ∈ E we say
that segment δ and point si are visited at step i of the schedule. We will only be studying feasible schedules, i.e.
schedules for which eventually all segments in E are visited and infinitely often. That is, we require for all δ ∈ E ,
and all k ∈Z, that there exists l ≥ k with e(sl ) = δ.

For simplicity, our notation above is tailored to points si that are not vertices of ∆. When si is a vertex of ∆ we
assume that both incident edges are visited. We also think of schedule S as the trajectory of a unit speed agent, and
hence we refer to the time between the visitation of s j , s j+ℓ as the sum of the lengths of segments s j+i s j+i+1 over
i ∈ {0, . . . ,ℓ−1}.

A schedule S is called:
- cyclic if {e(s0),e(s1),e(s2)} = E and e(si+3) = e(si ), for every i ≥ 0, and
- k-periodic (for k ≥ 3) if si+k = si , for every i ≥ 0.

For any segment δ ∈ E we define its t-gap sequence, g t (δ), that records the visitation time gaps of δ over every
t +1 consecutive visitations. In particular, t = 1 corresponds to the standard idle time considered previously, and
that measures the additional time it takes for each object to be revisited, after each visitation. Formally, let e(s j ) =
e(s j ′ ) = δ and suppose that points s j , s j ′ are the k-th and (k + t )-th visitation of δ, respectively. Then the time
between the visitations of s j , s j ′ is exactly the value of k-th element of sequence g t (δ). From this definition, it is

also immediate that
(
g t (δ)

)
i =

∑i+t−1
j=i

(
g 1(δ)

)
j .

The t-gap G t (δ) of δ ∈ E is defined as supi

(
g t (δ)

)
i , while the t-gap G t of schedule S for edges E (hence for

input triangle ∆) is defined as maxδ∈E G t (δ). When it is clear from the context, we will abbreviate G1 simply by G .

3.1 Main Contributions and More Terminology

In this section we summarize our main contributions, pertaining to optimal 1-gap and 2-gap patrolling sched-
ules of acute triangles. As a warm-up, we first provide a self-contained proof of the optimality of 1-gap patrolling
schedules, restricted to cyclic and 3-periodic schedules. We present this proof as a warm-up and a reference for
the proof of Lemma 1, which provides a closed formula for the 1-gap of the optimal cyclic and 3-periodic schedule.
To present our result, we recall the so-called orthic triangle, a pedal-type triangle associated with an acute triangle
∆. This triangle is inscribed in ∆, with its vertices given by the projections of ∆’s orthocenter (the intersection of
its altitudes) onto its three edges. Note also that any 3-periodic cyclic schedule corresponds to a triangle inscribed
in ∆. The following theorem, attributed to Fagnano in 1775, is proved in Section 4, where we also introduce key
concepts that support our main contributions.

Theorem 1 (Fagnano’s Theorem). The optimal 1-gap 3-periodic cyclic patrolling schedule of a triangle ∆ is its or-
thic triangle.

Towards our goal to derive optimal 1-gap schedules, we find all (infinitely many) optimal 2-gap cyclic sched-
ules, which are in fact billiard-type trajectories. We prove the next theorem in Section 6.

Theorem 2. There are infinitely many optimal 2-gap cyclic schedules of a triangle∆, that include also the orthic tri-
angle. Every 2-gap optimal schedule is 6-periodic and has value equal to 2 times the perimeter of the orthic triangle.
Moreover, each optimal schedule is made up of segments that are parallel to the edges of the orthic triangle.

Then in Section 7 we derive our main contribution.
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Theorem 3. The orthic triangle of a triangle is an optimal 1-gap patrolling schedule.

In the same section, we quantify the 1-gap of the orthic triangle and compare it to the optimal 2-gap schedules.
Specifically, we examine which of the optimal 2-gap schedules minimizes the maximum time between visits to
any two distinct edges of ∆. We then prove that, in this multi-objective optimization problem, the orthic schedule
remains optimal.

From our previous contributions, we conclude that a mobile agent whose task is to 1-gap optimally patrol
a triangle ∆ needs the capability to compute the base points of ∆’s altitudes. This naturally raises the question:
can we obtain efficient solutions using a primitive agent? In this work, we explore the primitive paradigm of a
greedy-type algorithm, which constructs a solution by iteratively making a sequence of irrevocable choices, each
locally optimal according to a given heuristic. In our case, the heuristic is chosen to greedily minimize the time
until the next object visitation. A fundamental algorithmic question is whether such simple heuristics can yield
optimal or near-optimal solutions. We quantify the deviation of the resulting solution from optimality and, perhaps
more importantly, demonstrate that the trajectory eventually converges to a periodic and cyclic pattern. Indeed,
in Section 8, we formalize this result and provide the necessary technical details.

