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Abstract. A community structure that is often present in complex net-
works plays an important role not only in their formation but also shapes
dynamics of these networks, affecting properties of their nodes. In this pa-
per, we propose a family of community-aware node features and then in-
vestigate their properties. We show that they have high predictive power
for classification tasks. We also verify that they contain information that
cannot be recovered neither by classical node features nor by classical or
structural node embeddings.
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1 Introduction

In the context of relational data, node classification is a particularly important
problem in which data is represented as a network and the goal is to predict
labels associated with its nodes. It is widely used in various practical applica-
tions such as recommender systems [27], social network analysis [3], and applied
chemistry [12].

However, for classifiers to perform well, they must have access to a set of
highly informative node features that can discriminate representatives of differ-
ent classes. No matter how sophisticated classifiers one builds, they will perform
poorly as long as they do not get informative input concerning the problem at
hand. Hence, it is desirable to enrich a family of available features and apply
machine learning tools to features of various sorts.

In this paper, we investigate a family of features that pay attention to com-
munity structure that is often present in complex networks and plays an impor-
tant role in their formation, affecting nodes’ properties. Such features are fur-
ther called community-aware features. Indeed, community structure of real-world
networks often reveals the internal organization of nodes [10]. Such communities
form groups of densely connected nodes with substantially less edges touching
other parts of the graph. Identifying communities in a network can be done in
an unsupervised way and is often the first step the analysts take.
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The motivation to study community-aware features is twofold. On one hand,
one can expect that for many node classification tasks such features can be highly
informative. For example, it might be important whether a given node is a strong
community member or, conversely, it is loosely tied to many communities. On
the other hand, one can expect that community-aware features are not highly
correlated to other features that are typically computed for networks. Indeed,
to compute community-aware features one needs first to identify the community
structure of a graph. This, in turn, is a complicated non-linear transformation of
the input graph, which cannot be expected to be easily recovered by supervised
or unsupervised machine learning models that are not designed to be community-
aware.

In this paper, we show that there are classes of node prediction problems
in which community-aware features have high predictive power. We also verify
that community-aware features contain information that cannot be recovered
neither by classical node features nor by node embeddings (both classical as well
as structural). In our experiments, we concentrate on binary classification to
assure that the results can be reported consistently across different graphs.

There are some community-aware features already introduced in the litera-
ture such as CADA [15] or the participation coefficient [14]; see Section 2 for their
definitions. However, it is important to highlight that both CADA and the par-
ticipation coefficient ignore the distribution of community sizes. We argue that
taking community sizes into account when computing community-aware features
matters as it provides a more detailed picture. Therefore, in this paper we pro-
pose a class of community-aware features that, via the appropriate null model,
take into account community sizes and compare their predictive performance to
the measures that have been previously proposed in the literature.

This is a short proceeding version of a longer journal paper4. The longer
version includes a discussion about using the null models to design ML tools,
including the modularity function that is used by many clustering algorithms.
More importantly, in the journal version we show how the null model is used
to define one of our community-aware features, namely, the Community Asso-
ciation Strength (see Subsection 2.3). Due to space limitations, we also do not
include in this short version various additional experiments (for example, on syn-
thetic networks) and discussion on computational complexity of the algorithms
computing node features.

2 Community-Aware Node Features

In this section, we introduce various community-aware node features. All of them
aim to capture and quantify how given nodes are attached to communities. It
will be assumed that a partition A = {A1, A2, . . . , A`} of the set of nodes V into
` communities is already provided; communities induced by parts Ai (i ∈ [`]) are

4 The preprint of the journal version can be found on-line:
https://math.torontomu.ca/~pralat/research.html

https://math.torontomu.ca/~pralat/research.html


Classification Supported by Community-Aware Node Features 3

denser comparing to the global density of the graph. Such partition can be found
by any clustering algorithm. In our empirical experiments we use Leiden [25]
which is known to produce good, stable results.

To simplify the notation, we will use degAi
(v) to be the number of neighbours

of v in Ai.

2.1 Anomaly Score CADA

The first community-aware node feature is the anomaly score introduced in [16].
The anomaly score is computed as follows: for any node v ∈ V with deg(v) ≥ 1,

cd(v) =
deg(v)

dA(v)
, where dA(v) = max

{
degAi

(v) : Ai ∈ A
}
;

the denominator, dA(v), represents the maximum number of neighbouring nodes
that belong to the same community. In one extreme, if all neighbours of v be-
long to the same community, then cd(v) = 1. In the other extreme, if no two
neighbours of v belong to the same community, then cd(v) = deg(v).

