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Abstract. The Artificial Benchmark for Community Detection (ABCD)
graph is a random graph model with community structure and power-law
distribution for both degrees and community sizes. The model generates
graphs similar to the well-known LFR model but it is faster and can be
investigated analytically. In this paper, we show that the ABCD model
exhibits some interesting self-similar behaviour, namely, the degree dis-
tribution of ground-truth communities is asymptotically the same as the
degree distribution of the whole graph (appropriately normalized based
on their sizes). As a result, we can not only estimate the number of edges
induced by each community but also the number of self-loops and multi-
edges generated during the process. Understanding these quantities is
important as (a) rewiring self-loops and multi-edges to keep the graph
simple is an expensive part of the algorithm, and (b) every rewiring
causes the underlying configuration models to deviate slightly from uni-
form simple graphs on their corresponding degree sequences.
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1 Introduction

One of the most important features of real-world networks is their community
structure, as it reveals the internal organization of nodes [7]. In social networks
communities may represent groups by interest, in citation networks they corre-
spond to related papers, in the Web graph communities are formed by pages on
related topics, etc. Identifying communities in a network is therefore valuable as
this information helps us to better understand the network structure.

Unfortunately, there are very few datasets with ground-truth communities
identified and labelled. As a result, there is need for synthetic random graph
models with community structure that resemble real-world networks to bench-
mark and tune clustering algorithms that are unsupervised by nature. The LFR
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(Lancichinetti, Fortunato, Radicchi) model [20, 19] is a highly popular model
that generates networks with communities and, at the same time, allows for
heterogeneity in the distributions of both node degrees and of community sizes.
It became a standard and extensively used method for generating artificial net-
works.

A similar synthetic network to LFR, theArtificialBenchmark forCommunity
Detection (ABCD) [14] was recently introduced and implemented4, including
a fast implementation5 that uses multiple threads (ABCDe) [17]. Undirected
variants of LFR and ABCD produce graphs with comparable properties but
ABCD/ABCDe is faster than LFR and can be easily tuned to allow the user
to make a smooth transition between the two extremes: pure (disjoint) commu-
nities and random graph with no community structure. Moreover, it is easier to
analyze theoretically—for example, in [13] various theoretical asymptotic prop-
erties of the ABCD model are investigated including the modularity function
that, despite some known issues such as the “resolution limit” reported in [8],
is an important graph property of networks in the context of community detec-
tion. Finally, the building blocks in the model are flexible and may be adjusted to
satisfy different needs. Indeed, the original ABCD model was recently adjusted
to include potential outliers (ABCD+o) [15] and extended to hypergraphs (h-
ABCD) [16]6. In the context of this paper, the most important of the above
properties is that the ABCD model allows for theoretical investigation of its
properties.

Another important aspect of complex networks is self-similarity and scale
invariance which are well-known properties of certain geometric objects such as
fractals [21]. Scale invariance in the context of complex networks is traditionally
restricted to the scale-free property of the distribution of node degrees [1] but
also applies to the distributions of community sizes [10, 6], degree-degree dis-
tances [26], and network density [3]. Unfortunately, the definition of “scale free”
has never reached a single agreement [5, 11] but many experiments provide a
statistical significance of these claims such as the experiment on 32 real-world
networks that have a wide coverage of economic, biological, informational, so-
cial, and technological domains, with their sizes ranging from hundreds to tens
of millions of nodes [26].

In search for more complete self-similar descriptions, methods related to the
fractal dimension are considered that use box counting methods and renormal-
ization [23, 9, 18]. However, the main issue is that complex networks are still not
well defined in a proper geometric sense but one may, for example, introduce the
concept of hidden metric spaces to overcome this problem [22].

For the context of community structure of complex networks, let us high-
light one interesting study of the network of e-mails within a real organization
that revealed the emergence of self-similar properties of communities [10]. Such

4 https://github.com/bkamins/ABCDGraphGenerator.jl/
5 https://github.com/tolcz/ABCDeGraphGenerator.jl/
6 https://github.com/bkamins/ABCDHypergraphGenerator.jl
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experiments suggest that there is some universal mechanism that controls the
formation and dynamics of complex networks.

In this paper, we show that theABCDmodel exhibits self-similar behaviour:
each ground-truth community inherits power-law degree distribution from the
distribution of the entire graph (see Theorem 2), that is, the power-law exponent
as well as the minimum degree of this distribution are preserved. On the other
hand, as in all self-similarities mentioned above, some renormalization needs to
be applied. In our case, the distribution is truncated so that the maximum degree,
corrected by the noise parameter ξ (see Section 2 for its formal definition), does
not exceed the community size.

The above observation, interesting and desired on its own, has some im-
mediate implications that are of interest too. Firstly, we can easily compute the
expected volume of each community (see Corollary 1). Secondly, and more impor-
tantly, we can investigate how many self-loops and multi-edges are constructed
during the generation process of ABCD (see Theorem 3). Understanding this
quantity is crucial for two reasons. Firstly, removing these self-loops and multi-
edges to obtain a simple graph is a time consuming part of the construction al-
gorithm. Secondly, as the ABCD construction involves several implementations
of the well known configuration model, the number of self-loops and multi-edges
is directly correlated to how “skewed” the final graph is, i.e., more self-loops and
multi-edges lead to distributions that are further away from being uniform. We
speak about this second reason in more detail in Section 2.4.

The paper is structured as follows. In Section 2, we formally define the
ABCD model and state one known result about the said model. The main
results are presented in Section 3. Then, in Section 4, we present results of sim-
ulations that highlight properties that are proved in this paper and show their
practical implications. The main result (Theorem 2) and its applications (Corol-
lary 1 and Theorem 3) are proved in the long version of this paper. Finally, some
open problems are presented in Section 5.

2 The ABCD Model

In this section we introduce the ABCD model. Its full definition, along with
more detailed explanations of its parameters and features, can be found in [14].
We restate the main components of the ABCD model here to ensure complete-
ness of the exposition in this article.

2.1 Notation

For a given n ∈ N := {1, 2, . . .}, we use [n] to denote the set consisting of the
first n natural numbers, that is, [n] := {1, 2, . . . , n}.

Our results are asymptotic by nature, that is, we will assume that n → ∞.
For a sequence of events (En, n ∈ N), we say En holds with high probability
(w.h.p.) if P (En)→ 1 as n→∞ .We say that En holds with extreme probability
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(w.e.p.) if P (En) = 1−exp(−Ω(log2 n)) . In particular, if there are polynomially
many events and each holds w.e.p., then w.e.p. all of them hold simultaneously.

Power-law distributions will be used to generate both the degree sequence
and community sizes so let us formally define it. For given parameters γ ∈ (0,∞),
δ,∆ ∈ N with δ ≤ ∆, we define a truncated power-law distribution P (γ, δ,∆)
as follows. For X ∼ P (γ, δ,∆) and for k ∈ N with δ ≤ k ≤ ∆,

P (X = k) =

∫ k+1

k
x−γ dx∫∆+1

δ
x−γ dx

.

2.2 The Configuration Model

The well-known configuration model is an important ingredient of the ABCD
generation process so let us formally define it here. Suppose then that our goal is
to create a graph on n nodes with a given degree distribution d := (di, i ∈ [n]),
where d is a sequence of non-negative integers such that m :=

∑
i∈[n] di is even.

We define a random multi-graph CM(d) with a given degree sequence known as
the configuration model (sometimes called the pairing model), which was
first introduced by Bollobás [4]. (See [2, 24, 25] for related models and results.)

We start by labelling nodes as [n] and, for each i ∈ [n], endowing node i with
di half-edges. We then iteratively choose two unpaired half-edges uniformly at
random (from the set of pairs of remaining half-edges) and pair them together
to form an edge. We iterate until all half-edges have been paired. This process
yields Gn ∼ CM(d), where Gn is allowed loops and multi-edges and thus Gn is
a multi-graph.

2.3 Parameters of the ABCD Model

The ABCD model is governed by the following eight parameters.

Parameter Range Description
n N Number of nodes
γ (2, 3) Power-law degree distribution with exponent γ
δ N Min degree as least δ
ζ

(
0, 1

γ−1

]
Max degree at most nζ

β (1, 2) Power-law community size distribution with exponent β
s N \ [δ] Min community size at least s
τ (ζ, 1) Max community size at most nτ

ξ (0, 1) Level of noise

2.4 The ABCD Construction

We will use A = A(n, γ, δ, ζ, β, s, τ, ξ) for the distribution of graphs generated
by the following 5-phase construction process.
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Phase 1: creating the degree distribution In theory, the degree distribution
for an ABCD graph can be any distribution that satisfies (a) a power-law with
parameter γ, (b) a minimum value of at least δ, and (c) a maximum value of at
most nζ . In practice, however, degrees are i.i.d. samples from the distribution
P
(
γ, δ, nζ

)
.