Theorem 4. There is a greedy-type schedule that converges to a 3-periodic cyclic schedule whose 1-gap is off from
the 1-gap optimal cyclic schedule by a factor γ ∈ [1,γ0], where γ0 =p

2/2+1/2, and γ admits a closed formula as a
function of the angles of the given triangle.

The greedy schedule we will analyze will be given by a sequence of points on the triangle’s edges, which will
visit these edges cyclically. Therefore, convergence to the periodic schedule refers to the piecewise convergence of
these points, on each edge, to a specific points with respect to the ℓ1 metric. It will follow from our analysis that
our greedy algorithm will be nearly optimal for any acute triangle with one arbitrarily small angle, and it will be the
worst off from the optimal solution when the given triangle is a right isosceles.

4 The 1-Gap Optimal 3-Periodic Cyclic Schedule

There are many proofs known for the fact that inscribed triangle with the shortest perimeter is its orthic triangle.
In the language of triangle patrolling, the statement is equivalent to that that the optimal 1-gap 3-periodic cyclic
schedule of a triangle is its orthic triangle, articulated in Theorem 1. For completeness, we provide next a self-
contained proof.

Proof (Proof of Theorem 1). We consider triangle ABC , as in Figure 1. First we find the inscribed triangle of mini-
mum perimeter, and then we show the optimizer is the orthic triangle.

We start with an arbitrary point L on AC , and we find the optimal points K , M on BC , AB , respectively, so as to
minimize the perimeter of K LM as a function of L. Then, we show how to choose L so as to minimize the perimeter.

Consider the reflection A1 of A about BC , the reflection C1 of C about AB , and the reflections L1,L2 of L about
BC , AB , respectively. Consider also the intersections K , M of L1L2 with BC , AB , respectively. Clearly, the optimal
way to start from L, visit edge BC , then AB and then return to L is by following the edges of triangle K LM . Moreover,
the perimeter of K LM equals the length of segment L1L2. Next we minimize the length of L1L2 as a function of L.

In this direction, we consider a Cartesian system centered at B where A = (p, q),B = (0,0),C = (1,0) (in particu-
lar, w.l.o.g. we assume that BC = 1). Note that A1 = (p,−q),C1 = (cos(2B),sin(2B)), where also

p = cos(B)sin(C )

sin(B +C )
, q = sin(B)sin(C )

sin(B +C )
. (1)

Point L is a convex combination of A,C , hence there exists x ∈ [0,1] such that L = xC + (1− x)A. Therefore,
L1 = xC + (1−x)A1, L2 = xC1 + (1−x)A, so that

∥L1 −L2∥2 = ∥x(C −C1)+ (1−x)(A1 − A)∥2

=
∥∥∥∥x

(
cos(2B)−1

sin(2B)

)
+ (1−x)

(
0
2q

)∥∥∥∥2

.
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Fig. 1: Triangle figure supporting the proof of Fagnano’s Theorem.

It follows that ∥L1 −L2∥2 is convex in x (degree 2 polynomial), and elementary calculations show that the mini-
mum is attained at x0 = cos(A)sin(C )

sin(B) . It can be seen that for all acute triangles, we have x0 ∈ [0,1]. Then, the minimum
patrolling trajectory has length

∥x0(C −C1)+ (1−x0)(A1 − A)∥ = 2sin(B)sin(C ).

Note that the choice of x0 determines all points K ,L, M . Now we show that K LM is the orthic triangle. In order
to show that K is the base of the altitude corresponding to A, we verify that points (p,0),L1,L2 are collinear (and
hence K = (p,0)). For this observe that L1,L2 are already expressed as a function of p, q, x0, and hence the claim
follows by straightforward calculations.

Next we show that L is the base of the altitude corresponding to B . For this we verify that K L is perpendicular
to AC . Indeed, L = x0C + (1−x0)A, L2 = x0C1 + (1−x0)A = (x0 + (1−x0)p, (1−x0)q), while vector AC is (1−p,−q).
Taking the inner product of the vectors gives (x0+(1−x0)p)(1−p)−(1−x0)q2 which, after elementary calculations
reduces to 0, as promised.