Note that cd(v) does not pay attention to which community node v belongs
to. Moreover, this node feature is unbounded, that is, cd(v) may get arbitrarily
large. As a result, we will also investigate the following small modification of
the original score, the normalized anomaly score: for any node v ∈ Ai with
deg(v) ≥ 1,

cd(v) =
degAi

(v)

deg(v)
.

Clearly, 0 ≤ cd(v) ≤ 1. Moreover, any reasonable clustering algorithm typically
should try to assign v to the community where most of its neighbours are, so
most nodes are expected to have cd(v) = 1/cd(v).

2.2 Normalized Within-module Degree and Participation
Coefficient

In [14], an interesting and powerful approach was proposed to quantify the role
played by each node within a network that exhibits community structure. Seven
different universal roles were heuristically identified, each defined by a different
region in the (z(v), p(v)) 2-dimensional parameter space, where z(v) is the nor-
malized within-module degree of a node v and p(v) is the participation coefficient
of v. Node feature z(v) captures how strongly a particular node is connected to
other nodes within its own community, completely ignoring edges between com-
munities. On the other hand, node feature p(v) captures how neighbours of v
are distributed between all parts of the partition A.

Formally, the normalized within-module degree of a node v is defined as fol-
lows: for any node v ∈ Ai,

z(v) =
degAi

(v)− µ(v)
σ(v)

,
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where µ(v) and σ(v) are, respectively, the mean and the standard deviation of
degAi

(u) over all nodes u in the part v belongs to. If node v is tightly connected
to other nodes within the community, then z(v) is large and positive. On the
other hand, |z(v)| is large and z(v) is negative when v is loosely connected to
other peers.

The participation coefficient of a node v is defined as follows: for any node
v ∈ V with deg(v) ≥ 1,

p(v) = 1−
∑̀
i=1

(
degAi

(v)

deg(v)

)2

.

The participation coefficient p(v) is equal to zero if v has neighbours exclusively
in one part (most likely in its own community). In the other extreme situation,
the neighbours of v are homogeneously distributed among all parts and so p(v)
is close to the trivial upper bound of 1− 1/` ≈ 1.

2.3 Community Association Strength

As already advertised, let us now introduce our own community-aware node
feature that takes the distribution of community sizes into account. Its derivation
is explained in the journal version of this paper. For any v ∈ Ai, we define the
community association strength as follows:

β∗(v) = 2

(
degAi

(v)

deg(v)
− λvol(Ai)− deg(v)

vol(V )

)
.

The lower the value of β∗(v), the less associated node v with its own community
is. In the derivation above we allow for any λ > 0, but in the experiments, we
will use λ = 1.

Let us also notice that when λ = 1, β∗(v) is essentially twice the normalized
anomaly score cd(v) after adjusting it to take into account the corresponding
prediction from the null model. Moreover, let us note that some simplified version
of this node feature was already used in [18].

2.4 Distribution-Based Measures

Our next community-aware node features are similar in spirit to the partici-
pation coefficient, that is, they aim to measure how neighbours of a node v are
distributed between all parts of the partition A. The main difference is that they
pay attention to the sizes of parts of A and compare the distribution of neigh-
bours to the corresponding predictions from the null model. They are upgraded
versions of the participation coefficient, similarly to the community association
strength being an upgraded counterpart of the normalized anomaly score.

Formally, for any node v ∈ V , let q1(v) be the vector representing fractions
of neighbours of v in various parts of partition A. Similarly, let q̂1(v) be the
corresponding prediction for the same vector based on the Chung-Lu model.
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Note that q̂1(v) = q̂1 does not depend on v (of course, it should not!) but
only on the distribution of community sizes. Our goal is to measure how similar
the two vectors are. A natural choice would be any of the p-norms but, since
both vectors are stochastic (that is, all entries are non-negative and they add
up to one), alternatively one can also use any good measure for comparison
of probability distributions. In our experiments we tested the following node
features: L1 norm L1