For Gn ∼ A, write dn = (di, i ∈ [n]) for the chosen degree sequence of Gn
with d1 ≥ · · · ≥ dn. Finally, to ensure that

∑
i∈[n] di is even, we decrease d1 by

1 if necessary; we relabel as needed to ensure that d1 ≥ d2 ≥ · · · ≥ dn. This
potential change has a negligible effect on the properties we investigate in this
paper and we thus only present computations for the case when d1 is unaltered.

Phase 2: creating the communities We next assign communities to the
ABCD model. Similar to the degree distribution, the distribution of community
sizes must satisfy (a) a power-law with parameter β, (b) a minimum value of
s, and (c) a maximum value of nτ . In addition, we also require that the sum
of community sizes is exactly n. Again, we use a more rigid distribution in
practice: communities are generated with sizes determined independently by the
distribution P (β, s, nτ ). We generate communities until their collective size is
at least n. If the sum of community sizes at this moment is n + k with k > 0
then we perform one of two actions: if the last added community has size at least
k + s, then we reduce its size by k. Otherwise (that is, if its size is c < k + s),
then we delete this community, select c old communities and increase their sizes
by 1. This again has a negligible effect on the analysis and we thus only present
computations for the case when community sizes are unaltered.

For Gn ∼ A, write L for the (random) number of communities in Gn and
write Cn = (Cj , j ∈ [L]) for the chosen collection of communities in Gn with
|C1| ≥ · · · ≥ |CL| (again, let us stress the fact that Cn is a random vector of
random length L).

Phase 3: assigning degrees to nodes At this point in the construction of
Gn ∼ A we have a degree sequence dn and a collection of communities Cn.
Initially, each community Cj contains |Cj | unassigned nodes, i.e., nodes that
have not been assigned a label or a degree. We then iteratively assign labels
and degrees to nodes as follows. Starting with i = 1, let Ui be the collection of
unassigned nodes at step i. At step i choose a node uniformly at random from
the set of nodes u in Ui that satisfy

di ≤
|C(u)| − 1

1− ξφ
,

where C(u) is the community containing u and

φ = 1− 1

n2

∑
j∈[L]

|Cj |2 ,

and assign this node label i and degree di; we have that Ui+1 = Ui \ {u}. We
bound the degrees assignable to node u in community C to ensure that there
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are enough nodes in C \ {u} for u to pair with, preventing guaranteed loops or
guaranteed multi-edges during phase 4 of the construction. We expect a 1− ξφ
fraction of the half-edges attached to u to end up in community C, hence the
choice for the bound. See [13] or [14] for a more detailed explanation.

Phase 4: creating edges At this point Gn contains n nodes labelled as [n],
partitioned by the communities Cn, with node i ∈ [n] containing di unpaired
half-edges. The last step is to form the edges in Gn. Firstly, for each i ∈ [n]
we split the di half-edges of i into two distinct groups which we call community
half-edges and background half-edges. For a ∈ Z and b ∈ [0, 1) define the random
variable ba+ be as

ba+ be =
{
a with probability 1− b, and
a+ 1 with probability b .

Now define Yi := b(1− ξ)die and Zi := di − Yi (note that Yi and Zi are random
variables with E [Yi] = (1 − ξ)di and E [Zi] = ξdi) and, for all i ∈ [n], split the
di half-edges of i into Yi community half-edges and Zi background half-edges.
Next, for all j ∈ [L], construct the community graph Gn,j as per the configuration
model on node set Cj and degree sequence (Yi, i ∈ Cj). Finally, construct the
background graph Gn,0 as per the configuration model on node set [n] and degree
sequence (Zi, i ∈ [n]). In the event that the sum of degrees in a community is
odd, we pick a maximum degree node i in said community and replace Yi with
Yi + 1 and Zi with Zi − 1. Once again, this minor adjustment has a negligible
effect on the analysis and we thus assume that none of these sums are odd. Note
that Gn,j is a graph and Cj is the set of nodes in this graph; we refer to Cj as a
community and Gn,j as a community graph. Note also that Gn =

⋃
0≤j≤nGn,j .

Phase 5: rewiring collisions Note that, although we are calling Gn,0, Gn,1,
. . . , Gn,L graphs, they are in fact multi-graphs at the end of phase 4. To ensure
that Gn is simple, we perform a series of rewirings in Gn. A rewiring takes two
edges as input, splits them into four half-edges, and creates two new edges dis-
tinct from the input. We first rewire each community graph Gn,j independently
as follows.

1. For each edge e ∈ E(Gn,j) that is either a loop or contributes to a multi-edge,
we add e to a recycle list that is assigned to Gn,j .

2. We shuffle the recycle list and, for each edge e in the list, we choose another
edge e′ uniformly from E(Gn,j)\{e} and attempt to rewire these two edges.
We save the result only if the rewiring does not lead to any further collisions,
otherwise we give up. In either case, we then move to the next edge in the
recycle list.

3. After we attempt to rewire every edge in the recycle list, we check to see if
the new recycle list is smaller. If yes, we repeat step 2 with the new list. If
no, we give up and move all of the “bad” edges from the community graph
to the background graph.
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We then rewire the background graph Gn,0 in the same way as the community
graphs, with the slight variation that we also add edge e to recycle if e forms a
multi-edge with an edge in a community graph or, as mentioned previously, if e
was moved to the background graph as a result of giving up during the rewiring
phase of its community graph. At the end of phase 5, we have a simple graph
Gn ∼ A.

Note that phase 5 of the ABCD construction process exists only to ensure
that Gn is simple. Thus, if one were satisfied with a multi-graph Gn that had all
of the properties A offers, one could simply terminate the process after phase 4.
However, for most practical uses such as community detection, we require a
simple graph and thus require phase 5. As mentioned in Section 1, phase 5 is
a time consuming part of the algorithm. Theorem 3 gives us some insight as
to why that is the case, namely, because with high probability the number of
self-loops and multi-edges generated during phase 4 is at least Ω(L). Theorem 3
is therefore quite valuable as it lets us know when our choice of γ, β, ζ and τ will
yield a best-case-scenario number of self-loops and multi-edges (in expectation).

Theorem 3 is also valuable for helping us understand how “skewed” the com-
munity graphs, along with the background graph, are with respect to graphs
generated uniformly at random from the set of simple graphs on the respective
degree sequences. In [12], Janson shows that if a graph is constructed as the con-
figuration model on degree sequence d, followed by a series of rewirings, then a
relatively small number of rewirings yields a distribution that is asymptotically
equal (with respect to the total variation distance) to the uniform distribution on
simple graphs with degree sequence d. By extrapolating this result, we can infer
that the number of rewirings required in phase 5 of the ABCD construction
process is directly correlated with how “skewed” the resulting graph is.

2.5 Known Results for ABCD and Configuration Models

A result from [13] that we use often in this paper is a tight bound on the number
of communities generated by the ABCD model.

Theorem 1 ([13] Corollary 5.5 (a)). Let Gn ∼ A and let L be the number
of communities in Gn. Then w.e.p. the number of communities, L, is equal to

L = L(n) =
(
1 +O

(
(log n)−1

))
ĉn1−τ(2−β) ,

where
ĉ =

2− β
(β − 1)sβ−1

.

3 Main Result

Our main result is a stochastic bound on the degree sequence of a given com-
munity in A. For Gn ∼ A with degree sequence dn, and for community graph
Gn,j with nodes from Cj , we make the following distinction: the degree sequence
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of Gn,j is the degree sequence of the community graph Gn,j , whereas the degree
sequence of Cj is the subset of dn containing the degrees of nodes in Cj . Hence,
the degree sequence of Cj is (dv, v ∈ Cj) and the degree sequence of Gn,j is
(Yv, v ∈ Cj) where recall that Yv = b(1− ξ)dve.

Theorem 2. Let Gn ∼ A. Let Cj be a community in Gn with |Cj | = z and let cj
be the degree sequence of community Cj. Next, let ε = ε(n) = n−(τ−ζ)(2−β)/2 =
o(1), let

∆z = min

{
z − 1

1− ξφ
, nζ
}
,

and let X− and X+ be random variables with the following probability distribu-
tion functions on {δ, . . . ,∆z}:

P
(
X− = k

)
=

∫ k+1

k
x−γ dx∫∆z+1

δ
x−γ dx

, and

P
(
X+ = k

)
=

(
1− ε1[k=δ]

) ∫ k+1

k
x−γ dx

(1− ε)
∫ δ+1

δ
x−γ dx+

∫∆z+1

δ+1
x−γ dx

= (1 + o(1))P
(
X− = k

)
.