Finally, we verify that M is the base of the altitude corresponding to C . For this, we compute the projection
of C = (1,0) onto the line passing through A,B which reads as py − qx = 0, which is point p

p2+q2 (p, q). Finally,

elementary calculations can verify that the latter point, together with K ,L2 are collinear, and hence M = p
p2+q2 (p, q)

as promised. ⊓⊔
The next complementary lemma effectively provides a formula for the optimal 1-gap of cyclic 3-periodic sched-

ules.

Lemma 1. Let p be the perimeter of an acute triangle. Then, the perimeter of its orthic triangle is given by

2p

(
1

sin(B)sin(C )
+ 1

sin(A)sin(C )
+ 1

sin(A)sin(B)

)−1

. (2)

Proof. As in the proof of Theorem 1 we assume that A = (p, q),B = (0,0),C = (1,0) and hence that α= 1. From the
derived formulas for the coordinates of points K ,L, M we have that

∥K −L∥ = 1

2
csc(B +C )sin(2C )

∥K −M∥ = 1

2
csc(B +C )sin(2B)

∥M −L∥ =−cos(B +C ).
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But then, elementary trigonometric calculations give

∥K −L∥+∥K −M∥+∥M −L∥ = 2sin(B)sin(C ).

It follows that for arbitrary edge length α (not necessarily equal to 1), we have that the perimeter of the orthic
triangle equals X = 2αsin(B)sin(C ). Due to the symmetry of the formula, the perimeter must be also equal to
2βsin(A)sin(C ) and to 2γsin(A)sin(B). We conclude that

α= X

2sin(B)sin(C )
, β= X

2sin(A)sin(C )
, γ= X

2sin(A)sin(B)
.

So if we denote by p the perimeter of the given triangle, i.e. p =α+β+γ, adding the previous equations and solving
for X gives the promised formula. ⊓⊔

5 Technical Properties of the Orthic Patrolling Schedule

In this section we explore a number of technical properties associated with the orthic patrolling schedule, which
will be the cornerstone of our main results. All observations in this section refer to Figure 2 which we explain
gradually as we present our findings.

Fig. 2: The orthic channel (stripe enclosed between the red dotted lines) as it is obtained by 5 triangle reflections.
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Our starting point is a triangle ABC with edge lengths satisfying α≥ β≥ γ, where α,β,γ are the sides opposite
to vertices A,B ,C , respectively. Consequently, the same inequality holds for the corresponding opposite angles,
which are labeled according to their respective vertices, i.e. A,B ,C . We also denote by K ,L, M the base points of
the altitudes from A,B , and C , respectively. It follows that the inscribed triangle K LM is the orthic triangle.

We apply a number of reflections of triangle ABC as follows: we obtain reflection C1 of C around AB , reflection
B1 of B around AC1, reflection A1 of A around B1C1, reflection C2 of C1 around A1B1, and reflection B2 of B1 around
A1C2. We refer to the resulting triangle construction gadget as the reflected triangles.

Lemma 2. The line passing through B2,C2 is parallel to the line passing through BC .

Proof. We consider the slope of several line segments relevant to BC . We have the following observations pertain-
ing to counterclockwise rotation of line segments about one of their endpoints. The rotation of BC about B by
angle 2B gives segment BC1. The rotation of BC1 about C1 by angle 3C gives segment C1 A1. The rotation of C1 A1

about A1 by angle 3A gives segment A1B2. Finally, the rotation of A1B2 about B2 by angle B gives a point on the
line passing through B2,C2.

It follows that segment B2C2 follows by repeated rotation by angle 2B +3C +3A +B = 3(A +B +C ) = 3π. Since
3π is a multiple of π we conclude the claim. ⊓⊔

Next, we provide an alternative representation of the orthic trajectory. For this purpose (see Figure 2), we con-
sider the points L1,K1, M1,L2, which are identified as the intersections of the segment pairs (BB1, AC1), (A A1,B1C1),
(C1C2, A1B1), and (B1B2, A1C2), respectively. Let K2 also be the projection of A1 onto B2C2. Thus, the points L1 (on
AC1), K1 (on B1C1), M1 (on A1B1), L2 (on A1C2), and K2 (on B2C2) are the bases of the corresponding altitudes in
the sequence of the reflected triangles, as described in the proof of Lemma 2.

Lemma 3. The line passing through MK (green dotted line in Figure 2) passes through the points L1, K1, M1, L2, K2.

