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Abstract

Users on social networks such as Twitter interact with each other without much knowledge of the real-
identity behind the accounts they interact with. This anonymity has created a perfect environment for bot
accounts to influence the network by mimicking real-user behaviour. Although not all bot accounts have
malicious intent, identifying bot accounts in general is an important and difficult task. In the literature
there are three distinct types of feature sets one could use for building machine learning models for
classifying bot accounts. These feature-sets are: user profile metadata, natural language features (NLP)
extracted from user tweets and finally features extracted from the the underlying social network. Profile
metadata and NLP features are typically explored in detail in the bot-detection literature. At the
same time less attention has been given to the predictive power of features that can be extracted from
the underlying network structure. To fill this gap we explore and compare two classes of embedding
algorithms that can be used to take advantage of information that network structure provides. The first
class are classical embedding techniques, which focus on learning proximity information. The second
class are structural embedding algorithms, which capture the local structure of node neighbourhood. We
show that features created using structural embeddings have higher predictive power when it comes to
bot detection. This supports the hypothesis that the local social network formed around bot accounts
on Twitter contains valuable information that can be used to identify bot accounts.

Keywords: Detecting Bots, Node and Structural Embeddings, Social Networks.

1 Introduction

Internet and social media impact all aspects of our lives. We use them to read news, connect with friends and
family, share opinions, buy products, and entertain us. It affects our beliefs, behaviour and so it shapes our
political, financial, health, and other important decisions. Unfortunately, as a result, social networks created
an information platform in which automated accounts (including human-assisted bot accounts and bot-
assisted humans) can try to take advantage of the system for various opportunistic reasons: trigger collective
attention [28, 12], gain status [10, 43], monetize public attention [9], diffuse disinformation [5, 16, 34], or seed
discord [47]. It is known that a large fraction of active Twitter users are bots [44] and they are responsible
for much disinformation—see, [48] for many examples of manipulation of public opinion. Having said that,
not all bot accounts are designed to harm or take advantage of other users. Some of them are legitimate
and useful tools such as chatbots that respond to common questions of users, or knowbots that are designed
to automatically retrieve some useful information from the Internet. On the other hand, human accounts
may also spread disinformation and be responsible for some other malicious behaviour. Detecting bots
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and understanding roles they play within the system falls into a common machine learning task of node
classification. It is important to note that in this work, we do not focus on the intent of the bot accounts
(whether they are benign or malicious); determining this is outside the scope of our study.

The objectives of this paper are to investigate: (1) whether graph embeddings extract information from
the associated network that can be successfully used for node classification task, (2) what is the relative value
of classical vs. structural node embeddings for bot detection, (3) does the predictive power of embeddings
depend on their complexity (measured by the dimension of the embedding). To achieve these goals, we
start with defining classical and structural embedding techniques. Classical embedding techniques, such as
Node2Vec [21] and DeepWalk [37] learn information related to proximity of nodes in the network. On the other
hand, structural embedding algorithms such as Role2Vec [1] and Struc2Vec [39] learn representations of the
local structure surrounding each node. In our work, we build features using both classical and structural
embedding techniques and use those features to train models for classifying bots.

In our experiments, we concentrate on Twitter data and the task of identifying bot accounts, but our
questions (and answers) are broader and so potentially more influential. They are applicable to all kinds
of networks and data sets that are naturally represented as graphs which, of course, includes social media
platforms such as Twitter. Moreover, they are applicable to a much wider class of machine learning tasks:
node classification algorithms train a model to learn in which class a node of the graph belongs to. Bot
detection is a specific example of this class of problems in which a binary classification is performed (nodes
are categorized into bots and humans). However, in general, multi-class classifications is also often considered
and needed. Other important applications of this nature include, for example, identifying nodes associated
with users that might be interested in some specific product, or detecting hostile actors. For this reason there
is an increasing need for effective methods of analysis data represented as graphs. For more details we direct
the reader to a recent survey [30] and a book [25]. Lastly, we point out that although our study focuses on
bot detection on Twitter social network, bot detection in general is a domain specific task. Users (including
bots) on other social networks may interact with one another in different ways, which could impact the
predictive information captured by the underlying social network.

There are many approaches that can be used to perform node classification in graphs. Most techniques
attempt to detect bots at the account level by processing many social media posts and analyzing them using
various NLP techniques with the goal to extract some important and distinguishing features. These features
are usually complemented with user metadata, friend metadata, content and language sentiment, as well
as temporal features [13]. In this paper, we will refer to these features as NLP and P (Profile). These
techniques are very powerful, but a supervised machine learning algorithm is only as good as the data used
for training. Unfortunately, good quality datasets with the ground-truth are rarely available. Additional
challenge is that bot accounts evolve rapidly and so one needs to constantly update datasets and evolve the
set of features to keep up with the other side. In particular, hot topics discussed on social media evolve
rapidly; for example, NLP features that were important for bot detection before presidential elections in some
country might become quickly outdated after the election. Similarly, results of NLP analysis cannot be easily
transferred from one language to another or across differ geographical regions or countries. Furthermore,
recent developments in Large-Language-Models (LLMs) such as GPT-4 [35] will make it more difficult to
detect human versus bot generated language. Language derived features, which may have helped identify
bots, may be obsolete as bots take advantage of more sophisticated LLMs. As a result, a collaborated effort
of many researchers and data scientists is needed to maintain bot detection models. One successful example
is Botometer, bot detection tool developed at Indiana University using various labelled datasets and 1,209
features (current, 3rd version of the model) [48]; see also [42] for a new supervised learning method that
trains classifiers specialized for each class of bots and combines their decisions through the maximum rule
(ensemble approach). Botometer handles over a quarter million requests every day! However, since the bot
score is intended to be used with English-language accounts, what can one do with non-English accounts?
What if the content or metadata is not easily available? Finally, how about other node classification tasks
which cannot enjoy such powerful tools such as Botometer?

An alternative approach is to use some features of nodes that can be calculated exclusively using graph
data. The main advantage of this approach is that such information is easier to obtain and is typically less
sensitive as it does not include the analysis of user messages and metadata associated with them. More
importantly, it can be hypothesised that the signal is more stable in time and graph space, that is, if some
topological structure of the network indicates that some nodes are likely to be bots, then such signal is
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likely to loose its predictive power slower than, for example, discussion topics extracted from NLP features.
Typical features concentrate on local properties of nodes such as node degree, various node centralities, local
clustering coefficient, etc. We will call features derived using this approach as GF (Graph Features). The
idea behind is that bots need to use some strategies to form an audience. They employ various algorithms
to gather followers and expand their own social circles such as following popular accounts and ask to be
followed back [2], generating specific content around a given topic with the hope to gain trust and catch
attention [17], or even interacting with other users by engaging in conversation [24]. These algorithms create
networks around the bots that should be structurally and topologically distinguishable from the ones around
real human beings which, in turn, affect the extracted graph features. The same rationale applies to other
applications of node classification.

The above approach, based on analysis of predefined graph features, was proved to be useful in various
node classifications tasks but it has a few issues. First of all, very often features of one node alone are
not enough to adequately classify the node. Indeed, bots typically work in a coordinated way and are
not usually suspicious when considered individually. Hence, bot detection requires combining information
about multiple bots and analyzing them together [11]. This often is very challenging, both conceptually as
well as computationally, as it requires to consider at least a quadratic number of pairs of nodes. features
capture properties that are rather local whereas some embedding algorithms aim to extract more global and
structural properties. properties Moreover, we often do not have access to a complete network but rather
sample it using some sampling method. Unfortunately, the choice of a sampling algorithm may substantially
affect GF. The features that are to be analyzed need to be predefined by the analyst. Therefore, the result
of this approach depends heavily on skills, knowledge, or just sheer luck of the user.

To solve at least some of these problems, we propose to utilize node embedding algorithms that assign
nodes of a graph to points in a low dimensional space of real numbers. The goal of the embedding is
to decrease the dimension but, at the same time, to extract the most important features of nodes and
ignore noise. We will call features obtained based on this approach EMB. As mentioned, we consider
two classes of embedding techniques. One, which we call classical embeddings, focus on learning local
and global proximity information about nodes. Such techniques can be used to identify communities and
groups in networks. The second class of algorithms, called structural embeddings, learn representations of
the local graph structure around each node. Structural embedding techniques are often used to identify
what roles nodes play in their local environment. These algorithms (both classical and structural) have
quickly became an intensely researched topics in recent years; see, for example, [8] or a recent book [25], and
the list of potential applications constantly increases. After reducing the dimension via node embeddings,
node classification can be done more efficiently compared to extracting graph features and using the original
network to identify synchronized behaviour. On the other hand, synchronized behaviour should create similar
network structure around the involved nodes and so should be captured by the embedding. Such group of
nodes may be then potentially extracted (even in an unsupervised way) by some machine learning tools such
as DBSCAN that are able to identify dense regions of the embedded space. Some embedding algorithms not
only capture local properties of graphs but also try to pay attention to global structure and different roles the
nodes play within the network [39, 14] which might carry more predictive power than local GF. Additional
benefit of such approach, in comparison to using GF, is that features are identified automatically in an
unsupervised way by the algorithm, as opposed to having to identify them manually by the analyst. Finally,
embeddings seem to be less sensitive to sampling techniques and so they might be used as a foundation for
more robust classification algorithms. There are many different node embedding algorithms considered in
the literature. Additionally these embeddings have many hyperparameters, of which a common among all
embedding approaches is their target dimension. Although embeddings were considered for various tasks in
the earlier literature, an analysis of how useful they can be for bot detection remains an open field that we
investigate in this paper. To answer this question we report on predictive power of NLP, P, GF, and EMB
features. This investigation also allows us to compare classical and structural embeddings to find which of
them are more useful for this task. Additionally, we check how target embedding dimension hyperparameter
affects their predictive power.
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2 Research Motivation and Goals