Finally, let (X−i , 1 ≤ i ≤ z) and (X+
i , 1 ≤ i ≤ z) be i.i.d. sequences with

X−i ∼ X− and X+
i ∼ X+. Then w.h.p. cj is stochastically bounded below by

(X−i , 1 ≤ i ≤ z) and above by (X+
i , 1 ≤ i ≤ z).

The proof of Theorem 2 can be found in the long version of this paper.
The power of this theorem is that it allows us to compare the structure of
community graphs in Gn ∼ A with the structure of graphs constructed via the
configuration model on an i.i.d. degree sequence that is well understood. In this
paper we provide two uses of this new and powerful tool. The first is a sharpening
of Lemma 5.6 in [13], describing the volumes of communities in Gn ∼ A. For
X ∼ P (γ, δ,∆), write

µ`(γ, δ,∆) = E
[
X`
]
, (1)

and note in particular that µ1(γ, δ, n
ζ) is the expected degree of a node in Gn ∼

A.

Corollary 1. Let Gn ∼ A, let Cj be a community in Gn with |Cj | = z = z(n),
and let

∆z = min

{
z − 1

1− ξφ
, nζ
}
.

Then w.h.p.

E [vol(Cj)]

z
= (1+o(1))µ1(γ, δ,∆z) =

{
(1 + o(1))µ1(γ, δ, n

ζ) if z(n)→∞ , and
Θ
(
µ1(γ, δ, n

ζ)
)

otherwise.

The second use of Theorem 2 that we present here is an analysis of the num-
ber of loops and multi-edges that are created during phase 4 of the construction
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process of Gn ∼ A. In practice, phase 5 of the ABCD construction can be
computationally expensive. It is therefore valuable to study the number of colli-
sions (loops and multi-edges) generated during phase 4 of the construction. The
following theorem tells us that, although w.h.p. we can never do better than
generating Ω(L) collisions, where L is the number of communities, we expect to
see at most O(L) collisions under certain restrictions on γ, β, ζ, and τ .

Theorem 3. Let Gn ∼ A and define the following five variables depending on
Gn.

Sc := The number of self-loops in community graphs after phase 4.
Mc := The number of multi-edge pairs in community graphs after phase 4.
Sb := The number of self-loops in the background graph after phase 4.
Mb := The number of multi-edge pairs in the background graph after phase 4.
Mbc := The number of background edges that are also community edges after phase 4.

Then w.h.p.

1. E [Sc] = O
(
(n1−τ(2−β))(1 + nζ(4−γ−β))

)
,

2. E [Mc] = O
(
(n1−τ(2−β))(1 + nζ(7−2γ−β))

)
,

3. E [Sb] = O(nζ(3−γ)),
4. E [Mb] = O(nζ(6−2γ)), and
5. E [Mbc] = o(E [Mc]).

Moreover, for all valid γ, β, ζ, τ , w.h.p.

E [Sc] = Ω(L) ,

if γ + β > 4 then w.h.p.

E [Sc +Mc +Mbc] = Θ(L) ,

if 2ζ(3− γ) + τ(2− β) ≤ 1 then w.h.p.

E [Sb +Mb] = O(L) ,

and if both inequalities are satisfied then w.h.p.

E [Sc +Mc + Sb +Mb +Mbc] = Θ(L) .

The proofs of Corollary 1 and Theorem 3, as well as the surrounding discus-
sions, can be found in the long version of this paper.

4 Simulation Corner

In this section, we present a few experiments highlighting the properties that are
proved to hold with high probability. The experiments show that the asymptotic
predictions are useful even for graphs on a moderately small number of nodes.
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4.1 The Coupling

Our main result (Theorem 2) shows that the degree distribution of a commu-
nity of size z in Gn ∼ A is stochastically sandwiched between (X−i , i ∈ [z]) and
(X+

i , i ∈ [z]) where X−i ∼ P (γ, δ,∆z) and X+
i

d→ X−i as n → ∞. To com-
pare the degree distribution of communities in ABCD graphs to the stochastic
lower-bound (X−i , i ∈ [z]), we perform the following experiment. We generate
three ABCD graphs Gn, G∗n and G∗∗n . Consistent in all three graphs are the pa-
rameters n = 220, δ = 5, ζ = 0.4, s = 50, τ = 0.6, and ξ = 0.5. The graph Gn has
unique parameters γ = 2.1 and β = 1.1, the graph G∗n has γ = 2.5 and β = 1.5,
and G∗∗n has γ = 2.9 and β = 1.9. For each graph, we plot the complementary
cumulative distribution function (ccdf) of degrees of (a) the whole graph, (b)
the union of all smallest communities (Gn had 8 communities of size s = 50,
G∗n had 29, and G∗∗n had 82), and (c) the unique largest community (sizes 4074,
4073, and 3903 in respective graphs Gn, G∗n, and G∗∗n ). We then plot, in parallel,
the expected ccdfs for the three graphs; for the whole graph the ccdf is that
of P

(
γ, δ, nζ

)
, and for the community graphs we use the expected ccdf of the

stochastic lower-bound (X−i , i ∈ [z]), i.e., the function f : {δ, . . . ,∆z} → [0, 1]
where

f(k) =

∫∆z+1

k
x−γ dx∫∆z+1

δ
x−γ dx

=
k1−γ − (∆z + 1)1−γ

δ1−γ − (∆z + 1)1−γ
.

The results are presented in Figure 1. From these results, we see that the dis-
tribution of (X−i , i ∈ [z]) is a very good approximation of the distribution of
degrees in a community of smallest size as well as a community of largest size.
We note that, since (X−i , i ∈ [z]) is a lower-bound, we expect the theoretical ccdf
to sit slightly above the empirical ccdf, and this is confirmed by the experiment.

4.2 Volumes of Communities

Next, to investigate how well Corollary 1 predicts the volume of a particular
community, we perform the following experiment. We generate three ABCD
graphs Gn, G∗n and G∗∗n . Consistent in all three graphs are the parameters n =
220, δ = 5, ζ = 0.6, s = 50, τ = 0.9, and ξ = 0.5. The graph Gn has unique
parameters γ = 2.1 and β = 1.1, the graph G∗n has γ = 2.5 and β = 1.5, and
G∗∗n has γ = 2.9 and β = 1.9. In each graph, we sorted communities with respect
to their size (from the smallest to the largest) and then grouped them into 10
buckets as equal as possible (that is, the number of communities in any pair of
buckets differs by at most one). For each bucket we compute the average degree
and the standard deviation over all communities in that bucket. We compare it
with the asymptotic prediction based on Corollary 1, that is, for each community
of size z we compute µ1(γ, δ,∆z), and take the average over all communities in
the bucket. The results are presented in Figure 2. We see that n = 220 is large
enough and simulations match the theoretical predictions almost exactly.
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Fig. 1. The ccdf for the three different ABCD graphs Gn (top), G∗
n (middle), and

G∗∗
n (bottom), and for three different subsets of nodes in each graph, namely, the

whole graph (left), the union of smallest community graphs (middle), and the unique
largest community graph (right). Each function is drawn on a log–log scale. The blue
curves are the empirical data and the orange curves are the theoretical predictions.

4.3 Loops and Multi-edges

Finally, to investigate the number of collisions (of various types) generated dur-
ing phase 4 of the ABCD construction as functions of n, we perform the fol-
lowing experiment. For each n ∈ {215, 216, 217, 218, 219, 220}, we generate three
sequences of 20ABCD graphs (Gn(i), i ∈ [20]), (G∗n(i), i ∈ [20]), and (G∗∗n (i), i ∈
[20]). Consistent in all three sequences are the parameters δ = 5, ζ = 0.6, s = 50,
τ = 0.9, and ξ = 0.5. The graphs in sequence (Gn(i), i ∈ [20]) have γ = 2.1 and
β = 1.1, the graphs in (G∗n(i), i ∈ [20]) have γ = 2.5 and β = 1.5, and the
graphs in (G∗∗n (i), i ∈ [20]) have γ = 2.9 and β = 1.9. We compare the growth of
Sc/L, Mc/L, Sb/L, and Mb/L (the average values and the corresponding stan-
dard deviations over 20 graphs), as functions of n, for all three sequences. Each
sequence represents a different scenario in expectation based on Theorem 3, and
we comment on each result separately.

– For (Gn(i), i ∈ [20]) with γ = 2.1 and β = 1.1, we have γ + β < 4 and
2ζ(3 − γ) + τ(2 − β) > ζ(3 − γ) + τ(2 − β) > 1 and so we expect each of
the variables Sc/L, Mc/L, Sb/L, and Mb/L to be unbounded. In Figure 3
we see that, indeed, each of the four variables seem to grow with n in the
simulations.
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Fig. 2. The average degrees in communities for Gn (left), G∗
n (middle), and G∗∗

n (right).
The communities are ranked by their size and grouped into 10 buckets as equal as
possible. The blue line with error bars is the average degree and standard deviation
among all communities in each bucket. Note that the errors, in absolute values, are
largest for the leftmost plot and smallest for the rightmost plot. The orange dashed line
shows the expected volumes for the stochastic lower-bound (X−

i , i ∈ [z]), computed for
each community size and bucketed in the same way as the empirical data.