Proof. The lemma states, equivalently, that the points K , M , L1, K1, M1, L2, K2 are collinear.
First we argue that K , M ,L1 are collinear using analytic geometry. For this, and after proper scaling, we can

embed triangle ABC in a Cartesian system with B = (0,0), A = (x, y) and C = (1,0). Since K is the projection of A
onto BC , we have that K = (x,0).

Next we calculate the projection M of C onto AB . Since M is on AB , there exists t ∈ R such that M = (t x, t y).
However, MC and B A are by definition perpendicular, hence the corresponding vectors have inner product 0, from

which we can easily derive that t = x/(x2 + y2). Hence, we conclude that M =
(

x2

x2+y2 , x y
x2+y2

)
.

Next we derive the reflection C ′ of C about AB . For this, we note that M is the middle point of CC ′, from which

we obtain that C ′ =
(
1− 2y2

x2+y2 , 2x y
x2+y2

)
, which we abbreviate by (x0, y0).

Finally, we calculate the projection L1 of B = (0,0) onto AC1. For this, we note that there exists r ∈ R such
that L1 = r (x0, y0)+ (1− r )(x, y). Requiring that the vector BL1 is orthogonal to the vector AC ′, we get that r =
x2−xx0+y(y−y0)
(x−x0)2+(y−y0)2 .

To conclude, we have that K = (x,0), M =
(

x2

x2+y2 , x y
x2+y2

)
, and L1 = r (x0, y0)+(1−r )(x, y), with x0, y0,r calculated

as above. For these values, and with elementary algebraic calculations, we can verify that

DET

 x 0 1
x2

x2+y2
x y

x2+y2 1

r x0 + (1− r )x r y0 + (1− r )y 1

= 0,

concluding indeed K , M ,L1 are collinear.
An identical argument, shows that M ,L1,K1 are collinear, that L1,K1, M1 are collinear, that K1, M1,L2 are collinear,

and that M1,L2,K2 are collinear, concluding the main claim. ⊓⊔
It follows from Lemma 3 that the orthic trajectory over two cycles of the patrolling schedule can also be described
by the line segment K K2. We refer to the line passing through K and K2 as the orthic line. Additionally, we showed
that all points oof the orthic line lie within the reflected triangles. In particular, the orthic line intersects each
reflected triangle at least two edges (and if the line passes through a vertex, we consider it as intersecting the two
adjacent edges). This observation justifies that the following concept is well-defined.
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Definition 1. The orthic channel is defined by two lines ℓ1 and ℓ2, which are parallel to the orthic line and at
maximum distance from it, with the property that each line intersects at least two edges of each reflected triangle.

Similar reflection-induced channels were studied in [36,37], while the orthic channel that we use was also observed
experimentally in [28]. Next, we establish its significance formally.

Lemma 4. Any line parallel to the orthic line within the orthic channel gives rise to a cyclic 6-periodic patrolling
schedule with a 2-gap equal to twice the orthic perimeter, i.e., the perimeter of the orthic triangle.

Proof. Consider an arbitrary line, parallel to the orthic line, that intersects line segments BC ,B1C1,B2C2 at points
R,R1,R2 respectively, see Figure 2. We observe that K K2 is parallel to RR2, and by Lemma 2 we have that K2R2 is
parallel to K R. Therefore, K RR2K2 is a parallelogram with K R = K R2.

We conclude that R2 is the reflection of R using the same reflections that obtained K2 from K . But then, it
follows RR2 corresponds to cyclic 6-periodic patrolling schedule of 2-gap equal to RR2 = K K2 = K K1 +K1K2 =
2K K1, as promised. ⊓⊔

Next we identify all cyclic 6-periodic patrolling schedules of the same 2-gap value. We note that in the following
lemma we make explicit use of that the repeated reflections were done first along the smallest two edges.

Lemma 5. The lines identifying the orthic channel are the two lines parallel to the orthic line, one passing through
A and one passing through A1.

Proof. Consider a line parallel to the orthic line passing through A, and intersecting BC at T and the line passing
through B1C1 at point T1. We will show that T1 lies in the segment K1B1.

First we claim that K T = K1T1. To see why, recall that K K1 is parallel to T T1. It is enough to show that K T T1K1

is an isosceles trapezoid. Indeed, note that angle AT1C1 (read counterclockwise) equals angle K K1C1 (because T T1

is parallel to K K1), and angle K K1C1 equals angle BK M . Finally, angle BK M equals angle BT T1, because T T1 is
parallel to K K1. Now BT T1 = K T T1 and K K1C1 = T T1C1 and hence angles K T T1 and T T1K1 are equal, showing
that K T T1K1 is an isosceles trapezoid as claimed.