1(v), L2 norm L2
1(v), Kullback–Leibler divergence kl1(v),

and Hellinger distance h1(v).
The above measures pay attention to which communities neighbours of v

belong to. However, some of such neighbours might be strong members of their
own communities but some of them might not be. Should we pay attention that?
Is having a few strong members of community Ai as neighbours equivalent to
having many neighbours that are weak members of Ai? To capture these nuances,
one needs to consider larger ego-nets around v, nodes at distance at most 2 from
v. We define q2(v) to be the average value of q1(u) taken over all neighbours
of v. As before, q̂2(v) is the corresponding prediction based on the null model.
However, since q̂1(u) = q̂1 does not depend on u, q̂2(v) also does not depend on
v and, in fact, it is equal to q̂1. The difference between q2(v) and q̂2(v) may be
measured by any metric used before. In our experiments we tested L1

2(v), L2
2(v),

kl2(v), and h2(v), counterparts of L1
1(v), L2

1(v), kl1(v), and h1(v) respectively.
Let us mention that q1(v) and q2(v) have a natural and useful interpretation.

Consider a random walk that starts at a given node v. The ith entry of the q1(v)
vector is the probability that a random walk visits a node from community Ai

after one step. Vector q2(v) has the same interpretation but after two steps are
taken by the random walk.

One can repeat the same argument and define L1
i (v), etc., for any natural

number i by performing i steps of a random walk. Moreover, a natural alternative
approach would be to consider all possible walk lengths but connections made
with distant neighbours are penalized by an attenuation factor α as it is done in
the classical Katz centrality [19].

Finally, let us note that the above aggregation processes could be viewed
as simplified versions of GNNs classifiers. Therefore, the investigation of these
measures additionally shows how useful community-aware measures could be
when used in combination with GNN models.

3 Experiments

3.1 Graphs Used

We consider undirected, connected, and simple graphs so that all node features
are well defined and all methods that we use work properly. In each graph, we
have some “ground-truth” labels for the nodes which are used to benchmark
classification algorithms. For consistency of the reported metrics, we consider
binary classification tasks, so the ground-truth node features that are to be
predicted will always consist of labels from the set {0, 1} with label 1 being the
target class.
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In the experiments, we used two families of graphs. The first family consists
of synthetic networks, the Artificial Benchmark for Community Detection with
Outliers (ABCD+o) [18]. The main goal of experiments on this family is to
perform a sanity test to evaluate whether the basic functionality of community-
aware node features is working correctly or not. The results that are available in
the journal version of this paper show that for this class of graphs community-
aware node features significantly outperform other features.

The second family of networks we used in our experiments are empirical real-
world graphs. We tried to select a collection of graphs with different properties
(density, community structure, degree distribution, clustering coefficient, etc.).
More importantly, some of them have highly unbalanced binary classes. Exper-
iments with these networks will serve as a more challenging and robust test for
usefulness of the proposed community-aware node features.

Empirical Graphs For experiments on real-world, empirical networks, we se-
lected the following 5 datasets. In cases when multiple connected components
were present, we kept only the giant component. Self-loops, if present, were also
dropped before performing the experiments. We summarize some statistics for
the above graphs in Table 1.

– Reddit [20]: A bipartite graph with 9,998 nodes representing users in one
part and 982 nodes representing subreddits in the other one. The target class
represents banned users.

– Grid [21]: A power grid network with attributes nodes. The target class
corresponds to nodes with “plant” attribute.

– Facebook [23]: Nodes correspond to official Facebook pages that belong to
one of the 4 categories and edges are mutual likes. The target class corre-
sponds to “politician” category.

– LastFM [24]: Nodes are users of the social network and edges represent
mutual followers. There are some nodes attributes including the location;
the target class corresponds to nodes with “country 17” attribute.

– Amazon [8]: Nodes are users and edges represent common product reviews.
The target class corresponds to users with less than 20% “helpful” votes, and
non-target correspond to users with more than 80% “helpful” votes.

Table 1. Statistics of the selected real-world empirical graphs.

dataset # of nodes average degree # of clusters target class proportion
Reddit 10,980 14.30 12 3.661%
Grid 13,478 2.51 78 0.861%
LastFM 7,624 7.29 28 20.619%
Facebook 22,470 15.20 58 25.670%
Amazon 9,314 37.49 39 8.601%
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3.2 Node Features Investigated

The community-aware node features that we tested are summarized in Table 2.
The features are computed with reference to a partition of a graph into commu-
nities obtained using the Leiden algorithm. The partition is chosen as the best
of 1,000 independent runs of the community_leiden function implemented in
the igraph library [7] (Python interface of the library was used). Each of such
independent runs was performed until a stable iteration was reached.