– For (G∗n(i), i ∈ [20]) with γ = 2.5 and β = 1.5, we have γ + β = 4 and
2ζ(3 − γ) + τ(2 − β) > 1 > ζ(3 − γ) + τ(2 − β) and so we expect Sb/L to
be bounded and Sc/L,Mc/L,Mb/L to be unbounded. As Figure 4 shows,
the simulations are consistent with the theory for Sc/L,Mc/L and Sb/L.
However, the trend ofMb/L is unclear. Considering that 2ζ(3−γ)+τ(2−β) =
1.05 in this case, it is reasonable that the growth of Mb/L should not reveal
itself at this scale of n.

– For (G∗∗n (i), i ∈ [20]) with γ = 2.9 and β = 1.9, we have γ + β > 4 and
1 > 2ζ(3 − γ) + τ(2 − β) > ζ(3 − γ) + τ(2 − β) and so we expect all
of Sc/L,Mc/L, Sb/L,Mb/L to be bounded. Figure 5 again shows us that
theory matches simulations. We note the very slight upward trend of Sc/L
and Mc/L, likely due to n being too small to see the asymptotic bound take
hold.

We conclude that Theorem 3 does a good job at telling us the behaviour of
Sc/L, Mc/L, Sb/L, and Mb/L for various γ and β, although the results are not
as clear as the other experiments which would likely be resolved by taking larger
values of n.
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Fig. 3. In reading order: Sc/L,Mc/L, Sb/L and Mb/L vs. log2(n) for (Gn(i), i ∈ [20]),
averaged over the 20 graphs.
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Fig. 4. In reading order: Sc/L,Mc/L, Sb/L and Mb/L vs. log2(n) for (G
∗
n(i), i ∈ [20]),

averaged over the 20 graphs.
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averaged over the 20 graphs.

5 Conclusion

Let us finish the paper with some open problems. We have shown two examples
of how Theorem 2 can help us understand the nature of ABCD graphs. There
are more applications of Theorem 2 that we do not explore here. Essentially,
any result that holds for a configuration model on an i.i.d. degree sequence,
sampled as P (γ, δ,∆) for some γ ∈ (2, 3), should hold for a community graph in
Gn ∼ A(4). With additional work, it may also be true that such results hold for
a community graph in Gn ∼ A. Possible avenues for Gn ∼ A include studying
its diameter, its diffusion rate, its clustering coefficient, etc.

Our results in Corollary 1 and Theorem 3 are results only in expectation,
though our experiments indicate that the behaviour of at least community vol-
umes is quite tight. Given that the truncated power-law P

(
γ, δ, nζ

)
has un-

bounded second moment, and that P (β, s, nτ ) has unbounded first moment,
any study involving concentration will prove to be challenging. However, con-
sidering that the collection of community degree sequences partition the degree
sequence of the whole graph, it is possible that these sequences exhibit self-
correcting behaviour, and this is a potential road-map to a tighter version of our
results.
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In Theorem 3 we only show that collisions are bounded below asymptotically
by Ω(L). On the other hand, our experimental results suggest that the number of
collisions is, in fact, ω(L) when γ+β ≤ 4 or when 2ζ(3−γ)+τ(2−β) > 1. Thus,
there is potential room to improve Theorem 3 by tightening the lower-bound.
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Appendix will not be part of the proceeding version.

A The Coupling (Proof of Theorem 2)

Before we set up a coupling that sandwiches the ABCD construction process
in order to control the degree sequence of any community Cj , we need to show
that almost all nodes belong to large communities. Such communities are large
enough such that they can be assigned nodes of any degree. Indeed, since the
maximum degree in Gn is (deterministically) at most nζ , only communities of
size less than nζ(1− ξφ)+1 ≤ nζ might not be available during the entire phase
3 of the ACBD construction process.

Lemma 1. Let ω = ω(n) be any function such that ω →∞ sufficiently slowly as
n→∞. Next, let Gn ∼ A and let V ′ ⊆ V (Gn) be the set of nodes in communities
of size at most nζ . Then, w.h.p. |V ′| < ωn1−(τ−ζ)(2−β) = o(n1−(τ−ζ)(2−β)/2) =
o(n).

Proof. Recall that 0 < ζ < τ < 1 and 1 < β < 2. Pick a community C ∈ Cn

uniformly at random and let X = |C| if |C| ≤ nζ ; otherwise, X = 0. Then, for
s ≤ m ≤ nζ ,

P (X = m) =

∫m+1

m
y−β dy∫ nτ+1

s
y−β dy

= (β − 1)

∫m+1

m
y−β dy

s1−β − (nτ + 1)1−β

=
(
1 +O(nτ(1−β))

)
(β − 1)sβ−1

∫ m+1

m

y−β dy ,

and hence

E [X] =
(
1 +O(nτ(1−β))

)
(β − 1)sβ−1

bnζc∑
m=s

m

∫ m+1

m

y−βdy

≤
(
1 +O(nτ(1−β))

)
(β − 1)sβ−1

∫ nζ+1

s

y1−βdy

=
(
1 +O(nτ(1−β))

) (β − 1)sβ−1

2− β
(
(nζ + 1)2−β − s2−β

)
=
(
1 +O(nτ(1−β)) +O(nτ(β−2))

) (β − 1)sβ−1

2− β
nζ(2−β)

= Θ
(
nζ(2−β)

)
.

Finally, since w.e.p. L = Θ
(
n1−τ(2−β)

)
(see Theorem 1), we get that

E [V ′] = O
(
n exp(− log2 n) + n1−τ(2−β)E [X]

)
= O

(
n1−(τ−ζ)(2−β)

)
,

and the lemma now follows from Markov’s inequality.
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We will also need the following simple fact about the distribution P (γ, δ,∆).

Fact 4 Fix γ > 0 and 1 ≤ δ ≤ δ′ ≤ ∆′ ≤ ∆. Then X ∼ P (γ, δ,∆), conditioned
on δ′ ≤ X ≤ ∆′, has distribution P (γ, δ′, ∆′).

The remainder of Section A is dedicated to proving Theorem 2. In the coming
arguments and with respect to phase 3 of the ABCD construction process, we
refer to a community C as locked at step i if di > (|C|−1)/(1−ξφ) and otherwise
we refer to C as unlocked at step i. We say that a node is locked/unlocked at
step i if its corresponding community is locked/unlocked at step i. Note that,
since d1 ≤ nζ , all communities of size at least nζ(1−ξφ)+1 are always unlocked.

We start with the modified version of phase 3 of the ABCD construction
process that will be used to prove the lower bound in Theorem 2. Fix z with
s ≤ z ≤ nτ and define the construction process A−(z), yielding a collection of
degrees assigned to a collection of communities notated as G−n , as follows.

1. Copy phases 1 and 2 of the ABCD construction process to get a degree
distribution dn = (di, i ∈ [n]) and a collection of communities Cn = (Cj , j ∈
[L]) each containing unassigned nodes (recall that unassigned nodes are
nodes that have not yet been assigned a label or a degree).

2. Copy phase 3 of the ABCD construction process until the communities of
size z are unlocked. This event occurs at step i where i is the smallest label
satisfying di ≤ z−1

1−ξφ (recall that the degree sequence dn = (di, i ∈ [n]) is
non-increasing and that label i and degree di are assigned to an unassigned
node at time i). At this point, all communities of size at least z are unlocked
and i− 1 nodes that belong to communities of size at least z + 1 have been
assigned a label and a degree.

3. Now unlock all communities and assign labels i, . . . , n and corresponding
degrees di, . . . , dn to the unlabelled nodes in [n] uniformly at random.

We will first show that a community Cj in G−n of size z has the desired degree
distribution.

Lemma 2. Fix z = z(n) such that s ≤ z ≤ nτ . Let G−n ∼ A−(z), let Cj be a
community in G−n with |Cj | = z and with degree sequence c−z , and let (X−i , 1 ≤
i ≤ z) be the i.i.d. sequence defined in Theorem 2. Then, c−z

d
= (X−i , 1 ≤ i ≤ z).