As we have highlighted in the introduction, there are many aspects of a user data that one could leverage in
building models for identifying whether a user is bot or non-bot. In this work, we categorize these features
into four groups. The first are features captured from user profile data and features derived using natural
language models from user tweets (NLP and P). The second are simple graph features, computed for nodes
like degree or eigenvalue centrality (denoted GF). The third are features extracted from the user’s social
network using embedding algorithms (EMB). EMB features are further broken down into classical and
structural embeddings. We build bot classification models using various combinations of the above feature
sets, for two different datasets (as will be highlighted in the coming sections). It is important to note that
our focus is not on identifying whether bot accounts are malicious or benign. Also, we are not introducing a
new bot classification model, rather our aim is to compare the predictive power of these feature sets (NLP,
P, GF and EMB) with the focus on node (classical) and structural features extracted using embedding
algorithms as a new and novel source of predictive features. More specifically, we compare the predictive
power of structural versus classical embeddings and show that bot accounts on Twitter often form local
social structures, which can be captured by structural embedding techniques.

The main contributions of our paper are as follows:

• By analyzing the performance of bot detection models, using various combinations of feature sets we
show that all three feature sets (NLP, P, GF and EMB) have predictive power for identifying bot
accounts.

• Addition of classical and structural features enhances the performance of bot detection models, hinting
at the fact that there are clues for detecting bot accounts in the graph features extracted from the
structure of the social network of the users that are not captured by other types of features.

• By analyzing six different embedding algorithms (EMB) and comparing their performance to human
engineered features (GF), we show that embedding algorithms can capture features having predictive
power in an unsupervised way that is difficult to design manually.

• Using two different Twitter datasets, we show that features extracted using structural embedding
techniques have higher predictive power as compared to features learned using classical embedding
techniques.

• We perform dimensionality analysis on both structural and classical embeddings and show that in-
creasing dimensionality of embeddings does not bring much value added. Already low-dimensional
embeddings are useful for bot detection.

• Lastly, we perform stability analysis against our embedding features and show that models built using
embedding algorithms can be resistant to the addition of noise in the underlying network.

Finally, let us stress that despite the fact that these results are optimistic and show a potential of algorithms
based on graph embeddings, this is an early stage of research in this direction. We finish the paper with a
discussion of future work that will deepen our understanding of the power (as well as potential issues) of
embedding algorithms.

3 Related Work

In this section, we provide a brief overview of various studies focusing on bot detection algorithms as well
as feature sets used for building such models. There are numerous studies focusing on feature engineering
and feature extraction from user information on social media networks such as Twitter [18, 27, 33, 45, 30].
For example, in their work Minnich et al. [33] categorize the feature sets used for detecting bots into the
following categories: metadata-based features, content-based features, temporal-based features, and network-
based features. In this work, the authors mention the importance of including information about the social
network of bot accounts such as the number of followers captured by node out-degrees. Similar feature sets
were used by Lee et al. [26], where the authors focus on extracting features from user generated information
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such as tweets and profile data, in addition to first degree graph features such as node degree. Indeed,
many of the research efforts on extracting network features are focused on first degree features that can be
mapped to real-world metrics such as the number of followers or friends, in addition to network of users who
directly interact with user’s tweets via liking or re-sharing them. As we will show in our work, higher order
network features such as the network structure of a user’s followers (follower’s of your followers) can have
additional predictive power when comes to building bot classification algorithms. There are also a number
of studies focused on using node and graph embeddings as features (in addition to other types of features
mentioned above) for building bot detection algorithm [29, 3, 4, 22, 38]. For example, Alkulaib et al. [4]
build a bot detection technique using the anomalous properties of certain nodes in the graph. The authors
use a graph transformer as a self-attention encoder to learn both node and structural representations of
nodes. In another work, Hamdi et al. [22] investigate fake news detection on Twitter using node and graph
embeddings. Although the studies mentioned here highlight the fact that embeddings can be used as a
source of features with predictive power for building classifiers on the social network, they do not explore
the difference between structural versus classical (node) embedding techniques.

Although the majority of the effort has been focused on identifying bots, there has been some recent
research that focuses on identifying whether bot accounts are malicious or benign. For example, Mbona
et al. [31] use features generated from user information to predict whether a user account is malicious or
benign. In their paper, Mbona et al. [31] use similar feature sets such as user information and tweet data for
analyzing their models. Other recent research such as Tan et al. [44] work on estimating the number of bots
in a given twitter community. In this work, the authors use user data, tweet data in addition to graph data
to build models that estimate the number of bots in a various twitter communities. Of course the success
of any classification model relies heavily on how the underlying dataset was constructed and the quality of
the ground truth labels. In the following section, we will introduce two datasets, which will be used in this
work for benchmarking the predictive power of various extracted feature sets.

4 Datasets

Developing and evaluating bot detection algorithms relies on the availability of unbiased labeled datasets.
Although there are numerous datasets used for building and benchmarking bot detection algorithms, we
mainly focus on using two recently curated Twitter datasets by Feng et al. [15] [TwiBot-20] and Stella et
al. [43] [Italian Election]. We recognize that labeled bot-datasets often contain some level of bias, since
the real ground-truth is not readily available. In general, labels are identified by careful analysis of humans
or by cleverly designed algorithms. Throughout our study, we ensure to stay aware of this fact and highlight
any impact this may have on our findings.

In the TwiBot-20 dataset, the authors focus on building a comprehensive Twitter dataset composed of
semantic, property, and neighbourhood information. Here, semantic is the Tweet text generated by the user;
property is the information related to user profile such as number of followers and following, and finally,
neighbourhood is the network structure of the user. We highlight the features used from this dataset below.
To capture a natural representation of the ground-truth Twittersphere, the authors implemented a breadth-
first search algorithm, to sample and build the dataset. In this methodology, a user is selected as the root of
the tree and subsequent layers are built using the directed follow edges of each user. This process is repeated
up to layer 3, creating a sample network with a selected user at its root [15]. The sampling algorithm used by
the authors builds a directed graph, where nodes are users and edges are follow relationship. As highlighted
by Feng et al., this method of sampling does not focus on any particular topic or pattern and should be a
more natural representation of the Twittersphere.

We compile a list of raw features available from the TwiBot-20 dataset in Table 1. Note that the
values for these features are a snapshot captured at the time of sampling. We categorize each feature into
three types: Profile, NLP and Graph. The profile features are datapoints available through Twitter’s API,
and highlight some properties of each user. As pointed out by Feng et al., the followers and following are
randomly selected. We use the raw user Tweets as the input to our NLP feature engineering. We provide
more detail in our NLP feature analysis section. Lastly, graph features are build using the raw edge list
provided in the TwiBot-20 dataset. As mentioned before, an edge between two nodes indicated a follow
relationship between the nodes. Although the original network provided by Feng et al. is a directed graph,
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Type Feature Description

Profile protected When true, indicates that this user has chosen to protect their
Tweets.

Profile followers count The number of followers this account currently has.
Profile friends count The number of users this account was following (AKA their “fol-

lowings”) at the time.
Profile listed count The number of public lists that this user is a member of.
Profile favourites count The number of Tweets this user has liked in the account’s lifetime.
Profile statuses count The number of Tweets (including retweets) issued by the user.
Profile geo enabled When true, indicates that this user enables geolocation (depre-

cated in today’s API).
Profile default profile When true, indicates that the user has not altered the theme or

background of their user profile.
Profile default profile image When true, indicates that the user has not uploaded their own

profile image and a default image is used instead.
Profile business User interest domain: business (from [15]).
Profile entertainment User interest domain: entertainment (from [15]).
Profile politics User interest domain: politics (from [15]).
Profile sports User interest domain: sports (from [15]).
Profile verified True, if the user if verified by Twitter. This is the blue check-mark

indicator in user’s profile.
NLP raw tweets The raw recent 200 tweets for each root user.
Graph graph* Degree Centrality, Strength, Eigen Centrality, Closeness, Har-

monic Centrality, Betweenness, Authority, Hub Score, Constraint,
Coreness, Eccentricity, PageRank

*Note that the graph features are calculated by us and not available in the original dataset.

Table 1: Feature list for TwiBot-20 dataset.

we convert it to undirected graph for our analysis. Lastly, we note that the profile feature verified is excluded
from the bot classification process. This is done for two main reasons. Firstly, most users accounts are not
subject Twitter’s verification process, where an account is confirmed to be owned by the user it claims to
be. This process would inherently exclude bots from being verified. Secondly, due to the nature of the
verification process, this feature could introduce bias for any classifier, thus making the discovery other
meaningful features more difficult.