Table 2. Community-aware node features used in our experiments. A combination of
WMD and CPC is also used as a 2-dimensional embedding of a graph (WMD+CPC).

abbreviation symbol name subsection
CADA cd(v) anomaly score CADA 2.1
CADA* cd(v) normalized anomaly score 2.1
WMD z(v) normalized within-module degree 2.2
CPC p(v) participation coefficient 2.2
CAS β∗(v) community association strength 2.3

CD_L11 L1
1(v) L1 norm for the 1st neighbourhood 2.4

CD_L21 L2
1(v) L2 norm for the 1st neighbourhood 2.4

CD_KL1 kl1(v) Kullback–Leibler divergence for the 1st neighbourhood 2.4
CD_HD1 h1(v) Hellinger distance for the 1st neighbourhood 2.4
CD_L12 L1

2(v) L1 norm for the 2nd neighbourhood 2.4
CD_L22 L2

2(v) L2 norm for the 2nd neighbourhood 2.4
CD_KL2 kl2(v) Kullback–Leibler divergence for the 2nd neighbourhood 2.4
CD_HD2 h2(v) Hellinger distance for the 2nd neighbourhood 2.4

Classical (non-community-aware) node features are summarized in Table 3.
These are standard and well-known node features. We omit their definitions but,
instead, refer to the appropriate sources in the table; alternatively, see [17].

Finally, we will use two more sophisticated and powerful node features ob-
tained through graph embeddings. Embeddings can be categorized into two main
types: classical embeddings and structural embeddings. Classical embeddings fo-
cus on learning both local and global proximity of nodes, while structural embed-
dings learn information specifically about the local structure of nodes’ neighbour-
hood. We test one embedding from each class: node2vec [13] and struc2vec [22].

3.3 Experiments

In this section, we present the results of two numerical experiments that were
performed to investigate the usefulness of community-aware features:

1. information overlap between community-aware and classical features;
2. combined variable importance for prediction of community-aware and classi-

cal features.
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Table 3. Classical (non-community-aware) node features that are used in our experi-
ments.

abbreviation name reference
lcc local clustering coefficient [26]
bc betweenness centrality [11]
cc closeness centrality [2]
dc degree centrality [17]
ndc average degree centrality of neighbours [1]
ec eigenvector centrality [4]

eccen node eccentricity [6]
core node coreness [17]
n2v 16-dimensional node2vec embedding [13]
s2v 16-dimensional struc2vec embedding [22]

From the computational perspective, all analytical steps (generation of graphs,
extractions of both community-aware and classical features, execution of ex-
periments) were implemented in such a way that all experiments are fully re-
producible. In particular, all steps that involve pseudo-random numbers were
appropriately seeded. The source code allowing for reproduction of all results is
available at GitHub repository5.

Information Overlap In the first experiment, our goal was to test, using a
variety of models, to what extent each community-aware feature described in
Table 2 can be explained by all the classical features from Table 3. For each
community-aware feature, we independently measured how well it is explained
by each model via computing the Kendall correlation of the value of the selected
feature and its prediction. To consider possible non-linear relationships, the non-
parametric Kendall correlation was used that checks how well the ordering of
predictions matches the ordering of the target. Nevertheless, we also used mea-
sures such as R2, which assumes linearity and homoskedasticity of prediction
error of the relationship, and the results were similar.

The tests were performed using 70/30 train-test split of data. To ensure that
the reported results are robust, for each community-aware feature five models
were built using random forest, xgboost, lightgbm, linear regression and, re-
spectively, regularized regression. The maximum Kendall correlation that was
obtained are reported.

The goal of this experiment is to show that community-aware features cannot
be explained completely by classical features (including two highly expressible
embeddings). The conclusion is that it is worth to include such features in predic-
tive models as they could potentially improve their predictive power. However,
this additional information could be simply noise and so not useful in prac-
tice. To verify the usefulness of the community-aware features, we performed

5 https://github.com/sebkaz/BetaStar.git

https://github.com/sebkaz/BetaStar.git
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two more experiments, namely, one-way predictive power and combined variable
importance for prediction checks. In these experiments, we check if community-
aware features are indeed useful in node label prediction problems. In the journal
version of this paper the results of both experiments are reported. Here, due to
space limitation, we only describe the results of combined variable importance
for prediction experiment.

