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The Canadian Mathematical Olympiad (CMO) is an annual, invitational,
proof-based competition for Canadian students. It is considered to be Canada’s
premier national advanced mathematics competition. Students attempt to solve
5 problems in three hours, with each problem graded on a scale from 0 to 7.
In 2020, the CMS introduced the Canadian Junior Mathematical Olympiad
(CJMO), also by invitation only, a variant specifically for students in grade at
most 10. These 3-hour competitions are held each March at a selected time and
date (by default, the second Thursday of March). All official participants write
at the same time and are proctored by their local school faculty or staff. For
more information visit https://cms.math.ca/competitions/cmo/.

The CMO is an important contest for students with international aspirations,
as a good performance leads to the Canadian Team Selection Test, and then onto
the International Mathematical Olympiad itself. Qualification for the C(J)MO
is primarily via the Canadian Open Mathematics Challenge (COMC), an open
contest written in late October.

In total, the 2024 CMO was written by 91 students, with 87 official entrants.
The CJMO was written by 21 students, all official entrants. Six Canadian
provinces were represented, with the number of contestants as follows:

CMO: AB(7), BC (18), NS (1), ON (39), QC (7), SK (1)

CJMO: BC (7), NS (2), ON (12)

(note that Canadian citizens residing outside of Canada can also officially write
the CMO, accounting for the discrepancy in numbers).
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Grading for both contests went relatively smoothly, with a team of 12 math-
ematicians, including professors, students, and former contestants, contributing
their time. The top score on the CMO was 34, achieved by Warren Bei, and the
mean score was 14.7. The Matthew Brennan Award for best solution went to
Ming Yang for an excellent solution to problem 5. On the CJMO, a perfect score
of 35 was achieved by Ryan Li, and the mean score was 18.3. A full breakdown
of the marks assigned problem by problem is in Table 1.

Score P1 P2 P3 P4 P5
7 41 68 22 3 3
6 9 4 12 1 0
5 7 3 4 4 0
4 5 0 2 1 0
3 4 1 3 3 0
2 5 4 4 11 1
1 11 0 0 4 9
0 9 11 44 64 78

Avg 4.71 5.78 2.98 0.95 0.35

(a) CMO

Score P1 P2 P3 P4 P5
7 13 13 6 8 2
6 0 2 1 1 0
5 0 1 2 0 1
4 0 2 1 0 1
3 0 1 0 0 1
2 6 1 3 2 0
1 0 0 0 0 0
0 2 1 8 10 16

Avg 4.90 5.76 3.24 3.14 1.24

(b) CJMO

Table 1: C(J)MO score breakdown by problem.

An interesting problem that appeared this year was problem 2 on the CMO,
which doubled as problem 4 on the CJMO.

Problem 1. Jane writes down 2024 natural numbers around the perimeter of
a circle. She wants the 2024 products of adjacent pairs of numbers to be exactly
the set {1!, 2!, . . . , 2024!}. Can she accomplish this?

One can easily generalize this problem by replacing 2024 by N ≥ 2 at each
appearance, and a natural place to start is by looking at small values of N .
For N = 2, both products are necessarily equal. This is not a very interesting
observation, and clearly it does not generalize, so go on toN = 3. If the numbers
are a, b, c in order, the products are ab, bc, ca, which must be 1! = 1, 2! = 2, 3! = 6
in some order. One can list out all 3! = 6 pairings of products and solve the
algebra, but even if this works (it does!), it would not be easily generalizable to
N = 2024. Instead, it makes sense to look at some invariants that are preserved,
no matter what assignment of products is made.

A natural one is the sum: no matter what, we must have ab + bc + ca =
1 + 2 + 6 = 9. While this seems useful at first, it’s not clear where to go from
here. On the other hand, the product is also invariant, and this gives

(abc)2 = (ab)(ac)(bc) = 1 · 2 · 6 = 12.

In fact, this allows us to solve for a, b, c! As they must be positive, abc =
√
12,
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and then from expressions analogous to

a =
abc

bc
=

√
12

1, 2, or 6

one can solve for a, b, c. In fact, this shows that if Jane wants to write down
positive real numbers, she can always do so uniquely, no matter which order she
wrote the products in!

However, there is a problem with this: the question requires that all numbers
Jane writes are natural, and

√
12 /∈ N. Indeed, we could have detected this

without even solving for a, b, c: the expression (abc)2 = 12 gives a contradiction,
as abc is a positive integer and 12 is not a perfect square.