In the Italian Election dataset, Setlla et al. [43] aim to investigate the online social interactions during a
2018 Italian election and how it helps to understand the political landscape. In their work, the authors study
relationship between real users and bots, using the Twitter network. Unlike the TwiBot-20 dataset, the
authors build a sample of the social network by focusing on tweets containing a list of political topics; such
as ”#ItalyElection2018”, ”#voto”, etc. The sampling technique used by Setlla et al. results in a network
with a vastly different graph topology than that created by Feng et al.. By sampling the TwitterSphere
based on topics, the authors created a dataset in which nodes are users and edges represent interactions
between users, such as retweets or mentions. Although this makes it difficult to compare the performance of
bot detection algorithm between these two datasets, having diversity in how a social network is constructed
helps us understand how bots manifest themselves within a network. The Italian Election dataset also
contains labels indicating if a user is identified as a bot or not. As described by the authors, the bot/not-bot
labels were generated by using an a classifier trained using Twitter user’s profile information [43]. Although
the original dataset used by Setlla et al. [43] contains user profile and raw Tweet data, in this work we
only have access to the network data and thus we can only focus on features extracted from the underlying
network structure. Similar to the TwiBot-20 network, the Italian Election graph is directed, with edges
pointing from users who interact with other user’s content. We also convert the Italian Election graph
into an undirected graph for the purpose of our study.
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Metric Twibot-20 Italian Election

Number of Nodes 156,115 12,404
Number of Edges 166,764 21,029
Size of Largest Connected Component 142,280 7,807
Number of Components 646 586
Avg Degree (Bots) 20.13 3.59
Avg Degree (Not-Bot) 20.38 3.28
Number of Isolated Nodes 0 0
Avg Community Size [Louvain] 172.3 19.7
Number of Communities [Louvain] 906 631
Modularity [Undirected] 0.945 0.796

Table 2: Graph statistics for the Twibot-20 and Italian Election datasets.

We summarize some high-level statistics of both networks in Table 2. It is important to note that we apply
additional data cleansing and filtering to provided dataset. For example, we run our analysis on the largest
component of each graph, and convert both graphs into undirected networks. The reason for converting
these graphs to undirected networks is that some embedding algorithms only take undirected graphs as
input. Using undirected network ensures that comparison between the performance of each embedding
is fair. It is important to note however that by converting graphs from directed to undirected we lose
some (potentially predictive) information. Lastly, we note that the sampling technique used to construct
the above two networks has potential impact on the level predictive information captured by featured built
using node/graph statistics and embedding algorithms. One could construct a social network based a variety
of information, for example edges could represent follow/friend relationship or retweet or like relationship.
Nodes themselves could represent users or tweets.

5 Profile and NLP Features

In this section we focus on features extracted from user’s profile information and their tweets. We perform
feature engineering, specially on the raw tweets using various NLP techniques. Since we only have profile
and tweet data from the Twibot-20, our analysis is centered around this dataset. To maximize their impact
on a social network, bots aim to mimic real-user behaviour. To this end, bots aim to create accounts and
content that seem natural, such that it was generated by a real user. An example of such actions could
include following other users, tweeting about relevant topics and engaging in conversations. Despite their
effort, as we will discuss in this section, bots often leave behind signs that allow us to distinguish them from
non-bots. Starting with the profile Twitter API data named in Section 4, the number of public lists that a
user is a member of, listed count, is strikingly different for the two groups (bots vs. non-bots)—see Figure 1
and Table 3. It is a measure of user’s popularity, and it turns out that humans tend to be added to Twitter
lists by other users of the platform more often than bots are. It means that in general Twitter users value
human-generated tweets and intuitively prefer this type of content.

It is worth noting the difference between the number of users that follow them (followers count) and the
number of accounts the user follows (friends count)—see Figure 2 and Table 3. There is a clear asymmetry
here. In general, humans follow less users and get followed more than bots do. The reason behind this could
be that bots become friends with many users in order to seem more legitimate and, at the same time, human
users are less interested in bot-generated content than the one created by humans.

In addition to the original profile data from the Twitter API we listed in Section 4, we have extracted a
number of features from user tweets in the Twibot-20 dataset. This was done by sampling each user’s tweets
and running NLP feature extraction on them. For language detection we utilized fastText python mod-
ule [6], whereas for the sentiment analysis (only for the English tweets) we used HuggingFace, transformer
pre-trained model [46]. Here is the list of extracted features:

• links no - total number of hyperlinks in user tweets

7



Bot Non-Bot
Feature KS p-value Mean STD Median Mean STD Median
friends count 5.069e-25 5,084.816 24,215.345 839.0 8,732.032 87,998.503 614.0
followers count 9.999e-01 20,735.2 182,269.0 724.0 1,490,368.1 6,465,366.5 27,322.0
listed count 9.999e-01 112.172 642.845 4.0 3,366.707 14,049.919 212.0
statuses count 8.457e-97 15,546.791 51,880.579 1,971.0 29,356.907 110,080.653 6,577.0
links per tweet 9.075e-08 0.517 0.376 0.420 0.531 0.359 0.464
mentions per tweet 1.049e-63 1.164 1.07 1.11 0.961 0.6 0.940
av tweet len 1.763e-18 112.831 39.384 109.5 114.993 45.373 109.98
std tweet len 9.151e-64 49.543 21.826 46.883 54.8 19.039 54.627
no langs 3.759e-28 4.2 3.079 3.0 5.083 3.804 4.0
perc en 8.082e-79 0.916 0.182 0.975 0.77 0.345 0.955
no odd langs 9.992e-25 3.11 3.06 2.0 3.897 3.723 3.0
perc legit 1.253e-18 0.964 0.045 0.98 0.954 0.053 0.97
av sent 1.122e-34 -0.371 0.342 -0.414 -0.316 0.378 -0.331
std sent 4.457e-27 0.788 0.224 0.859 0.785 0.259 0.886
positive sent perc 2.538e-35 0.311 0.174 0.289 0.339 0.193 0.333
links no 1.6e-33 84.432 73.847 66.0 98.386 74.241 83.0
mentions no 9.141e-26 196.124 210.408 194.0 174.355 124.118 172.0
tweets no 1.031e-90 163.465 66.833 199.0 178.841 54.876 200.0

Table 3: Statistics for the profile features belonging to the Twibot-20’s bot and non-bot accounts.
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Figure 1: Histogram of listed count, number of public lists that users are a member of, for bots and non-bots
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Figure 2: Histogram of followers count, number of users that follow the account (left), and friends count,
number of user’s followings (right), for bots and non-bots

• mentions no - total number of references to other users in user tweets

• tweets no - total number of tweets generated by user
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• links per tweet - average number of hyperlinks per tweet1

• mentions per tweet - average number of references to other users per tweet1

• av tweet len - average tweet length (in characters)

• std tweet len - standard deviation of tweet length

• no langs - number of dominant languages used in tweets (it is assumed that each tweet has exactly
one dominant language)

• perc en - percentage of tweets written in English

• no odd langs - number of languages present in less than 10% of tweets

• perc legit - percentage of tweets written in languages present in more than 10% of tweets

• av sent - average sentiment score (using the scores of the dominant labels)

• std sent - standard deviation of sentiment score (using the scores of the dominant labels, e.g., taking
-0.9 for 0.9 score for negative sentiment)

• positive sent perc - percentage of English tweets with positive sentiment assigned
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Figure 3: Histogram of tweets no, total number of tweets (left), and mentions per tweet, average number
of references to other users per tweet (right), for bots and non-bots

Based on exploratory data analysis, there are some noticeable differences between bots and non-bots.
First of all, as reported in [15], bots in Twibot-20 generate fewer tweets than humans do—see Figure 3
(left). This is quite surprising and in contrast with earlier findings reported in [36]. This difference may
be attributed to the fact that bots change behaviour with time, they are constantly getting more clever.
Currently, they interact with the system only to achieve a very specific goal and often disappear shortly
after, generating fewer tweets in total. This indicates that NLP approach cannot be easily generalized and
might require constant re-training.

It seems that bots tag other users more frequently than humans do—see Figure 3 (right). The reason
behind might be that some types of bots do not produce much of their own content but, instead, tag
many different users to generate their attention and hope for a potential link click. This is reflected in
mentions per tweet (the average number of references to other users per tweet) depicted in the figure but
also in mentions no, its cumulative counterpart. We used the former value in further analyses.

Perhaps surprisingly, Figure 4 suggests that the same reasoning cannot be as easily applied to links no
and its counterpart links per tweet, focusing on the number of hyperlinks generated by users. The two
charts are more ambiguous. For links no, it seems that humans include more hyperlinks in total than bots

1redundant feature—it may be computed from the other features but it is explicitly included in the model
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Figure 4: Histogram of links no, the total number of hyperlinks (left), and links per tweet, the number of
hyperlinks per tweet (right), for bots and non-bots

do. The lowest values of this feature (less than 80) are dominated by bots and the largest ones are non-
conclusive (interchanging between bots and humans dominance). However, if one looks at the per tweet
counterpart, the largest values in the distribution are visibly assigned to bots more often than to humans.
Bots achieve the extreme values of links per tweet about twice as frequently as non-bots even though the
direction was not obvious for the absolute value—the conclusion is that humans generate more hyperlinks
because they generate more tweets. For this reason, we will exclude links no from the analysis and work
using per tweet features instead.