We conclude that in order to show that T1 lies within segment K1B1 it is enough to show that K T < K B . At
the same time, K is the projection of A onto BC , and K1 the projection of A onto B1C1, hence K1 is the image of
K along the two underlying reflections, which implies that BK = B1K1. Therefore, it is enough to show that the
middle point of BT lies within segment BK (or equivalently that BK ≥ BT /2). To see why, recall that AT is parallel
to MK . Moreover, because angle A is at least as large as angle B (that is, our initial reflections where done using
the largest edge last), it follows that the base M of altitude C M is closer to A than to B . Effectively, this shows that
B M ≥ AB/2. Therefore, referring to the similar triangles BK M and BT A where segments MK and AT are parallel,
we conclude that BK ≥ BT /2 as wanted.

Now let the extension of T T1 intersect the line passing through B2C2 at point T2. Since T1 lies within segment
K1B1, and T1T2 is parallel to M1K1, it follows that T1T2 intersects A1B1 at some point between M1 and B1. Observ-
ing also that T1T2 is parallel to M1L2, we conclude that T1T2 intersects at some point between C2 and L2, as well
as B2C2 at some point between K2 and C2, which we call T2. This shows that the line passing through AT is indeed
one of the extreme lines of the orthic channel.

The claim follows by observing that we can repeat the same argument, starting from triangle A1B2C2 and ap-
plying the reverse sequence of reflections that produced the reflected triangles (with ABC being the final reflected
triangle). Note that these reflections would still be applied first with respect to the two smallest edges. Indeed, we
can consider a line parallel to the orthic line and passing through A1, which, by the same argument, is the other
extreme line of the orthic channel. ⊓⊔

6 Optimal 2-Gap Cyclic Schedules

The purpose of this section is to prove Theorem 2, as well as to distinguish the significance of the orthic trajectory
with respect to the 2-gap patrolling problem. Indeed, below we prove the theorem by showing that the cyclic 6-
periodic patrolling schedules of Lemma 4 are the 2-gap optimal cyclic schedules of cost twice the perimeter of the
orthic triangle.
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Any line parallel to the orthic line within the orthic channel (whose boundaries are given in Lemma 5) gives rise
to a cyclic 6-periodic schedules that we call sub-orthic schedule. We depict such a sub-orthic schedule in Figure 3.
In order to show that any sub-orthic trajectory is 2-gap optimal, we consider a new patrolling problem on the

Fig. 3: A sub-orthic trajectory example.

input triangle ABC with a limited visitation horizon. In particular, in the 2k-limited patrolling problem, the goal
is to find a cyclic trajectory that starts from edge BC (the largest edge), ends after 2k visitations of BC , and has
the minimum total length. Given triangle ABC , we denote by vk the cost of the optimal solution to the 2k-limited
patrolling problem. The following is immediate from our definitions.

Observation 5 For every k ≥ 1, the optimal cyclic 2-gap solution has cost at least vk /k.

Now recall that by Lemma 4, any sub-orthic trajectory has 2-gap equal to twice the orthic triangle. Hence,
Theorem 2 is a corollary of the following lemma.

Lemma 6. The value of limk→∞ vk /k equals twice the perimeter of the orthic triangle.

Proof. In order to visualize the 2k-limited patrolling problem we apply k times the gadget construction of reflected
triangles introduced in Section 5, see also Figure 4 for an example when k = 2. Next we make the process formal.

The gadget of the reflected triangles of Figure 4 defines B2C2 which is parallel to BC . One more reflection of A1

about B2C2 results into triangle A2B2C2 whose edges are piecewise parallel to the edges of ABC . Starting now with
triangle A2B2C2, we can implement the same gadget construction of reflected triangles, obtaining this way B3C3

parallel to B2C2.
k applications of the previous construction define a sequence of parallel segments BkCk . Now consider the

orthic channel of ABC identified by the lines passing through R, A1 and T, A (as per Lemma 5). Also, consider the
corresponding points Rk and Tk where these two lines intersect the segments BkCk .