Proof. To prove the lemma, we will use the well-known Principle of Deferred
Decisions. A simple but useful observation is that when constructing G−n one
can defer exposing some information about the degree sequence dn to the very
end. Indeed, during phase 1 of the ABCD construction, we may only expose
information whether di ≤ z−1

1−ξφ or not; if di > z−1
1−ξφ , then we expose di but

otherwise we only reveal that di ≤ z−1
1−ξφ . This partial information is enough to

continue with the auxiliary process of constructing G−n .
Recall that community Cj is locked as long as di > z−1

1−ξφ . Let i be the
smallest label such that di ≤ z−1

1−ξφ . (Note that, in particular, if nζ ≤ z−1
1−ξφ , then

Cj is immediately unlocked, that is i = 1.) Once we unlock Cj in G−n at step



18 J. Barrett et al.

i, we unlock all communities and assign degrees di, . . . , dn uniformly to the set
of unassigned nodes in [n]. Thus, c−z is a uniform subsequence of (di, . . . , dn) of
size z. Now, we finally expose the degrees in this subsequence. By Fact 4, each di
follows precisely a truncated power law with upper bound ∆z = min

{
z−1
1−ξφ , n

ζ
}

and lower bound δ. Thus, c−z
d
= (X−i , 1 ≤ i ≤ z), proving the lemma.

We are now ready to couple the auxiliary process constructing G−n with the
original process generating Gn, the ABCD graph. This will prove the lower
bound in Theorem 2.

Proof (Proof of Theorem 2 (lower bound)). Construct G−n ∼ A−(z) with nodes
labelled as [n], degree sequence dn = (di, i ∈ [n]), and community sequence
Cn = (Cj , j ∈ [L]). Next, for all i ∈ [n] define zi = ddi(1 − ξφ) + 1e; note that
a community C is unlocked in phase 3 of the ABCD construction at the first
step i for which |C| ≥ zi). Now construct Gn in parallel with G−n as follows.

1. Let Gn have degree sequence dn and community sequence Cn.
2. Copy the degree assignment process of G−n until the communities of size z

are unlocked. Let i be the smallest label satisfying di ≤ z−1
1−ξφ . Instead of

unlocking all communities as we do in G−n ∼ A−(z), we will unlock only
those communities C satisfying

|C| ≥ zi = ddi(1− ξφ) + 1e

as we do in A. (Note that, if |C| = z ≥ dnζ(1− ξφ) + 1e, then i = 1 and C
is unlocked from the start.)

3. Now, for j ∈ {i, . . . , n} starting with j = i, we first unlock all communities
C satisfying |C| ≥ zj . We then partition the nodes into four sets. We say
that node v is open in Gn at step j if v is both unlocked and unlabelled
before step j, and otherwise we say v is closed at step j (and similarly for
G−n ). The four sets are as follows:

V ++
j =

{
v : v is open in both G−n and Gn at step j

}
,

V +−
j =

{
v : v is open in G−n and closed in Gn at step j

}
,

V −+j =
{
v : v is closed in G−n and open in Gn at step j

}
,

V −−j =
{
v : v is closed in both G−n and Gn at step j

}
.

Note that V +−
i is the set of nodes in communities of size at most zi− 1 and

V −+i = ∅. However, all four sets will change with j. We now choose a node v
in G−n to receive label j and degree dj as per the A−(z) construction (note
that v is a uniform element of V ++

j ∪ V +−
j ). We then choose a node in Gn

to receive label j and degree dj as follows.
– If v ∈ V ++

j , then we give label j and degree dj to v in Gn.
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– If v ∈ V +−
j , then we give label j and degree dj to a uniform node in V −+j

with probability pj , and to a uniform node in V ++
j with probability 1−pj ,

where

pj =
|V ++
j ||V −+j |+ |V +−

j ||V −+j |
|V ++
j ||V +−

j |+ |V +−
j ||V −+j |

;

we will later verify that pj ≤ 1.
4. Once all nodes have been assigned a degree, create the community edges and

background edges in Gn as per the usual A construction process.

We claim (a) that Gn ∼ A, and (b) that any community C ∈ Cn of size z with
Gn-degree sequence cz and G−n -degree sequence c−z satisfies cz ≥ c−z point-wise.

Starting with claim (a), it is clear by the construction process A−(z) that
dn and Cn are valid sequences for Gn ∼ A. We must then verify that, for j =
i, . . . , n, the node in Gn chosen to receive label j and degree dj is a uniform node
from the set of unlabelled nodes in communities of size at least dj(1−ξφ)+1. Note
that this set of nodes is precisely V ++

j ∪V −+j , and so we need only show that, for
u, v ∈ V ++

j ∪V −+j , the probability of labelling u and the probability of labelling
v are equal. We will first show that pj ≤ 1 by showing that |V −+j | ≤ |V +−

j | for all
j ∈ {i, . . . , n}. In fact, we will show a stronger result, namely, that |V +−

j |−|V −+j |
is precisely the number of nodes in communities that are locked in Gn at time j.

As mentioned earlier, when j = i, V +−
j is the set of nodes in communities

that are still locked (that is, of size at most zi− 1) and V −+j = ∅, so the desired
property holds. Now suppose the property holds up to some time j ≥ i. At step
j, if v ∈ V ++

j receives label j and degree dj in G−n , then v also receives this
label and degree in Gn, and thus v is moved from V ++

j to V −−j+1 (|V +−
j+1 | − |V

−+
j+1 |

is unaffected by this event). On the other hand, if v ∈ V +−
j receives label j

and degree dj at step j, then v is moved from V +−
j to V −−j+1 and we have two

sub-cases to consider. If some node u ∈ V −+j receives label j and degree dj in
Gn, then u is moved from V −+j to V −−j (V +−

j+1 and V −+j+1 each lose one node in
this case); if some node u ∈ V ++

j receives label j and degree dj in Gn, then
u is moved from V ++

j to V +−
j (V +−

j+1 loses a node and gains a different node
in this case). Thus, in any case, |V +−

j+1 | − |V
−+
j+1 | is unaffected by the process of

assigning labels and degrees. Finally, we need to investigate what happens when
communities are unlocked. Any node in a locked community at step j is in V +−

j

or V −−j . Once a community is unlocked, all of the corresponding nodes in V +−
j

move to V ++
j+1 and all of the corresponding nodes in V −−j move to V −+j+1 . Thus,

every node in a newly unlocked community decreases V +−
j+1 by one or increases

V −+j+1 by one, but not both. Therefore,
(
|V +−
j | − |V −+j |

)
−
(
|V +−
j+1 | − |V

−+
j+1 |

)
is

precisely the number of nodes in communities unlocked at step j +1. The claim
now follows by induction.

We have established that

pj =
|V ++
j ||V −+j |+ |V +−

j ||V −+j |
|V ++
j ||V +−

j |+ |V +−
j ||V −+j |

≤ 1.
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Next, consider a node v ∈ V −+j . Then v is given label j and degree dj in Gn if
and only if some node V +−

j is chosen in G−n , the label is redirected to V −+j in
Gn, and v is then chosen uniformly from the set V −+j to receive the label in Gn.
Thus, the probability that v ∈ V −+j is assigned label j and degree dj is(

|V +−
j |

|V ++
j |+ |V +−

j |

)(
|V ++
j ||V −+j |+ |V +−

j ||V −+j |
|V ++
j ||V +−

j |+ |V +−
j ||V −+j |

)(
1

|V −+j |

)
=

1

|V ++
j |+ |V −+j |

.

Consequently, a node v in V ++
j is labelled in Gn at step j with probability(

1−
|V −+j |

|V ++
j |+ |V −+j |

)(
1

|V ++
j |

)
=

(
|V ++
j |

|V ++
j |+ |V −+j |

)(
1

|V ++
j |

)
=

1

|V ++
j |+ |V −+j |

.

Therefore, at every step i ≤ j ≤ n, the node chosen to receive label j and degree
dj is a uniform element of V ++

j ∪V −+j , the set of unlocked and unlabelled (that
is, open) nodes in Gn at step j. Lastly, the remaining part of the construction
process of Gn is equivalent to that of A, and hence Gn ∼ A.

We continue with the proof of claim (b). Let C ∈ Cn satisfy |C| = z. Then
the coupling ensures that C is unlocked in both Gn and G−n before there is any
deviation in the assignment process. Hence, if a node v ∈ C receives label j and
degree dj in G−n , then v will receive the same label in Gn unless v has already
been labelled. If v was already labelled in Gn then this label is some j′ < j.
Since d1 ≥ · · · ≥ dn, dj′ ≥ dj . Therefore, the degree sequence c−z of C in G−n
is bounded above point-wise by the degree sequence cz in Gn. The proof now
follows from Lemma 2.

We continue with another modified version of phase 3 of the ABCD con-
struction process. This new version will be used to prove the upper bound in
Theorem 2. Fix z with s ≤ z ≤ nτ and define the construction process A+(z),
yielding a collection of degrees assigned to a collection of communities notated
as G+

n , as follows.