1.0 0.5 0.0 0.5 1.0
av_sent

0

100

200

300

co
un

t

bots
non-bots

0.0 0.2 0.4 0.6 0.8 1.0
positive_sent_perc

0

100

200

300

co
un

t

bots
non-bots

Figure 5: Histogram of av sent, average sentiment score (left), and positive sent perc, percentage of positive
tweets (right), for bots and non-bots

In both examples above, we removed two features that are highly correlated, without affecting the quality
of the model. Of course, one does not need to do it and let the classifier to deal with this situation. Removing
redundant features is, however, a good practice and the main reason to perform EDI. It reduces the dimension
of the problem and so improves scalability. It is another evidence that NLP approach requires supervision
of domain experts and careful investigation.

One of the most noticeable differences seems to be the one in the sentiment of the posts. In Figure 5 there
is a visible mismatch between bots and non-bots, both in terms of sentiment score (left) and sentiment label
(right). While for both groups the histograms are right-skewed, tweets posted by non-humans in general
tend to be more negative than those created by real people. Bots may be present on social media platforms
to lead a campaign against some product, company or political fraction and their actions are deterministic,
not affected by external sources. On the other hand, humans seem to react more strongly to negative stimuli,
that is, we believe in negative opinions more so than praise [41]. It may explain the observed phenomenon.

As one would expect, the way tweets are written seems to be different linguistically between bots and
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Figure 6: Histogram of no odd langs, number of languages present in less than 10% of user tweets (left),
and perc en, percentage of tweets written in English (right) for bots and non-bots

non-bots. Language detection performed on tweets suggests that humans may write in a more convoluted
way in which case the fastText model fails to detect tweet language properly. In Figure 6 (left) we present
the number of languages that the user used in less than 10% of their tweets, i.e. no odd langs. Larger fraction
of bots use zero or only one rare language. The same result holds for no langs and perc legit. Moreover,
bots seem to use mostly English as can be observed in Figure 6 (right). There are only a few bots in the
dataset for which the percentage of tweets written in English (perc en) is low.

With recent advances in Transformer models, computer generated text is becoming evermore human like.
The current state-of-the-art is the OpenAI’s GPT-3 [7], a generative model for NLP tasks with 175 billion
parameters! GPT-3 has been demonstrated to be effective on a variety of few-shot tasks: due to its extensive
pre-training and size, it is able to learn rapidly from very few training examples. It generates texts that
are nearly indistinguishable from human-written texts: Humans correctly distinguished GPT-3 generated
texts from real human texts approximately 52% of the time, which is not significantly higher than a random
chance [7]. For more details on GPT-3 and other related topics we direct the reader to, for example, a recent
survey [30].

Another potential source of information for identifying bot accounts lies within the raw tweet text pro-
duced by each user. To this end, we perform topic modeling using BERTopic (BERT for Topic Modelling) [20].
BERTopic is a topic modelling technique that uses transformers and the c-TF-IDF to produce dense clusters
that allow for clearly understandable topics while maintaining key phrases in the topic descriptions. This is
done to gain insight into difference in the type of topics bot and non-bot account focus on while interacting
with other users. In Figures 7 and 8 we highlight the score of various topics used by bot and non-bot
accounts. The graph represents relative c-TF-IDF scores between and within topics. The darker shades
basically means that the tweets in which the words from a particular topic appeared are strongly related
with each other. Topics extracted here are tokenized and used in the bot classification models, as we will
highlight in later sections. Note that topics for bots and non bots are not the same (e.g. topic 0 for bots is
roughly topic 1 for non bots).

6 Graph Derived Features

We showed in Section 5 that there are statistically significant differences in NLP and P features between bot
and non-bot accounts. Another potentially independent source for extracting features is rooted in the way
users/bots interact with others in the network. One can capture this information by analyzing various graph
properties derived from the underlying social-network. This can be done in two ways. One, by carefully
designing statistical features of the nodes. Second, using unsupervised methods to learn node and structural
representations of the nodes. In this section, we provide a detailed analysis of node feature engineering in
addition to features extracted using various embedding techniques.
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Figure 7: Topic scores for tweets made by bots.

6.1 Node Features

In this section, we build node features derived from the underlying network structure using both TwiBot-20
and Italian Election datasets. For extracting features we use NetworkX as well as igraph python packages
depending on the efficiency of the corresponding algorithms. Here is the list of extracted node-features that
were computed for all nodes. For detailed definition we direct the reader to, for example, [25] or any other
textbook on network science.

• degree centrality - degree (the number of edges the vertex has)

• strength - minimum ratio of edges removed/components created during graph decomposition process

• eigen centrality - eigenvector centrality, a measure of the importance of the vertex (using relative
scores)

• closeness - closeness centrality, a measure of the importance of the vertex calculated using the sum of
the length of the shortest path between the vertex and other vertices

• harmonic centrality - harmonic centrality (another variant of closeness centrality, calculated similarly)

• betweenness - betweenness centrality, a measure of the importance of the vertex calculated using
number of shortest paths that pass through the node

• authority - authority score, sum of the scaled hub values that have edge to the given node

• hub score - hub score, sum of the scaled authority values of the nodes it has edge to
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Figure 8: Topic scores for tweets made by non-bots

• constraint - Burt’s constraint, an index that measures the extent to which a person’s contacts are
redundant

• coreness - coreness (unique value of k such that a node belongs to the k-core but not to the (k+1)-core)

• eccentricity - eccentricity (the maximum distance from a given node to other nodes)

• pagerank - another way of measuring node importance - invented by Google Search to rank web pages
in Google search engine output

In addition to the above list of features, we compute average, standard deviation, minimum and maximum
of every feature for the neighbouring nodes of each vertex. A full list of these features is given in Tables 6
and 7.

As we highlighted in section 4, there are major differences in how the TwiBot-20 and Italian Election
datasets were constructed. Firstly, the underlying network constructed in the TwiBot-20 captures follower-
following relationship, while the network in the Italian Election dataset represents interactions between
users. Secondly, the sampling technique used in the TwiBot-20 dataset results in much more uniform graph
topology since at each sampling layer a fix number of nodes (followers) were sampled. This is in contrast
to the Italian Election dataset, were nodes were more randomly sampled. The difference in the network
topology between these two datasets is reflected in the values captured using the node-features, as shown in
Figures 9, 10, 11, and 12. This is indeed an important observation, since one could extract more meaningful
node-features by resampling the same underlying graph using different techniques.
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Figure 9: Histogram of closeness centrality measure for bots and non-bot users’ neighbours for TwiBot-20
(left) and Italian Election dataset (right)
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Figure 10: Histogram of closeness centrality measure for bots and non-bot users’ neighbours for TwiBot-20
(left) and Italian Election dataset (right)
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Figure 11: Histogram of harmonic centrality measure for bots and non-bot users’ neighbours for TwiBot-20
(left) and Italian Election dataset (right)

14



2 4 6 8
pagerank 1e 5

0

200

400

600

800

1000

co
un

t

bots
non-bots

0.0000 0.0005 0.0010 0.0015
pagerank

0

100

200

300

400

500

600
co

un
t

bots
non-bots

Figure 12: Histogram of pagerank measure for bots and non-bot users’ neighbours for TwiBot-20 (left) and
Italian Election dataset (right)
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Secondly, the features which calculation did not involved neighbours (Figures 9, 10, 11, and 12) indicate
only slight differences between bots and non-bots, both in terms of feature count and magnitude of discrep-
ancies. Nevertheless, in the case of harmonic and closeness centrality (Figures 11 and 9) the difference is
more visible on the Italian Election dataset: bots seem to be more likely to take extreme values. Regard-
ing the TwiBot-20 dataset, the discrepancies between bot and non-bots are less visible, but all closeness,
degree, harmonic centrality, and pagerank measure distributions seem to be more left-skewed for non-bots.
(Figures 9, 10, 11, and 12).
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Figure 13: Histogram of neighbours’ mean betweenness measures for bots and non-bot users’ neighbours for
TwiBot-20 (left) and Italian Election dataset (right)
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Figure 14: Histogram of neighbours’ max closeness measures for bots and non-bot users’ neighbours for
TwiBot-20 (left) and Italian Election dataset (right)

Figures 13, 14, 15, and 16 reveal that discrepancies between bot and non-bots groups are more visible
on the distributions of features involving particular nodes’ neighbours’ during calculation. Similarly to the
previous group of characteristics, differences are more visible on the Italian Election data and again, values
in this dataset seem to have lower variance (Figures 13, 14, and 15) or variance among groups (Figure 16).
In particular, values for bots’ features seem to have even lower standard deviation (Figures 14 and 16),
which may be an indicator of the fact that bots constitute a homogenous group. Nevertheless, as different
conclusions may be drawn on the basis of TwiBot-20 dataset (Figures 13, 14, 15, and 16), so this observation
may be attributed to different sampling or annotating method.