If you try a few more small cases you will quickly see that this fact is more
general: if Jane can accomplish the task, then the product of all N numbers
must be a perfect square. Indeed, if these numbers in order are a1, a2, . . . , aN ,
then the products formed are a1a2, a2a3, . . . , aN−1aN , aNa1, which form the
product (a1a2 · · · aN )2. The following observation immediately follows.

Proposition 2. If Jane can accomplish the task for some N > 1, then 1! ·
2! · · ·N ! is a perfect square.

If this product is a perfect square, then we do not have a contradiction, but
we still do not yet know if Jane can accomplish the task! For example, if N = 3
and the products were 1, 3, 12, then abc =

√
1 · 3 · 12 = 6, giving the numbers

6, 2, 1
2 , which do not work since 1

2 is not integral. A further complicating ob-
servation is that if N is even, then there is no unique solution! For example,
if N = 4, then replacing a1, a2, a3, a4 by 2a1, 0.5a2, 2a3, 0.5a4 give the same se-
quence of adjacent products. At this point, we will hope that 1! · 2! · · ·N ! is
never a perfect square, which would avoid this extra analysis.

It turns out that this is true for all N > 1. We will finish the problem
by giving a few approaches for N = 2024, with the second being relatively
straightforward to generalize to all N > 1.

Proposition 3. The number K = 1! · 2! · · · 2024! is not a perfect square.

Solution 1. A basic way to show that a number x is not a square is to find
a prime divisor p such that p2 ∤ x. More generally, consider vp(x), the p-adic
valuation of an integer x, which is the exponent of the highest power of the
prime number p that divides x. If vp(x) is odd, then x is not a perfect square.

For our problem, we know that p | x! if and only if p ≤ x, so choosing a large
p will limit the possible x! it can divide, presumably making the analysis easier
to consider. For example, p = 2017 will divide 2017!, 2018!, . . . , 2024! each once,
giving vp(K) = 8, which is even! In fact, for any prime 1012 < p < 2024, we
end up with vp(K) = 2025− p, which is always even.

Since these large primes will never work, let’s try going slightly lower. If
we pick p such that 2024

3 < p ≤ 2024
2 , then there is 1 contribution of p from

p!, (p + 1)!, . . . , (2p − 1)!, and 2 contributions from (2p)!, (2p + 1)!, . . . , 2024!.
This totals to p + 2(2025 − 2p), which is odd! Thus, proving that there is
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a prime in this range [675, 1012] will suffice. Trial division shows that 677 is
prime, and lies in the range required (see below for more on this step).

This solution contained a proof of special cases of Legendre’s formula

vp(x!) =

∞∑
i=1

⌊
x

pi

⌋
,

which can be used to compute vp(K) in general.
Another observation is that this proof requires finding a prime p in a certain

range. The prime number theorem states that π(n), the count of prime numbers
at most n, is asymptotic to n

logn , where log n is the natural logarithm of n. Using

this expression we can estimate the number of primes in the interval [675, 1012]
to be

1012

log 1012
− 674

log 674
≈ 43,

reasonably close to π(1012)−π(674) = 47. If we are to attempt to find a prime
by hand, we could pick sample numbers n from this range, and divide by the
prime numbers up to

√
n < 32 to ensure primality.

How quickly can we expect this to work? First, by ensuring that the units
digit of n is 1, 3, 7, 9, we know n is not a multiple of 2 or 5. By ensuring the
sum of the digits is not a multiple of 3, we know that n is also not a multiple
of 3. This leaves 90 numbers, and more than half of them are prime. These are
excellent odds, and we should expect to find a prime within a few guesses only,
limiting the manual labour.

If we want to avoid prime computation all together, then we need a result
that gives us primes in certain ranges. One of the most famous results in this
area is Bertrand’s postulate, which states that for all integers n > 1, there exists
a prime p with n < p < 2n. Bertram conjectured this result in 1845 and proved
it for all n ≤ 3, 000, 000, but a full proof would have to wait for Chebyshev, who
accomplished it in 1852.

Solution 2. Before trying the approach in Solution 1, we can factor out square
factors from K to make our number smaller. One natural way to do this is note
that x!(x+ 1)! = (x+ 1) · (x!)2. Doing this trick for all odd x up to 2023 yields

K = 2 · 4 · · · 2024 · (1! · 3! · · · 2023!)2

= (2 · 1)(2 · 2) · · · (2 · 1012)(1! · 3! · · · 2023!)2

= 21012 · 1012! · (1! · 3! · · · 2023!)2

= 1012!(25061! · 3! · · · 2023!)2.

Thus, K is a perfect square if and only if 1012! is a perfect square. Bertrand’s
postulate implies that there is a prime p with 1012

2 < p < 1012, and such a p
satisfies vp(1012!) = 1, showing that 1012! is not a perfect square.
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