1. Copy phases 1 and 2 of the ABCD construction process to get a degree
distribution dn = (di, i ∈ [n]) and a collection of communities Cn = (Cj , j ∈
[L]) each containing unassigned nodes.

2. Copy phase 3 of the ABCD construction process until the communities of
size z are unlocked. This event occurs at step i where i is the smallest label
satisfying di ≤ z−1

1−ξφ . Let n
′ be the number of locked nodes, i.e., the number

of nodes in communities of size at most zi−1 (recall that zi = ddi(1−ξφ)+1e).
At this point, of the n− n′ unlocked nodes, we have assigned i− 1 of them
labels 1, . . . , i− 1 and corresponding degrees d1, . . . , di−1 in some order.

3. Now keep the communities of size at most zi − 1 locked and assign labels
i, . . . , n − n′ and corresponding degrees di, . . . , dn−n′ uniformly at random
to the collection of unlocked and unassigned nodes.

4. Finally, unlock the communities of size at most zi−1 and assign the n′ unas-
signed nodes labels n−n′+1, . . . , n and corresponding degrees dn−n′+1, . . . , dn
in any order (we will later show that w.h.p. dn−n′+1 = · · · = dn = δ).
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Note that, by the end of step 3, all nodes in communities of size z have been
assigned a label and a degree. This labelling is all we need to complete the proof,
and we include step 4 only for the sake of completeness.

We first show that a community Cj in G+
n ∼ A+(z) with z nodes has the

desired degree distribution. Our statement this time is not as strong as Lemma 2,
though thanks to Lemma 1 we can still stochastically bound the degree sequence
of a community of size z in G+

n .

Lemma 3. Let G+
n ∼ A+(z), let Cj be a community in G+

n with |Cj | = z and
with degree sequence c+z , and let (X+

i , 1 ≤ i ≤ z) be the i.i.d. sequence defined in
Theorem 2. Then w.h.p. c+z is stochastically bounded above by (X+

i , 1 ≤ i ≤ z).

Proof. As in the proof of Lemma 2, we will use the Principle of Deferred Deci-
sions, that is, at the beginning we only uncover some partial information about
the degree sequence dn. As before, we first expose whether or not di > z−1

1−ξφ and,
if the inequality holds, then we expose the value of di. However, if di ≤ z−1

1−ξφ ,
then we reveal di only if di = δ, and otherwise we do not expose additional
information about di.

By the construction of G+
n ∼ A+(z), we know that the sequence of degrees

in Cj is a uniform subsequence of (di, . . . , dn−n′), where i is the smallest labelled
node satisfying di ≤ z−1

1−ξφ and n′ is the number of nodes in communities of size
at most zi − 1. Then, letting V ′ be as in Lemma 1, we have that n′ ≤ |V ′| and
that w.h.p. by Lemma 1, |V ′| < ωn1−(τ−ζ)(2−β) for any function ω = ω(n)→∞.
Thus, w.h.p. n′ = o

(
n1−(τ−ζ)(2−β)/2

)
= o(εn). (Recall that ε = n−(τ−ζ)(2−β)/2.)

Since we aim for a statement that holds w.h.p., we may condition on this event.
Let n′′ be the number of nodes of degree δ. Note that n′′ is simply a Binomial(n− i,pδ)

random variable with

pδ =

∫ δ+1

δ
x−γ dx∫∆z+1

δ
x−γ dx

,

where ∆z = min
{
z−1
1−ξφ , n

ζ
}
. It follows immediately from Chernoff’s bound that

w.h.p. we have

n′′ = (n− i)pδ + ω
√
n = (n− i)pδ + o(εn) = (n− i)pδ(1 + o(ε)),

the second equality holding since 1− (τ − ζ)(2− β)/2 > 1/2. We may condition
on this event too.

Let us now summarize our situation. The degree distribution of Cj is a uni-
form subsequence of length z of the sequence

(di, . . . , dn−n′) = (di, . . . , dn−n′′)
_(dn−n′′+1, . . . , dn−n′)

of n− n′− i = (n− i)(1− o(ε)) degrees. (x_y is the concatenation of sequences
x and y.) The subsequence (di, . . . , dn−n′′) consists of degrees that are at least
δ + 1 and at most ∆z; recall that, since we have not yet exposed these degrees,
by Fact 4 they are i.i.d. random variables with distribution P (γ, δ + 1, ∆z).
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On the other hand, (dn−n′′+1, . . . , dn−n′) is simply a sequence of n′′ − n′ =
(n− i)pδ(1− o(ε)) copies of δ.

Now, let us provide a more careful argument to show that a uniform subse-
quence of (di, . . . , dn−n′′) of length z satisfies the stochastic domination in the
statement of the theorem. We sample z times uniformly at random from this
sequence (that may be viewed as a multi-set) without replacement and observe
that each time we select δ with probability at least

n′′ − n′ − z
n− n′ − i− z

= pδ(1− o(ε)) =
(1− ε− o(ε2))

∫ δ+1

δ
x−γ dx

(1− ε)
∫ δ+1

δ
x−γ dx+ (1− ε)

∫∆z+1

δ+1
x−γ dx

>
(1− ε)

∫ δ+1

δ
x−γ dx

(1− ε)
∫ δ+1

δ
x−γ dx+

∫∆z+1

δ+1
x−γ dx

.

If we select a value other than δ, then our selected degree has distribution
P (γ, δ + 1, ∆z). Therefore, w.h.p. the random subsequence c+z is stochastically
bounded from above by the i.i.d. sequence (X+

i , 1 ≤ i ≤ z) defined in Theorem 2,
and the proof of the lemma is finished.

We will now couple the constructions of Gn ∼ A and G+
n ∼ A+(z) and prove

the upper bound in Theorem 2. Contrast to the proof of the lower bound, we will
first construct Gn ∼ A and couple this construction with another construction
G+
n which we will later show satisfies G+

n ∼ A+(z).

Proof (Proof of Theorem 2 (upper bound)). Construct Gn ∼ A with nodes
labelled as [n], degree sequence dn = (di, i ∈ [n]), and community sequence
Cn = (Cj , j ∈ [L]), and construct G+

n in parallel as follows.

1. Let G+
n have degree sequence dn and community sequence Cn.

2. Copy the degree assignment process of Gn until the communities of size z
are unlocked. Let i be the smallest labelled node satisfying di ≤ z−1

1−ξφ and
let n′ be the number of nodes in communities of size at most zi − 1 (recall
that zi = ddi(1− ξφ) + 1e). Instead of unlocking communities progressively
as we do in Gn ∼ A, we will keep the n′ nodes locked until we have assigned
label n− n′ and degree dn−n′ as we do in A+(z).

3. Now, for j ∈ {i, . . . , n− n′} starting with j = i, we first partition the nodes
into three sets as follows.

V ++
j =

{
v : v is open in both Gn and G+

n at step j
}
,

V +−
j =

{
v : v is open in Gn and closed in G+

n at step j
}
,

V −−j =
{
v : v is closed in both Gn and G+

n at step j
}
.

Note, distinct from the lower-bound, that V +−
i = ∅, and that that there is

no set V −+j . We need not define V +−
j , as we will never encounter a scenario

where a node is assigned in Gn but unassigned in G+
n . We now choose a node

v in Gn to receive label j and degree dj as per the A construction process
(note that v is chosen uniformly at random from V ++

j ∪ V +−
j ). We then

choose a node in G+
n to receive label j and degree dj as follows.
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– If v ∈ V ++
j , we give label j and degree dj to v in G+

n .
– If v ∈ V +−

j , we give label j and degree dj to a uniform node in V ++
j in

G+
n .

4. Finally, unlock the n′ locked nodes in G+
n and assign labels n−n′+1, . . . , n

and degrees dn−n′+1, . . . , dn uniformly among these newly unlocked nodes,
independent of how these labels and degrees are assigned in Gn.

Similar to the previous coupling, the last step of the coupling is given only for
the sake of completeness and has no bearing on the proof. We claim (a) that
G+
n ∼ A+(z), and (b) that any community C ∈ Cn of size z with degree sequence

c+z in G+
n and degree sequence cz in Gn satisfies c+z ≥ cz point-wise.

Starting with claim (a), it is clear by the construction process A that dn
and Cn are valid sequences for G+

n ∼ A+(z). It is also clear that the degree
assignment process in G+

n for nodes in communities of size at most zi − 1 is
valid, since this assignment process is identical to that of A (which is identical
to that of A+(z) as well). We must then verify that, for j ∈ {i, . . . , n− n′}, the
node in G+

n chosen to receive label j and degree dj is a uniform node from the
set of unassigned nodes in communities of size at least zi. Note that this set of
nodes is precisely V ++

j . For u ∈ V ++
j , u is assigned label j and degree dj in G+

n

if u is assigned this label and degree in Gn or if a node v ∈ V +−
j is assigned this

label and degree in Gn and this label and degree is redirected to u in G+
n . Thus,

the probability that u ∈ V ++
j is labelled at step j is

1

|V ++
j |+ |V +−

j |
+

(
|V +−
j |

|V ++
j |+ |V +−

j |

)(
1

|V ++
j |

)
=

1

|V ++
j |

,

and, in particular, the probability is equal for all u ∈ V ++
j . Therefore, at every

step i ≤ j ≤ n, the node chosen to receive label j and degree dj is a uniform
element from the set of unlocked and unlabelled nodes in G+

n at step j, and this
proves claim (a).