The fact that node features constructed on the basis of data about vertices’ neighbours may help in
explaining being bot versus non-bot (at least more than pure node features) indicates the purposefulness
of node embeddings usage. However, as this assumption is based solely on graphical analysis, one may be
interested in modelling the relationship of node features and “being a bot”. This is done in the following
sections.
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Figure 15: Histogram of neighbours’ mean authority measures for bots and non-bot users’ neighbours for
TwiBot-20 (left) and Italian Election dataset (right)
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Figure 16: Histogram of neighbours’ mean eccentricity measures for bots and non-bot users’ neighbours for
TwiBot-20 (left) and Italian Election dataset (right)

6.2 Classical and Structural Embeddings

There are over 100 algorithms proposed in the literature for classical and structural embeddings which are
based on various approaches such as random walks, linear algebra, and deep learning [19, 25]. Moreover,
many of these algorithms have various parameters that can be carefully tuned to generate embeddings in some
multidimensional spaces, possibly in different dimensions. In this paper, we typically set all parameters but
the dimension to the default values recommended by their authors. Once parameters are fixed, the algorithms
learn the embedding in an unsupervised way. Having said that, some algorithms are randomized and so the
outcome might vary. For our experiments, we selected 6 popular algorithms that span different families and
includes both node as well as structural embeddings.

The first two algorithms, Deep Walk [37] and Node2Vec [21], are based on random walks performed on the
graph. This approach was successfully used in NLP; for example the Word2Vec algorithm [32] is based on the
assumption that “words are known by the company they keep”. For a given word, embedding is achieved by
looking at words appearing close to each other as defined by context windows (groups of consecutive words).
For graphs, the nodes play the role of words and “sentences” are constructed via random walks. The exact
procedure how one performs such random walks differs for the two algorithms we selected.

In the Deep Walk algorithm, the family of walks is sampled by performing random walks on graph G,
typically between 32 and 64 per node, and for some fixed length. The walks are then used as sentences. For
each node vi, the algorithm tries to find an embedding ei of vi that maximizes the approximated likelihood
of observing the nodes in its context windows obtained from generated walks, assuming independence of
observations.

In Node2Vec, biased random walks are defined via two main parameters. The return parameter (p)
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controls the likelihood of immediately revisiting a node in the random walk. Setting it to a high value
ensures that we are less likely to sample an already-visited node in the following two steps. The in-out
parameter (q) allows the search to differentiate between inward and outward nodes so we can smoothly
interpolate between breadth-first-search (BFS) and depth-first search (DFS) exploration.

The above algorithms primarily capture proximity among the nodes, nodes that are close to one another
in the network are embedded together. But proximity among the nodes does not always imply similarity, as
in the specific application we consider in this paper, bot detection. A role the nodes play within the network
depends more on the structure of the network around them more than the distance between them. (See [40]
for a survey on roles.) The next four algorithms aim to create embeddings that capture structural properties
of the network.

The first algorithm from this family, Role2Vec [1], generalizes the above techniques based on traditional
random walks. To capture whether two nodes have the same role within the network, the notion of attributed
random walks is introduced which is not tided to node identity but is instead using a function that maps a
node attribute vector to a role. As a result, the algorithm learns associations among subsets of nodes (that
is, roles) instead of properties of individual nodes.

RolX [23] is another approach to explicitly identify the role of nodes using exclusively the network struc-
ture. This algorithm is based on enumerating various structural features for nodes in an unsupervised way,
and finding the most suited basis vector for this joint feature space. Then, the algorithm assigns every node
with a distribution over the identified roles (basis), allowing for mixed membership across the roles.

The next algorithm, Struc2Vec [39] uses a hierarchy to measure node similarity at different scales. As a
result, it constructs a multilayer graph to encode structural similarities and generate structural context for
nodes. This hierarchical view is useful as it provides a sequence of more restricted notions of what it means
to be structurally similar. At the bottom of the hierarchy, similarity between nodes depend exclusively on
their degrees whereas at the top of the hierarchy similarity depends on the entire network.

The last algorithm we tested, GraphWave [14] uses techniques from graph signal processing. It learns
structural embeddings by propagating a unit of energy from a given node and characterizes its neighbouring
topology based on the response of the network to this probe. The runtime of this algorithms scales linearly
with the number of edges.

As mentioned earlier, we fix most of the hyperparamters of each algorithm to their default value, and
only adjust the embedding dimension. Of course, it is important to note that it is possible to optimize the
outcome of each algorithm by searching for the ideal set of parameters for the task at hand, however our
goal is not to optimize for the best metrics, but rather learn whether embeddings can help us in identifying
bots in a social network.

7 Bot Classification

Thus far, we have focused on engineering and analyzing features built using user-profile, NLP, node-features
and embeddings. In effort to understand the predictability of these features in identifying bot accounts, we
train and test various classification models using the TiwBot-20 and Italian Election datasets. Since the
underlying data for these datasets are different, we divide our analysis into two section accordingly, focusing
on each dataset separately. In both cases, datasets are sampled such that bot/non-bot classes are balanced
(50/50). Furthermore, we use a 80/20 split for the train/test datasets. A 5-fold cross-validation process is
then used to arrive the best performing model and avoid any overfitting. All metrics are then computed
using the test-set.

7.1 Bot Detection Using TwiBot-20 Dataset

In this section, we use NLP, P, GF and EMB features to build a bot classification model. Our goal is not to
optimize for the best performing model, but rather understand the predictive power of each feature-set. We
build five models using various combinations of feature-sets. A summary of the performance of each model
is highlighted in Table 4. As shown, the best performing model (based on accuracy) is the one trained on all
features combined, achieving an accuracy of 81.76%. Furthermore, we note that models trained on EMB
perform slightly better than those trained on GF alone. This enforces the fact that unsupervised embedding
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algorithms have the potential to learn complex and meaningful node features. More importantly, a model
built on a combined GF+EMB performs better than GF and EMB separately, hinting that embedding
features capture incremental predictive information about the nodes. Lastly, we note that models built using
features extracted from the underlying network (GF and EMB) suffer from the uniform topology of the
TwiBot-20 dataset, as described previously. A different sampling technique could potentially result in a
boost in the predictive power of features built using the network structure.

There are various strengths and weaknesses of the embedding algorithms, which we need to address.
In terms of strengths, node and structural embedding algorithms are often unsupervised and generalizable
techniques that can be applied to any network. This however may not be the case for profile meta-data and
NLP features, as they depend on the specifics of the data source. For example, NLP techniques applied
to texts written in English may not apply to other languages. Furthermore, it is more challenging for
sophisticated bots to mimic the network properties of a real user as it requires the participation of other
users in building their social network. On the other hand, it is much easier for bots to use the cutting
edge natural language techniques to generate text, indistinguishable from real humans. There are, however,
some issues with using embeddings as a new source of feature-set for training bot detection machine learning
models. One of the major challenges with some embedding techniques is that they will require us to use the
entire, or at least a large portion of the graph, to build node and structural embeddings. This introduces
a problem when it comes to large social networks. To overcome this, one could sample the underlying
network. Unlike profile metadata and NLP features that only depend on a single user, embeddings rely
on the connections between users. This introduces another challenge, which is that one cannot run an
embedding algorithm on a single user, but rather requires us to reconstruct the network surrounding that
user. Lastly, embedding algorithms are often computationally expensive, as compared to models built on
profile data and simple NLP techniques. In the case of large social networks, one often needs to sample the
underlying network to arrive a computationally reasonable system to study.

Expanding on the analysis of predictive power of embeddings, we focus on the difference in the predictive
power between structural versus classical embedding algorithms. Our hypothesis indicates that some bots on
social media such as Twitter behave similarly to one another, which can be captured in the role those bots
(nodes) play in their local network. This manifests itself in the structure of the local network surrounding a
bot. One could capture this using structural embedding algorithms, which are designed to learn representa-
tions of the local structure around a given node. On the other hand, classical embedding techniques, which
capture proximity within the graph, would learn representations of nodes which should have less predictive
power as compared to structural embeddings. To test this hypothesis, we run experiments using both struc-
tural and classical embeddings, on the TwiBot-20 dataset. We embed every node using both classical and
structural embedding algorithms, and measure the accuracy of a model designed to classify bots, using only
the embeddings as features. The results for these experiments are shown in Figure 17. We note that in these
experiments, structural embeddings are a combination of LSME and Role2Vec, while classical embeddings
correspond to a combination of DeepWalk and Node2Vec. For each experiment, we build 50 models, and
mean and standard deviation of the accuracy values produced by each model is reported. Lastly, for every
experiment, classes (bot and non-bot) are balanced to 50/50 and data is split into train, test and validation
sets.

As the first observation, we can see that the performance of the models built using structural embeddings
as features is better (by roughly 0.02) than models built using classical embeddings as features. This supports
our hypothesis that bots are better identified by the role they play in their local social network, which can
be captured using structural embedding techniques. Secondly, we point out that the predictive power in the
embeddings (for both classical and structural) increases with the increase in the size of the embeddings, up to
a certain size. In our experiments, as seen in Figure 17, accuracy increases up to embedding size of roughly
35, beyond which the accuracy converges. This result can be interpreted in the following way. The structural
and proximity information captured by embedding dimensions greater than 35 do not have any predictive
power when it comes to our particular task of bot detection. This information is useful for practitioners in
the field, since larger embeddings are computationally more time consuming to train, and one could train
smaller embeddings with similar end-result performance. Of course, this will change for every dataset and
sampling technique, as the information available for embedding algorithms to capture would be different.