By the definition of the 2k-limited patrolling problem, its optimal schedule (with cost vk ) is the shortest trajec-
tory that starts from BC and ends at BkCk . Since the orthic channel stays within all reflected triangles, the optimal
solution to the 2k-limited patrolling problem is the shortest line segment with endpoints within RT and Rk Tk . Ob-
serve that the shortest such segment is the shortest diagonal of the parallelogram RT Tk Rk . As k grows, the side RT
of these parallelograms remains constant, while RRk = T Tk tends to infinity. Hence, the ratio of the lengths of the
shortest diagonal of RT Tk Rk to RRk tends to 1. At the same time, RRk equals k times the 2-gap of any sub-orthic
trajectory and is thus equal to 2k times the orthic perimeter. ⊓⊔

We are now ready to formally prove Theorem 2.

9



Fig. 4: Two applications of reflections.

Proof (of Theorem 2). Observation 5 together with Lemma 6 imply that the optimal cyclic 2-gap solution has cost
at least twice the perimeter of the orthic triangle. At the same time, every sub-orthic schedule, which is also a cyclic
6-periodic schedule, has value equal to the perimeter of the orthic triangle, and the claim follows.

Note that the orthic trajectory is one among the sub-orthic trajectories, and hence optimal too to the 2-gap
patrolling problem (among cyclic schedules). In the following proposition we show that the orthic trajectory is
also an optimal solution to a multi-objective optimization problem.

Proposition 1. Among all 2-gap optimal sub-orthic trajectories, the one that minimizes the visitation gap between
any two (not necessarily same) edges is the orthic trajectory.

Proof. Consider an arbitrary sub-orthic trajectory RR1R2R3R4R5R, see Figure 3. Note that the sub-orthic schedule
is made up of segments that are piecewise parallel to the segments of the orthic trajectory, and any of the orthic
line segments lies in the middle of any of the two parallel segments of the sub-orthic schedule.

In particular we have RR1,R3R4 are parallel to MK , as well as R1R2,R4R5 are parallel to ML, and RR5,R2R3 are
parallel to K L. Moreover, MK ≤ max{RR1,R3R4}, ML ≤ max{R1R2,R4R5}, and K L ≤ max{RR5,R2R3}. It follows that
maximum visitation gap max{MK , ML,K L} between any two edges in the orthic trajectory is at most the maximum
visitation gap between any two edges in any sub-orthic trajectory. ⊓⊔

7 1-Gap Optimal Schedule

It is immediate from the definitions that half the cost of the 2-gap optimal patrolling schedule is a lower bound to
the cost of the 1-gap optimal patrolling schedule. By Theorem 2, the 2-gap optimal patrolling schedule has cost 2
times the perimeter of the orthic triangle. Hence, the cost of the 1-gap optimal schedule is at least the perimeter
of the orthic triangle. On the other hand, by Theorem 1 we have a patrolling schedule (the orthic trajectory) with
1-gap equal to the orthic perimeter. Therefore, we obtain the following immediate corollary.

Corollary 1. Restricted to cyclic schedules, the orthic patrolling trajectory of a triangle is 1-gap optimal.

The purpose of this section is to prove Theorem 3, that is to strengthen the statement of Corollary 1 by showing
that the optimal 1-gap schedule is actually cyclic. We do so by showing how to modify an arbitrary schedule into a
cyclic schedule, without increasing its 1-gap. Effectively, the next lemma implies Theorem 3.

Lemma 7. There is a 1-gap optimal schedule that is cyclic.

Proof. Consider an arbitrary schedule S = {si }i≥0 that is not cyclic. We show how to construct a new schedule
that is cyclic and 3-periodic, without increasing its 1-gap. Indeed, since S is not cyclic, and after renaming edges,
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there are two consecutive visitations of edge α so that both edges β,γ are visited in between, with at least one
of them being visited more than once. In other words, for some k,ℓ ∈ N, ℓ ≥ 4 we have that e(sk ) = e(sk+ℓ) = α,
e(sk+1) = e(sk+3) =β and e(sk+2) = γ.

Then, we see that for the 1-gap G of S, we have that

G =max
δ∈E

G(δ) ≥G(α) ≥
ℓ−1∑
i=0

sk+i sk+i+1

≥sk sk+1 + sk+1sk+2 + sk+2sk+3 + sk+3sk+ℓ
≥2min{sk sk+1 + sk+1sk+2, sk+2sk+3 + sk+3sk+ℓ},

where the second to last inequality is due to the triangle inequality.

Now we consider two different cyclic and 3-periodic schedules, S′,S′′, with 1-gap values G ′,G ′′, respectively,
and we show that min{G ′,G ′′} ≤G . The two schedules are the following.