We continue with the proof of claim (b). Let C ∈ Cn satisfy |C| = z. Then
the coupling ensures that C is unlocked in both G+

n and Gn before there is any
deviation in the assignment process. Hence, if a node v ∈ C receives label j and
degree dj in Gn, then v will receive the same label and degree in G+

n unless v
has already been given some label j′ < j and degree dj′ ≥ dj in G+

n . Therefore,
the degree sequence cz of C in Gn is bounded above point-wise by the degree
sequence c+z in G+

n . The proof now follows from Lemma 3.

B Applications of Theorem 2

In Section 4 we provided empirical results supporting Corollary 1 and Theorem 3,
and showing that the asymptotic predictions based on these results reflect well
the behaviour of the model even for moderately large values of n. In this section,
we give the proofs of the theoretical, asymptotic, results.
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Let X ∼ P (γ, δ,∆) and recall that µ`(γ, δ,∆) = E
[
X`
]
. Unfortunately,

there is no closed formula for µ`(γ, δ,∆). However, in the coming proofs, we use
the following standard technique to bound µ`(γ, δ,∆) (and other related values)
from above and below:

µ`(γ, δ,∆) =

∆∑
k=δ

k`
∫ k+1

k
x−γ dx∫∆+1

δ
x−γ dx

≤
∆∑
k=δ

∫ k+1

k
x`−γ dx∫∆+1

δ
x−γ dx

=

∫∆+1

δ
x`−γ dx∫∆+1

δ
x−γ dx

, and

µ`(γ, δ,∆) =

∆∑
k=δ

k`
∫ k+1

k
x−γ dx∫∆+1

δ
x−γ dx

≥
∆∑
k=δ

(
k

k + 1

)` ∫ k+1

k
x`−γ dx∫∆+1

δ
x−γ dx

≥
(

δ

δ + 1

)` ∫∆+1

δ
x`−γ dx∫∆+1

δ
x−γ dx

.

B.1 Volumes of Communities (Proof of Corollary 1)

Proof (Proof of Corollary 1). Let Gn ∼ A with degree sequence dn, let Cj be a
community in Gn with |Cj | = z, let cj be the degree sequence of Cj , and let

∆z = min

{
z − 1

1− ξφ
, nζ
}
, where φ = 1− 1

n2

∑
j∈[L]

|Cj |2 .

Now let (X−i , 1 ≤ i ≤ z) and (X+
i , 1 ≤ i ≤ z) be as in Theorem 2. Then, since

w.h.p. cj is stochastically dominated from below by (X−i , 1 ≤ i ≤ z), we get
that w.h.p.

E [vol(Cj)]

z
≥ 1

z
E

[
z∑
i=1

X−i

]
= µ1(γ, δ,∆z) ,

and since w.h.p. cj is stochastically dominated from above by (X+
i , 1 ≤ i ≤ z),

we get that w.h.p.

E [vol(Cj)]

z
≤ 1

z
E

[
z∑
i=1

X+
i

]
= (1 + o(1))

1

z
E

[
z∑
i=1

X−i

]
= (1 + o(1))µ1(γ, δ,∆z) ,

which establishes the first claim in Corollary 1. Next, we have

µ1(γ, δ, n
ζ)− µ1(γ, δ,∆z) =

 nζ∑
k=δ

k

∫ k+1

k
x−γ dx∫ nζ+1

δ
x−γ dx

−
∆z∑
k=δ

k

∫ k+1

k
x−γ dx∫∆z+1

δ
x−γ dx


=
(
1 +O(∆1−γ

z )
) nζ∑

k=δ

k

∫ k+1

k
x−γ dx∫ nζ+1

δ
x−γ dx

−
∆z∑
k=δ

k

∫ k+1

k
x−γ dx∫ nζ+1

δ
x−γ dx


=
(
1 +O(∆1−γ

z )
) nζ∑
k=∆z+1

k

∫ k+1

k
x−γ dx∫ nζ+1

δ
x−γ dx

≤
(
1 +O(∆1−γ

z )
) ∫ nζ+1

∆z+1
x1−γ dx∫ nζ+1

δ
x−γ dx

= O(∆2−γ
z ) .
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The second claim in Corollary 1 now follows since w.h.p.

E [vol(Cj)]

z
= (1 + o(1))

(
µ1(γ, δ, n

ζ)−
(
µ1(γ, δ, n

ζ)− µ1(γ, δ,∆z)
) )

= (1 + o(1))
(
µ1(γ, δ, n

ζ)−O(∆2−γ
z )

)
and, since ∆z = Θ(min{z, nζ}), we have that ∆z →∞ as z →∞.

B.2 Loops and Multi-edges (Proof of Theorem 3)

Throughout this section, it will be useful to refer to the multi-graph generated
by the first four phases of the ABCD construction. Write Gn ∼ A(4) to mean
Gn is the hypergraph generated by the first four phases.

Before tackling the upper-bounds in Theorem 3, we first prove that the num-
ber of loops and multi-edges in Gn ∼ A(4) is asymptotically bounded from
below by the number of communities. In fact, we show that the number of loops
in community graphs alone is asymptotically bounded in this way.

Lemma 4. Let Gn ∼ A(4) with L communities and let Sc be the number of
loops in community graphs in Gn. Then w.h.p.

Sc = Ω(L) .

Proof. Fix a constant z large enough so that z ≥ s and b(1 − ξ)∆zc ≥ 2 and
let Gn,j be a community graph in Gn with |Cj | = z and with degree sequence
(Yi, i ∈ Cj) (recall that Yi = b(1− ξ)die where b·e is a random rounding func-
tion). Then, by the lower bound in Theorem 2, a uniformly random degree Yi is
stochastically bounded from below by b(1− ξ)Xc where X ∼ P (γ, δ,∆z). Thus,
by the stochastic bound, we have

P (Yi = b(1− ξ)∆zc) ≥ P (X = ∆z) > 0 .

Thus, w.h.p. a linear proportion of community graphs with z nodes contain at
least one node v with deg(v) = b(1− ξ)∆zc ≥ 2. Furthermore, a node with this
degree generates a loop in Gn ∼ A(4) with positive probability, and so w.h.p. a
linear proportion of community graphs with z nodes contain at least one loop.
Finally, as the number of communities of size z is w.h.p. Θ(L), the lemma follows.

We continue now with the upper-bounds. The heart of Theorem 3 is the
following lemma.

Lemma 5. Fix z > ∆ > δ > 0 and γ ∈ (2, 3). Let qz = (qi, i ∈ [z]) be a
sequence of i.i.d. random variables with qi ∼ P (γ, δ,∆) and let Hz be sampled
as the configuration model with degree sequence qz. Let S and M be the number
of self-loops and, respectively, multi-edges in Hz. Then

E [S] ≤ (1 +O(∆γ−3)) c(γ, δ)∆3−γ , and

E [M ] ≤ (1 +O(∆γ−3)) c(γ, δ)2∆6−2γ ,
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where

c(γ, δ) =
(γ − 1)δγ−2

2(3− γ)
.

Proof. Let us recall equations (??) and (??) for ease of reading:

E [S | qz] =
∑
i∈[z] qi(qi − 1)

2 (
∑z
i=1 qi − 1)

≤ 1

2

∑
i∈[z] q

2
i∑z

i=1 qi − 1
,

and

E [M | qz] ≤
∑

1≤i<j≤z qi(qi − 1)qj(qj − 1)

2 (
∑z
i=1 qi − 1) (

∑z
i=1 qi − 3)

≤ 1

2

∑
1≤i<j≤z q

2
i q

2
j

(
∑z
i=1 qi − 3)

2 .

Next, for independent X,Y ∼ P (γ, δ,∆) we have

E
[
X2
]
=

∆∑
k=δ

k2
∫ k+1

k
x−γ dx∫∆+1

δ
x−γ dx

≤
∫∆+1

δ
x2−γ dx∫∆+1

δ
x−γ dx

=

(
γ − 1

3− γ

)(
(∆+ 1)3−γ − δ3−γ

δ1−γ − (∆+ 1)1−γ

)
= (1 +O(∆γ−3 +∆1−γ))

(
γ − 1

3− γ

)
δγ−1∆3−γ

= (1 +O(∆γ−3))

(
γ − 1

3− γ

)
δγ−1∆3−γ ,

and

E
[
X2Y 2

]
= E

[
X2
]
E
[
Y 2
]

= (1 +O(∆γ−3))

(
γ − 1

3− γ

)2

δ2γ−2∆6−2γ .