Next, we use feature importance analysis to explore the contribution of various features in the GF +
NLP + P feature-sets to the performance of models. Since the embedding algorithms learn continuous
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Procedure Accuracy Precision Recall F1 MCC

NLP+P 0.8036 0.8059 0.8675 0.8356 0.5952
GF 0.6352 0.6357 0.8563 0.7297 0.2274
EMB 0.6481 0.6562 0.8153 0.7271 0.2594
GF+EMB 0.6620 0.6599 0.8507 0.7433 0.2905
NLP+P+GF+EMB 0.8176 0.8256 0.8657 0.8452 0.6246

Table 4: Performance measure for models trained using TwiBot-20 dataset

representation of nodes in an unsupervised way, it is not easy to reverse engineer what each embedding
dimension represents. Starting with feature importance using GF feature-set, we highlight in Figure 18,
that top two most predictive features for the TwiBot-20 datasets are degree centrality and pagerank. Given
the high overlap in the performance of models built using GF and EMB datasets, one could postulate that
embedding algorithms learn some form of centrality measure about the nodes.

Figure 17: Accuracy as a function of embedding size for structural and classical embeddings. Simulations
are performed using the TwiBot-20 dataset. The solid line corresponds to the mean accuracy for 50 runs,
and the band correspond to the standard deviation of the results.

Next, we apply similar feature importance analysis to the NLP and P feature-sets. According to top
20 variable importances in Figure 19 the set of the top three predictor features are two original Twitter
API variables, followers count, listed count, and the percentage of English tweets, perc en extracted in
the course of this study. This feature’s importance has manifested in the basic EDA too. Further behind,
we can see three variables with a similar importance, i.e, friends count, links per tweet and av tweet len.
Quite noticeable impact was noted for user mentions per tweet as well as for sentiment related features.

A complementary feature importance analysis can be done using Shapley technique. We present Shapley
values for the NLP and P features in Figure 20. It is confirmed that the more followers users have, the
least chance of them being a bot. As in Figure 2, even though bots are not generally as followed on Twitter
as bots are, the relationship is opposite for Twitter friendships—the extreme values for friends count are
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Figure 18: Variable importance for the H2O AutoML leader model built on the basis of node features (exclu-
sively) (TwiBot-20)

generally associated with bots in the ML classifier as well. Another significant distinction between bots and
humans can be found in listed count. Large number of public lists that this user is a member of is associated
with being a human. The percentage of tweets written in English is not as monotonously related to being
a bot, but the highest values are characteristic exclusively for bots. These users also seem not to be keen
on using geographical tagging when they’re posting (this was an opt-in feature on Twitter). The links and
mentions per tweet tend to be higher for the identified bots, even though the initial basic EDA could not
detect this tendency clearly for the links feature.

In summary the analysis of the TwiBot-20 dataset confirms our hypothesis. First, graph embeddings
give an additional information for bot detection on top of NLP, P and GF information. Additionally a
comparative analysis of EMB vs. GF shows that embeddings are more useful in this task. Secondly we
find that structural embeddings are better than classical embeddings for bot detection. Finally, we learn
that embeddings of moderate dimensionality (35 dimensions in our results) are enough and adding more
dimensions does not noticeably improve their predictive power.

7.2 Bot Detection Using Italian-Election Dataset

In this section, we build and analyze bot classification models using the Italian Election dataset. As
pointed out earlier, we do not have user profile or tweet data for the Italian-Election dataset, and thus
all models are built using only the GF and EMB features. As before, we train our models on balanced
datasets containing 50/50 proportion of bot and non-bot examples. Test, train split is kept consistent to
80/20 split. Furthermore, we keep the model architecture and all hyperparameters the same for all runs,
to keep performance comparison consistent across all feature sets. We measure a number of metrics when
comparing the performance of each feature set, including accuracy, recall, precision and Matthews correlation
coefficient (MCC). Since some embeddings such as Node2Vec and DeepWalk are randomized (rely on random
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Figure 19: Variable importances for an XGBoost bot classifier on profile and NLP features

walks), we run those algorithms multiple times (sample size 100) and report our findings on the sample.
We summarize the result of our classification analysis in Table 5, highlighting the metrics used for

comparing the performance measures. As a reference, we plot the model accuracy for each feature set in
Figure 21. We note that the goal for this analysis was not to optimize the model performance, but rather
learn about the predictive power of each algorithm. In addition, for every embedding algorithm, we run that
algorithm 10 times with the same parameters. This is done to build a distribution over embeddings, since
random-walk based algorithms have stochastic nature to them. Furthermore, we train our classifier (built
using Neural Network model) 10 times to capture appropriate statistic over measured metrics. We randomly
initialize our neural-network model and use drop-out and L1 and L2 regularization. All models are train for
50 epochs using standard learning rate.

As highlighted, using carefully designed node features (as noted in the previous section), one could achieve
accuracy of 66% in detecting bot vs. non-bot accounts. As we highlighted in Figure 23, features such as
pagerank and coreness show predictive power as compared with other node features. One could use this
information to design similar features related to node centrality and coreness to capture additional predictive
power, however this process is time consuming and could miss important features. As we have suggested,
a different approach is to leverage unsupervised machine learning techniques to capture various properties
on nodes, without time consuming featuring engineering. As we show in this section, one could utilize node
and structural embedding to learn different types of representations of node, and combine them to gain even
greater predictive power.

We see in Figure 21 that models trained exclusively on features extracted using embeddings perform inline
with a model trained using engineered node features. Node embeddings, such as Node2Vec and DeepWalk,
could learn information about the node’s local community and proximity, while structural embeddings could
learn information about the local structure of the network around each node. As we can see, a combination
of these features could capture a broader representation of nodes, and in fact perform as well, or even
better than a model trained on node features. In this case, All Embedding is a model trained on a feature
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Figure 20: Shapley values for an XGBoost bot classifier on profile and NLP features

set built by combining all the embeddings together. We note that to make our comparison fair, we apply
Principal Component Analysis (PCA) to this combined feature set to reduce the dimensionality to 64 (same
as embedding dimension of the embedding algorithms). We also highlight the fact that models trained using
Role2Vec embedding outperforms all other embedding, indicating that for the Italian Election dataset,
the structural property of the nodes is a better indicator if an account is bot vs. non-bot. Other metrics
in presented in Table 5 tell similar stories, where models trained on all embedding perform best in our
study. Lastly, we point out that the comparison in Figure 21 is designed to analyze predictive performance
of various embedding algorithms against one another and models train using node features exclusively. The
presented results highlight the fact that unsupervised embedding techniques (such as the ones studied here)
can be used to extract features from the underlying social network that have predictive power when it comes
to tasks such as bot detection. A comparison between embeddings and other types of features is shown in
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Feature-Set Accuracy Precision Recall f1-Score MCC

Node Features 0.66 0.65 0.66 0.66 0.31
All Embeddings 0.69 0.70 0.64 0.67 0.38
Node2Vec 0.61 0.62 0.57 0.59 0.22
DeepWalk 0.62 0.62 0.59 0.60 0.23
LSME 0.64 0.64 0.65 0.64 0.29
Struc2Vec 0.63 0.66 0.55 0.60 0.27
GraphWave 0.64 0.65 0.61 0.63 0.29
Role2Vec 0.67 0.68 0.61 0.65 0.34

Table 5: Bot classification performance summary for the Italian-Election dataset.

Table 5.
To understand why features generated from embedding algorithms have predictive power for bot clas-

sification, one needs to focus on the behaviour of bots in a social network. Similar to real users, bots
interact with the social network by following, tweeting and engaging with users. Most of this activity re-
quires engagement from real users in addition to the actions that bot accounts take. One could measure
this by studying the structure of the local network surrounding each user. For example who each user is
connected to, and who their friends are connected to and so on. Although it may be trivial for bot accounts
to generate human realistic content and profile, given the current advances in machine learning, it is much
more difficult to encourage other users to interact with the content in an organic way. This manifests itself
in how the local structure of the social network around each is formed. We use this fact as motivation to
capture predictive features which could help us identify bot accounts. In Figure 21 we show that these struc-
tural properties have predictive power by both creating structural features manually using node structural
features (Node Feature) and by capturing them using structural embedding algorithms (LSME, Struc2Vec,
GraphWave, and Role2Vec). This idea is further emphasized by the fact that classical embedding algorithms,
such as Node2Vec and DeepWalk, do not perform as well, since they capture information about the prox-
imity rather than structural. In Figure 22 we present a comparison of classical vs structural embeddings
performance as a function of embedding dimension. Similar to the TwiBot-20 case structural embeddings
are consistently better than classical ones and increasing embedding dimension above 35 does not improve
predictive performance.

Lastly, we perform feature importance analysis on the GF feature-set. The results are presented in
Figure 23. Similar to the TwiBot-20 dataset, pagerank appear in the top two most predictive features.
Given the difference in the topology of the two graphs, TwiBot-20 and Italian Election, it is interesting
to observe pagerank appearing as one of the most important features. However, unlike TwiBot-20, we
observe a number of important features derived from statistics of node-features from neighbouring nodes
of each vertex. This indicates that identifying bots using node-features requires more than local properties
of nodes. This further supports the use of embeddings, since many embedding algorithms can learn global
properties of nodes.

We conclude this section by emphasizing that the performance of each embedding on this dataset (Italian-
Election) is not an indication that they perform in similar range if applied to other datasets. In general,
embeddings are very application specific. This can also be said about hand-designed node features. Given
the diversity amongst datasets, one should aim to use techniques that learn a wide range of representation
of nodes in an unsupervised way. For this reason, an embedding technique (or a combination of them) could
be power tool that could generalize well across various applications.