S′ = sk , sk+1, sk+2, sk , sk+1, sk+2, sk , sk+1, sk+2, . . .

S′′ = sk+2, sk+3, sk+ℓ, sk+2, sk+3, sk+ℓ, sk+2, sk+3, sk+ℓ, . . .

Since both S′,S′′ are cyclic and periodic, we have that G ′ =G ′(α) =G ′(β) =G ′(γ) and G ′′ =G ′′(α) =G ′′(β) =G ′′(γ).
In particular, using the triangle inequality again, we have

G ′ = sk sk+1 + sk+1sk+2 + sk+2sk ≤ 2(sk sk+1 + sk+1sk+2)

G ′′ = sk+2sk+3 + sk+3sk+ℓ+ sk+ℓsk+2 ≤ 2(sk+2sk+3 + sk+3sk+ℓ).

But then, min{G ′,G ′′} ≤ 2min{sk sk+1 + sk+1sk+2, sk+2sk+3 + sk+3sk+ℓ} ≤G , as wanted. ⊓⊔

8 The Greedy Cyclic Schedule

In this section, we prove Theorem 4, that is, we describe a patrolling schedule that converges to a 3-periodic cyclic
schedule whose 1-gap differs from the 1-gap optimal cyclic schedule by a factor γ ∈ [1,1.20711]. It will follow from
our analysis that our greedy algorithm is nearly optimal for any acute triangle with one sufficiently small angle,
and it performs worst compared to the optimal solution when the given triangle is a right isosceles.

We proceed by the description of a greedy patrolling schedule. We assume that the patroller can remember
the current and previously visited edges (not necessarily their points), as well as that it can compute (move along)
the projection of its current position to any other edge. Formally, we label the three edges BC , AB , AC as 0,1,2,
respectively. The patrolling schedule starts from an arbitrary point p0 on BC . For each i ≥ 1, the patroller moves to
point pi , which is the projection of pi−1 onto edge i mod 3. Referring to triangle ABC as in Figure 5, we note that
the patrolling schedule induces a clockwise cyclic visitation of the given triangle. An immediate corollary of our
results will imply that also the corresponding counterclockwise cyclic visitation induces the same 1-gap.
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Fig. 5: Six iterations of the greedy
patrolling schedule that starts
from point p0 of edge BC .

Fig. 6: One iteration of the greedy patrolling
schedule, starting from point D .

Lemma 8. For any acute triangle ABC and any initial starting point, the greedy algorithm converges to a cyclic
3-periodic schedule that has 1-gap

p · sin(A)sin(B)sin(C )

1+cos(A)cos(B)cos(C )
(3)

where p is the perimeter of triangle ABC .

Proof. Consider an arbitrary iteration of the greedy algorithm and a point D on BC , see Figure 6. After 3 consecu-
tive steps, the patroller has moved to the projection E of D onto AB , its projection F on AC and to its projection
G back on BC . To simplify calculations, assume also that BC has length 1. Below, we derive a relation between BG
and BD .

First we note that AF = cos(A)AE = cos(A)(γ−BE) = cos(A)(γ−cos(B)BD). Then, we use the derived formula
for AF to calculate

BG = 1−CG = 1−cos(C )C F = 1−cos(C )(β− AF ) = 1−cos(C )
(
β−cos(A)(γ−cos(B)BD)

)
.

It follows that BG = c−cos(A)cos(B)cos(C )BD, where the constant c = 1−cos(C )β+cos(A)cos(C )γ is independent
of the points G and D .

In the greedy patrolling schedule, edge BC is visited infinitely often. We denote by di the distance between the
point on BC at the i -th visitation and point B . In particular, we have d1 = BD and d2 = BG . Therefore, we have
shown that d2 = c −cos(A)cos(B)cos(C )d1, and, by induction, we conclude that di+1 = c −cos(A)cos(B)cos(C )di

for all i ≥ 1.

The latter is a non-homogeneous linear recurrence relation of degree 1 of the form di+1 = c − x di , where x =
cos(A)cos(B)cos(C ), and note that |x| < 1. One particular solution to this recurrence is c/(1+ x). Moreover, the
closed-form solution to the corresponding homogeneous recurrence is (−x)n−1d1. It follows that limi→∞ di exists,
and its value is obtained when, in the previous argument, the points D and G coincide (see Figure 7).
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Fig. 7: The limiting cyclic 3-periodic trajectory of the (clockwise) greedy algorithm

We proved that inscribed triangle DEF is the limiting patrolling schedule of the greedy algorithm, which is
indeed a cyclic 3-periodic schedule. Next we calculate its cost. To this end, we claim that triangles DEF and ABC
are similar. By denoting by F,E ,G the angles of the inscribed triangle, and looking at right triangle F D we have
F =π−π/2− (π−C −π/2) =C . Similarly we obtain that angles D,B are equal, and angles E , A are equal.