Now, since qz contains i.i.d. random variables, and since
∑z
i=1 qi ≥ δz, it follows

from (??) that

E [S] = E [E [S | qz]]

≤ 1

2
E

[ ∑
i∈[z] q

2
i∑

i∈[z] qi − 1

]

≤ 1

2(δz − 1)

∑
i∈[z]

E
[
q2i
]

≤ (1 +O(∆γ−3))

(
1

2δz

)(
z

(
γ − 1

3− γ

)
δγ−1∆3−γ

)
= (1 +O(∆γ−3))

(
(γ − 1)δγ−2

2(3− γ)

)
∆3−γ ,
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and from (??) that

E [M ] = E [E [M | qz]]

≤ 1

2
E

[∑
1≤i<j≤z q

2
i q

2
j

(
∑z
i=1 qi − 3)

2

]

≤ 1

2(δz − 3)2

∑
1≤i<j≤z

E
[
q2i q

2
j

]
≤ (1 +O(∆γ−3))

(
1

2δ2z2

)(
z

2

) (
γ − 1

3− γ

)2

δ2γ−2∆6−2γ

≤ (1 +O(∆γ−3))

(
(γ − 1)δγ−2

2(3− γ)

)2

∆6−2γ .

Note that, in the first computation, we use the fact that

1

2(δz − 1)
= (1 +O(z−1))

1

2δz
= (1 +O(∆γ−3

z ))
1

2δz
,

and in the second computation, we use the fact that

1

2(δz − 3)2
= (1 +O(z−1))

1

2δ2z2
= (1 +O(∆γ−3

z ))
1

2δ2z2
.

This finishes the proof of the lemma.

We are now ready to prove Theorem 3.

Proof (Proof of Theorem 3). Let Gn ∼ A(4) with degree sequence dn = (di, i ∈
[n]), and let Sc,Mc, Sb,Mb and Mbc be as in the statement of the theorem.
Starting with Sb and Mb, note that the degree sequence in Gn,0 is (Zi, i ∈ [n])
where Zi = bξdie. Thus, Zi ≤ di, meaning by Lemma 5 that

E [Sb] ≤
(
1 +O(nζ(γ−3))

)
c(γ, δ)

(
nζ
)3−γ

= O(nζ(3−γ)) , and

E [Mb] ≤
(
1 +O(nζ(γ−3))

)
c(γ, δ)2

(
nζ
)6−2γ

= O(nζ(6−2γ)) ,

proving claims 3. and 4.
Continuing with Sc and Mc, for community graph Gn,j with |Cj | = z let

Sc,j and Mc,j be the number of loops and multi-edges in Gn,j . Note that, for
any node i ∈ Cj , the degree of i in Gn,j is Yi ≤ di. Thus, by Theorem 2, Yi is
stochastically bounded from above by the random variable Y ∼ P (γ, δ + 1, ∆z).
Then, again by Lemma 5, we have that

E [Sc,j | |Cj | = z] ≤
(
1 +O

(
∆γ−3
z

))
c(γ, δ + 1)∆3−γ

z , and

E [Mc,j | |Cj | = z] ≤
(
1 +O(∆γ−3

z )
)
c(γ, δ + 1)2∆6−2γ

z .
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For the remainder of the proof, we write c = c(γ, δ + 1) to simplify notation.
Recall from phase 2 of the construction process of Gn that |Cj | ∼ P (β, s, nτ ).
Therefore,

E [Sc,j ] =

nτ∑
z=s

E [Sc,j | |Cj | = z]P (|Cj | = z)

≤
nτ∑
z=s

(
1 +O

(
∆γ−3
z

))
c∆3−γ

z

∫ z+1

z
y−β dy∫ nτ+1

s
y−β dy

.

We split the sum at the community size z∗, where z∗ is minimal with the property
that

⌊
z∗ − 1

1− ξφ

⌋
≥ nζ .

Note that, for z ≤ z∗, ∆z = Θ(z), and for z ≥ z∗, ∆z = nζ . Let c′ be a constant
satisfying ∆3−γ

z ≤ c′z3−γ for all s ≤ z ≤ z∗. For the first part of the sum, we
have

z∗∑
z=s

(
1 +O

(
∆γ−3
z

))
c∆3−γ

z

∫ z+1

z
y−β dy∫ nτ+1

s
y−β dy

≥
z∗∑
z=s

(
1 +O

(
zγ−3

))
cc′z3−γ

∫ z+1

z
y−β dy∫ nτ+1

s
y−β dy

≤
(
1 +O

(
sγ−3

))
cc′

z∗∑
z=s

∫ z+1

z
y3−γ−β dy∫ nτ+1

s
y−β dy

=
(
1 +O

(
sγ−3

))
cc′
∫ z∗+1

s
y3−γ−β dy∫ nτ+1

s
y−β dy

=
(
1 +O

(
sγ−3

))
cc′ (β − 1) s1−β

(
(z∗ + 1)

4−γ−β − s4−γ−β

4− γ − β

)
= O

(
1 + (z∗)4−γ−β

)
= O

(
1 + nζ(4−γ−β)

)
.



Self-similarity of Communities of the ABCD Model 29

For the second part of the sum, we have

nτ∑
z=z∗+1

(
1 +O

(
∆γ−3
z

))
c∆3−γ

z

∫ z+1

z
y−β dy∫ nτ+1

s
y−β dy

=

nτ∑
z=z∗+1

(
1 +O

(
nζ(γ−3)

))
c nζ(3−γ)

∫ z+1

z
y−β dy∫ nτ+1

s
y−β dy

=
(
1 +O

(
nζ(γ−3)

))
cnζ(3−γ)

nτ∑
z=z∗+1

∫ z+1

z
y−β dy∫ nτ+1

s
y−β dy

=
(
1 +O

(
nζ(γ−3)

))
cnζ(3−γ)

∫ nτ+1

z∗+1
y−β dy∫ nτ+1

s
y−β dy

=
(
1 +O

(
nζ(γ−3)

))
cnζ(3−γ)

(z∗ + 1)1−β − (nτ + 1)1−β

s1−β − (nτ + 1)1−β

= O
(
nζ(3−γ)(z∗)1−β

)
= O

(
nζ(3−γ)nζ(1−β)

)
= O

(
nζ(4−γ−β)

)
,

and thus, E [Sc,j ] = O(1 + nζ(4−γ−β)). An analogous calculation shows that
E [Mc,j ] = O(1 + nζ(7−2γ−β)). Claims 1. and 2. now follow from linearity of
expectation, along with the fact that w.e.p. the number of communities in Gn
is Θ(n1−τ(2−β)).

Claim 5. states that E [Mbc] = o(Mc). To see this, let Cj be a community in
Gn and let u, v ∈ Cj . Now let Mc(u, v) be the number of {u, v} multi-edge pairs
in Gn,j , and let Mbc be the number of {u, v} multi-edge pairs with one edge in
Gn,j and the other in Gn,0. Then

E [Mc(u, v) | dn] = Θ

 d2ud
2
v(∑

i∈Cj di

)2
 ,

whereas

E [Mbc(u, v) | dn] = Θ

 d2ud
2
v(∑

i∈Cj di

)(∑
i∈[n] di

)
 .

Since
∑
i∈Cj di = o

(∑
i∈[n] di

)
for all communities Cj , we get that E [Mbc(u, v)] =

o (E [Mc(u, v)]), and Claim 5. follows from linearity of expectation.
Finally, we know that w.e.p. L = Θ(n1−τ(2−β)) and that w.h.p. E [Sc] =

Ω(L). Now suppose that γ + β > 4 and that 2ζ(3 − γ) + τ(2 − β) ≤ 1, and
note that these two inequalities imply that 2γ + β > 3 + γ + β > 7 and that
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3− γ + τ(2− β) ≤ 1. Therefore, under this assumption, w.h.p. we have

E [Sc] = O
(
(n1−τ(2−β))(1 + nζ(4−γ−β))

)
= O

(
n1−τ(2−β)

)
,

E [Mc +Mbc] = (1 + o(1))E [Mc] = O
(
(n1−τ(2−β))(1 + nζ(7−2γ−β))

)
= O

(
n1−τ(2−β)

)
,

E [Sb] = O
(
nζ(3−γ)

)
= O

(
n1−τ(2−β)

)
, and

E [Mb] = O
(
n2(ζ(3−γ))

)
= O

(
n1−τ(2−β)

)
,

which proves the final claim.