8 Predictive Stability

One of the main challenges with building scalable and stable machine learning systems is understanding the
impact of data noise on the outcome of the model. One would expect that as the level of noise (feature
variability due to randomness) increases, the performance of the model would decline. To combat model
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Figure 21: Accuracy for bot classification for the Italian-Election dataset. Distributions are over 10 runs
of each embedding algorithm and 10 runs of classifier.

degradation due to noise, one could either design or search for models that are resilient to randomness,
or engineer features with better signal to noise ratio. In this section, we aim in investigate the impact of
synthetically added noise on the performance of the bot detection classifier. The idea is to learn whether
features extracted via embedding algorithms could perform as well as engineered features when subject to
increase in randomness in the system. To study the stability of the features, we use the Italian Election
dataset and incrementally increase the amount of noise in the system by randomly adding and removing
edges between the nodes. We measure the noise on a scale that ranges from α = 0 to α = 100. The process
of introducing noise in the system is as follows. For every edge in the original network (for example eab), we
compute a random number p between 0 and 100. If p ≤ α we remove the edge eab, and add another edge
between one of the original nodes (a or b) to another random node in the graph (e.g. eab → eac). In this
process, α = 0 corresponds to the original graph, and α = 100 corresponds to a graph where every edge is
replaced with a random edge. This process mimics a synthetic addition and removal of follower-following
relationships. For every iteration (level of added noise), we embed every node in the graph using the selected
algorithms and use the resulting features to build a model for identifying bots. Here, we use the model
ROC-AUC to measure the impact of increase in randomness on the system. It is important to note that
for systems with randomness of α = 100 there are still structures that could have predictive power when it
comes to detecting bots, meaning that α = 100 does not correspond to a random graph. Users (nodes) with
large number of friends (high degree) would still have many friends, but their local network structure would
have been randomized.

The results for our simulations are presented in Figure 24. As expected, increase in the level of noise in the
system results in a decline in the quality of features and thus a poorer performing model. For every sub-plot,
the ROC-AUC for models built using node-features in plotted in red, those built using selected embedding
algorithm plotted in blue, and the combined embedding feature set in yellow. Based on our simulations,
features built using all embedding algorithms decline in performance at the same rate as models built using
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Figure 22: Accuracy as a function of embedding size for structural and classical embeddings. Simulations
performed using the Italian Election dataset. The solid line correspond to the mean accuracy for 50 runs,
and the band correspond to the standard deviation of the results.

node-features. This highlights the fact that node representations leaned by embeddings are generally as
resilient to noise, as hand-crafted features. The utility of using unsupervised embedding algorithms for
learning node-representations is shown to be resilient to added noise in the network. This is important since
the underlying network (Twitter network in this case) is dynamic and changes overtime. Nodes that may
be connected at a given snapshot in time may not be connected at later dates. Therefore, the local and
global structure of the network is constantly changing and therefore models and features need to be flexible
to adjust to the dynamic of the system.

9 Conclusion

In this work, we examined four distinct feature-sets extracted from the Twitter social network for identifying
bot accounts. We divided the features into those captured directly from the Twitter network, NLP and user-
profile data (NLP and P), and those derived from the underlying network structure, node-features (GF)
and embeddings (EMB). The main aim of the analysis was to understand the performance of embeddings
in this task. As an initial data analysis task we verified, following the earlier literature, that NLP and user
profile features have strong predictive power. However, we argue that they may suffer from the lack of
generalizability. For example, language models trained for identifying bot accounts in an English speaking
region can not be used to other regions. Similarly, clever bot accounts can modify their user profiles to
appear more natural (non-bot like), and avoid being detected as bots. A much more difficult task however is
altering the topology of the social network surrounding an account to appear as if it was created organically.
Building on this intuition, we showed that the features extracted by mining graph structures indeed holds
predictive power in helping us identify bots.

We analyzed features extracted from two Twitter datasets, one (Twibot-20) built using the follower
as well as following relationships between users, and the other (Italian Election) constructed based on
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Figure 23: Variable importance for the H2O AutoML leader model built on the basis of node features (exclu-
sively) (Italian-Election dataset)

the interactions between users. We saw that in both networks, features mined from the underlying graph,
either through node-feature engineering or learned in an unsupervised way via embedding algorithms, have
predictive power. This positively verifies our first hypothesis that bot behaviour in a social network is
distinguishable from non-bot users in both how they (bots) build relationships with other users and how
they interact with them.

We compared usefulness for bot prediction of two types of embeddings: classical and structural. Our
findings show that structural embeddings consistently perform better than classical ones. Additionally we
found that for bot detection task using very-highly dimensional embeddings is not needed. For both analyzed
data sets beyond 35 dimensions the predictive power of embeddings stopped increasing. As an additional
finding we showed that one can combine features learned from various node and structural embeddings to
a hybrid feature set. Such an approach improves prediction quality, which show that different embeddings
capture different network characteristics and that contain complementary information for bot detection.

Finally, we showed that using embeddings is as resistant to noise in data as using hand-crafted node
features, which shows that this approach can be useful for networks that are dynamic and evolving over
time. The TwiBot-20 and Italian-Election graphs are significantly different in their construction and
interpretation, although in both of them nodes represent users. However, for both of them we found em-
beddings to be a useful tool for bot detection. Therefore an interesting future research question would be
to study the impact of combining features gathered various network definitions, for example one built on
follower/following and another on user-user interaction, for identifying bots.
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Figure 24: Stability of ROC-AUC score: ROC-AUC of node features (red), ROC-AUC of specific embedding
(blue), and ROC-AUC of all embeddings combined (yellow).
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mean STD median
KS p-value Not-Bot Bot Not-Bot Bot Not-Bot Bot