Finally we compute the similarity ratio k < 1 of triangles DEF, ABC . We have that

α= BD +DC = ED

sin(B)
+ DF

tan(C )
= kγ

sin(B)
+ kα

tan(C )
= kαsin(C )

sin(B)
+ kα

tan(C )
,

where the last equality follows from the sin Law in triangle ABC . But then, solving for k and simplifying the trigono-
metric expressions yields k = sin(A)sin(B)sin(C )

1+cos(A)cos(B)cos(C ) . It follows that the 1-gap of the induced patrolling schedule is equal
to the perimeter of triangle DEF which equals k times the perimeter of ABC as claimed. ⊓⊔

We are now ready to prove Theorem 4. An immediate corollary of Lemma 8 is that the (limiting) cost of the
greedy algorithm is the same also for the corresponding counter-clock wise trajectory. Moreover, the ratio between
its cost and the optimal 1-gap, as per Lemma 1, is given by

sin(A)sin(B)sin(C )

2(1+cos(A)cos(B)cos(C ))

(
1

sin(B)sin(C )
+ 1

sin(A)sin(C )
+ 1

sin(A)sin(B)

)
= sin(A)+ sin(B)+ sin(C )

2(1+cos(A)cos(B)cos(C ))
.

Call the latter expression f (A,B ,C ). We aim to find the extreme values of f (A,B ,C ), subject to the constraints
A+B+C =π and 0 ≤ A,B ,C ≤π/2, resulting in a nonlinear program. Due to the symmetry of the objective function
and by the KKT conditions, if there exists an extreme point where none of the inequality constraints are satisfied
tightly, we must have A = B =C =π/3. In this case, f (π/3,π/3,π/3) = 2

p
3/3.

Next, we investigate the values of the objective function at the boundary of its feasible region. Without loss of
generality, we may assume that A ≤ B ≤C . The constraint C ≤π/2 is either tight at the optimizer or not.

If it is tight, the objective simplifies to f (A,π/2−A,π/2) = (1+cos(A)+sin(A))/2, where A ≤π/3. Elementary cal-
culus shows that this expression is maximized when A =π/4, yielding f (π/4,π/4,π/2) = (1+p

2)/2, and minimized
when A = 0, for which f (0,π/2,π/2) = 1.

Lastly, we examine the case where the constraint C ≤ π/2 is not active. In this case, the constraint A ≥ 0 must
be active; otherwise, none of the inequality constraints are active, a scenario we have already considered. Here,
the objective simplifies to f (0,π−C ,C ) = 1/sin(C ), where π/3 ≤C <π/2. The infimum of this expression equals 1,
attained as C →π/2, while its maximum equals 2

p
3/3 attained at C =π/3.
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Overall, we have shown that the ratio between the cost of the greedy algorithm and the optimal 1-gap value
(over all non-obtuse triangles) is maximized when one of the angles A,B ,C is a right angle, and the other two are
equal, that is, in the case of the right isosceles triangle. In this case, the ratio becomes 1

2 (1+p2). We also showed that
the ratio tends to 1 as any of the angles tends to 0 (causing the other two to approach π/2), and for the equilateral
triangle, the ratio equals 2

p
3/3.

9 Discussion

In this work we demonstrated the connection between billiard-type trajectories and optimal patrolling schedules
in combinatorial optimization. Specifically, we introduced and solved the problem of patrolling the edges of an
acute triangle using a unit-speed agent with the goal of minimizing the maximum 1-gap and 2-gap idle time of any
edge. We show that billiard-type trajectories are optimal solution to these combinatorial patrolling problems.

Our findings point to several future directions. One natural extension of our work is to generalize the patrolling
problem to arbitrary polygons with one or more agents. Moreover, the introduction of the novel 2-gap patrolling
problem suggests the investigation of optimal solutions for more complex frequency requirements or time re-
strictions, especially with the presence of multiple patrolling agents or multiple objects to be patrolled. In that
direction, it would be interesting to examine how our results extend to patrolling 3 or more arbitrary line segments
on the plane, as subsets of the edges of convex polygones with one or more agents.
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