In general, for empirical graphs described in Section 3.1, the target is a
binary feature that measures some practical feature or a role of a given node. It
is important to highlight that these features are not derived from the community
structure of these graphs, at least not directly. Instead, they are characteristics of
nodes defined independently of the graph structure. Therefore, for these networks
we do not expect that community-aware features will significantly outperform
other features. However, we conjecture that in many empirical networks, it may
be the case that the prediction target is related to the fact that a node is a strong
member of its own community or not. We expect to see that some community-
aware features are still useful in prediction. It is important to highlight that,
as we have described in Section 3.1, we have not hand-picked a few empirical
networks that present good performance of community-aware features, aiming
for a diverse collection of networks.

Results and Observations For empirical graphs, in Table 4 we observe corre-
lations significantly bounded away from 1. (For synthetic networks the correla-
tions are even lower—see the journal version of this paper). In particular, for the
Grid graph, the correlation values are the lowest in the family of the empirical
graphs (slightly above 0.2 for single-community measures).

In summary, the presented results confirm that the information encapsulated
in community-aware measures cannot be recovered completely using classical fea-
tures (even including embeddings). In the following experiments, we investigate
if this extra information is useful for the node classification task.

Combined Variable Importance for Prediction The second experiment
(combined variable importance for prediction) provides a way to verify the use-
fulness of community-aware features for node classification task. For each graph
we we build a single model predicting the target variable that takes into account
all community-aware as well as all classical features (including both embeddings)
as explanatory variables. A random forest classifier was built and the permuta-
tion variable importance [5,9] measure was computed for each feature using APS
(average precision score) as a target predictive measure.

As in the previous experiment, a 70/30 train-test split was used. We report
the ranking of variable importance (rank 1 being the most important one) so
that the values are comparable across all graphs investigated in this experiment.
The raw importance scores have different ranges for various graphs.

Results and Observations The results for empirical graphs are presented in
Table 5. The ranks range between 1 and 53 (with rank 1 being the best), since
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Table 4. Information overlap between community-aware and classical features. The
maximum of Kendall correlation between target and predictions on test data set.

target Amazon Facebook Grid LastFM Reddit
CADA 0.5830 0.5666 0.2156 0.4815 0.6826
CADA* 0.6058 0.5828 0.2174 0.5058 0.6867
CPC 0.6338 0.5992 0.2193 0.5175 0.7193
CAS 0.6538 0.6257 0.2999 0.5594 0.7306
CD_L21 0.7052 0.6464 0.3496 0.5698 0.7574
CD_L22 0.7554 0.7355 0.3557 0.6295 0.7941
CD_L11 0.7251 0.7041 0.6978 0.6220 0.7735
CD_L12 0.7794 0.7785 0.6447 0.6884 0.7810
CD_KL1 0.7176 0.7516 0.7394 0.6289 0.7755
CD_HD1 0.7383 0.7482 0.7168 0.6459 0.7853
CD_KL2 0.7706 0.7826 0.7292 0.6853 0.8097
CD_HD2 0.8212 0.8173 0.6930 0.7369 0.8221
WMD 0.8447 0.8456 0.8488 0.8531 0.7638

there are 53 features in total (13 community-aware, 8 classical, 16 for node2vec,
and 16 for struc2vec). The rows are sorted by the arithmetic mean of rank
correlations across all graphs.

For one empirical graph (namely, the Facebook graph), no community-aware
measure appears in the top-10. It should be noted though, as can be seen by the
experiments included in the journal version of this paper, that both node2vec
and struc2vec embeddings provide almost perfect prediction for this graph. On
the other hand, for the Grid graph, community-aware features are important (3
of them are in the top-10). In general, the community-aware features that score
high for at least one graph are: CAS, CD_L22, WMD, CD_L12, CD_HD2, CD_HD1, and
CD_KL1. In particular, we see that the second-neighbourhood measures are well
represented. This indicates that looking at the community structure of larger
ego-nets of nodes is useful for empirical graphs. This is not the case for syn-
thetic ABCD+o graphs as their generation structure is simpler than the more
sophisticated mechanisms that lead to network formation of empirical complex
networks. (As always, we refer the reader to the journal version of this paper for
experiments on synthetic networks.)
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