degree centrality 4.943e-44 9.343e-05 1.038e-04 3.744e-05 1.823e-05 1.096e-04 1.096e-04
eigen centrality 6.661e-15 2.197e-03 1.609e-03 1.081e-02 5.991e-03 3.455e-04 2.455e-04
authority 6.661e-15 3.907e-03 2.857e-03 1.971e-02 1.092e-02 5.899e-04 4.249e-04
closeness 6.921e-26 1.621e-01 1.557e-01 1.478e-01 1.376e-01 1.357e-01 1.326e-01
betweenness 4.359e-13 1.159e+07 8.453e+06 3.630e+07 1.332e+07 4.197e+06 4.145e+06
constraint 3.140e-44 1.106e-01 6.239e-02 1.770e-01 8.422e-02 4.762e-02 4.762e-02
coreness 6.661e-15 2.133e+00 2.039e+00 7.300e-01 6.973e-01 2.000e+00 2.000e+00
eccentricity 6.022e-19 1.239e+01 1.260e+01 2.193e+00 2.054e+00 1.300e+01 1.300e+01
harmonic centrality 1.880e-22 1.301e-01 1.285e-01 2.682e-02 2.413e-02 1.330e-01 1.304e-01
pagerank 1.030e-45 3.936e-05 4.427e-05 1.596e-05 8.721e-06 4.620e-05 4.667e-05
nb mean degree centrality 8.629e-66 3.435e-05 2.045e-05 3.757e-05 2.390e-05 1.424e-05 1.143e-05
nb min degree centrality 1.870e-57 2.058e-05 7.918e-06 3.346e-05 1.576e-05 5.220e-06 5.220e-06
nb max degree centrality 7.669e-05 1.115e-04 1.147e-04 6.168e-05 6.732e-05 1.096e-04 1.096e-04
nb std degree centrality 1.786e-34 2.482e-05 2.699e-05 1.720e-05 1.812e-05 2.278e-05 2.278e-05
nb mean eigen centrality 7.283e-46 1.657e-03 1.111e-03 4.441e-03 4.378e-03 2.899e-04 1.534e-04
nb min eigen centrality 1.809e-49 3.513e-04 1.642e-04 1.658e-03 7.329e-04 4.484e-05 2.256e-05
nb max eigen centrality 1.711e-12 1.407e-02 1.302e-02 4.770e-02 5.357e-02 2.529e-03 1.835e-03
nb std eigen centrality 3.918e-26 3.551e-03 3.109e-03 1.086e-02 1.278e-02 6.618e-04 4.372e-04
nb mean authority 4.629e-45 2.948e-03 1.975e-03 8.057e-03 7.930e-03 5.009e-04 2.624e-04
nb min authority 4.315e-48 6.211e-04 2.904e-04 3.000e-03 1.297e-03 7.740e-05 3.840e-05
nb max authority 2.780e-12 2.522e-02 2.324e-02 8.752e-02 9.805e-02 4.401e-03 3.122e-03
nb std authority 4.177e-25 6.357e-03 5.545e-03 1.988e-02 2.334e-02 1.147e-03 7.546e-04
nb mean closeness 2.358e-64 1.383e-01 1.316e-01 6.769e-02 6.307e-02 1.252e-01 1.203e-01
nb min closeness 2.352e-64 1.342e-01 1.283e-01 6.798e-02 6.335e-02 1.217e-01 1.174e-01
nb max closeness 1.973e-19 1.627e-01 1.589e-01 6.488e-02 5.961e-02 1.512e-01 1.488e-01
nb std closeness 2.381e-09 8.135e-03 8.000e-03 3.175e-03 2.270e-03 8.072e-03 7.936e-03
nb mean betweenness 9.559e-45 8.612e+06 6.439e+06 1.395e+07 1.386e+07 3.244e+06 2.797e+06
nb min betweenness 3.294e-57 1.618e+06 2.413e+05 6.376e+06 2.046e+06 0.000e+00 0.000e+00
nb max betweenness 1.554e-15 7.376e+07 8.260e+07 1.399e+08 1.603e+08 4.678e+07 4.851e+07
nb std betweenness 2.458e-13 1.866e+07 1.974e+07 3.275e+07 3.919e+07 1.136e+07 1.120e+07
nb mean constraint 1.489e-56 6.876e-01 8.155e-01 3.463e-01 2.185e-01 8.615e-01 8.854e-01
nb min constraint 5.360e-09 9.423e-02 8.746e-02 1.783e-01 1.661e-01 4.762e-02 4.762e-02
nb max constraint 1.870e-57 8.220e-01 9.699e-01 3.657e-01 1.625e-01 1.000e+00 1.000e+00
nb std constraint 9.267e-57 2.307e-01 2.669e-01 1.295e-01 9.025e-02 2.562e-01 2.728e-01
nb mean coreness 5.296e-58 1.558e+00 1.325e+00 6.183e-01 3.437e-01 1.286e+00 1.200e+00
nb min coreness 1.810e-52 1.242e+00 1.035e+00 5.561e-01 2.246e-01 1.000e+00 1.000e+00
nb max coreness 3.123e-01 2.755e+00 2.745e+00 5.408e-01 5.244e-01 3.000e+00 3.000e+00
nb std coreness 5.627e-08 5.106e-01 5.357e-01 2.499e-01 2.175e-01 5.118e-01 5.145e-01
nb mean eccentricity 6.843e-59 1.302e+01 1.339e+01 2.180e+00 2.035e+00 1.359e+01 1.381e+01
nb min eccentricity 4.205e-11 1.161e+01 1.179e+01 1.876e+00 1.757e+00 1.200e+01 1.200e+01
nb max eccentricity 1.056e-52 1.325e+01 1.357e+01 2.195e+00 2.056e+00 1.400e+01 1.400e+01
nb std eccentricity 5.160e-10 4.977e-01 4.892e-01 1.921e-01 1.574e-01 4.781e-01 4.781e-01
nb mean harmonic centrality 2.640e-60 1.206e-01 1.164e-01 2.587e-02 2.202e-02 1.221e-01 1.177e-01
nb min harmonic centrality 9.593e-61 1.164e-01 1.130e-01 2.419e-02 2.081e-02 1.184e-01 1.147e-01
nb max harmonic centrality 1.554e-15 1.459e-01 1.449e-01 2.974e-02 2.742e-02 1.497e-01 1.474e-01
nb std harmonic centrality 7.633e-09 8.423e-03 8.349e-03 2.776e-03 2.289e-03 8.416e-03 8.275e-03
nb mean pagerank 5.759e-68 1.374e-05 8.420e-06 1.456e-05 9.474e-06 5.861e-06 4.926e-06
nb min pagerank 1.009e-67 8.174e-06 3.664e-06 1.225e-05 5.819e-06 2.744e-06 2.708e-06
nb max pagerank 7.704e-44 4.215e-05 4.254e-05 2.019e-05 2.163e-05 4.192e-05 4.073e-05
nb std pagerank 9.750e-24 9.424e-06 9.844e-06 5.811e-06 6.044e-06 8.424e-06 8.401e-06
in degree centrality 3.201e-36 5.101e-05 5.159e-05 2.302e-05 1.122e-05 5.220e-05 5.220e-05
out degree centrality 3.822e-

167
4.280e-05 5.283e-05 2.122e-05 1.013e-05 5.220e-05 5.220e-05

in degree 3.201e-36 9.771e+00 9.883e+00 4.409e+00 2.149e+00 1.000e+01 1.000e+01
out degree 3.822e-

167
8.198e+00 1.012e+01 4.065e+00 1.940e+00 1.000e+01 1.000e+01

Table 6: Statistics for the Twibot-20 dataset node features.
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mean STD median
KS p-value Not-Bot Bot Not-Bot Bot Not-Bot Bot

degree centrality 1.332e-15 2.600e-04 2.874e-04 2.572e-03 1.489e-03 8.063e-05 8.063e-05
authority 1.000e+00 1.298e-04 1.024e-04 1.134e-02 8.611e-05 2.221e-17 1.748e-04
closeness 1.000e+00 2.993e-01 4.539e-01 2.292e-01 2.093e-01 2.172e-01 5.001e-01
betweenness 1.332e-15 7.929e+03 1.356e+04 5.707e+04 1.347e+05 0.000e+00 0.000e+00
hub score 1.000e+00 1.298e-04 1.024e-04 1.134e-02 8.611e-05 2.221e-17 1.748e-04
constraint 1.332e-15 7.483e-01 8.606e-01 3.367e-01 2.930e-01 1.000e+00 1.000e+00
coreness 1.332e-15 1.986e+00 1.474e+00 2.042e+00 1.561e+00 1.000e+00 1.000e+00
eccentricity 1.000e+00 8.513e+00 4.277e+00 3.151e+00 3.701e+00 1.000e+01 2.000e+00
harmonic centrality 1.000e+00 1.159e-01 1.049e-01 5.474e-02 4.228e-02 1.363e-01 1.111e-01
pagerank 1.000e+00 7.513e-05 8.992e-05 1.160e-03 3.302e-04 4.123e-05 4.359e-05
nb mean degree centrality 1.000e+00 9.788e-03 1.314e-01 2.077e-02 1.080e-01 3.697e-03 2.221e-01
nb min degree centrality 1.000e+00 7.782e-03 1.311e-01 2.087e-02 1.084e-01 1.129e-03 2.221e-01
nb max degree centrality 1.000e+00 1.307e-02 1.322e-01 2.198e-02 1.071e-01 5.563e-03 2.221e-01
nb std degree centrality 1.332e-15 6.683e-03 2.365e-03 6.537e-03 3.973e-03 4.903e-03 7.982e-04
nb mean authority 1.000e+00 7.069e-03 5.861e-01 8.378e-02 4.926e-01 7.639e-16 1.000e+00
nb min authority 1.000e+00 7.069e-03 5.861e-01 8.378e-02 4.926e-01 2.132e-16 1.000e+00
nb max authority 1.000e+00 7.069e-03 5.861e-01 8.378e-02 4.926e-01 1.124e-15 1.000e+00
nb std authority 1.332e-15 1.321e-15 4.721e-16 1.271e-15 7.874e-16 9.460e-16 1.582e-16
nb mean closeness 1.000e+00 3.573e-01 7.583e-01 2.622e-01 3.518e-01 2.594e-01 1.000e+00
nb min closeness 1.000e+00 3.464e-01 7.525e-01 2.656e-01 3.595e-01 2.471e-01 1.000e+00
nb max closeness 1.000e+00 3.689e-01 7.660e-01 2.605e-01 3.422e-01 2.742e-01 1.000e+00
nb std closeness 1.332e-15 2.897e-02 3.192e-02 2.835e-02 3.601e-02 2.395e-02 2.580e-02
nb mean betweenness 1.000e+00 6.903e+05 2.331e+06 9.976e+05 1.785e+06 2.028e+05 3.794e+06
nb min betweenness 1.000e+00 5.158e+05 2.298e+06 9.820e+05 1.818e+06 3.925e+04 3.794e+06
nb max betweenness 1.000e+00 1.025e+06 2.418e+06 1.307e+06 1.735e+06 3.349e+05 3.794e+06
nb std betweenness 1.332e-15 6.359e+05 2.543e+05 6.725e+05 4.793e+05 4.200e+05 7.926e+04
nb mean hub score 1.000e+00 7.069e-03 5.861e-01 8.378e-02 4.926e-01 7.639e-16 1.000e+00
nb min hub score 1.000e+00 7.069e-03 5.861e-01 8.378e-02 4.926e-01 2.132e-16 1.000e+00
nb max hub score 1.000e+00 7.069e-03 5.861e-01 8.378e-02 4.926e-01 1.124e-15 1.000e+00
nb std hub score 1.332e-15 1.321e-15 4.721e-16 1.271e-15 7.874e-16 9.460e-16 1.582e-16
nb mean constraint 1.000e+00 1.923e-01 1.673e-01 2.834e-01 3.030e-01 5.828e-02 3.630e-04
nb min constraint 1.000e+00 1.489e-01 1.208e-01 2.757e-01 2.743e-01 2.362e-02 3.630e-04
nb max constraint 1.000e+00 2.660e-01 2.239e-01 3.516e-01 3.794e-01 8.484e-02 3.630e-04
nb std constraint 1.332e-15 1.427e-01 2.290e-01 1.698e-01 1.794e-01 6.639e-02 2.427e-01
nb mean coreness 1.000e+00 6.150e+00 2.254e+00 3.997e+00 2.689e+00 6.688e+00 1.000e+00
nb min coreness 1.000e+00 5.190e+00 1.839e+00 4.016e+00 2.336e+00 4.000e+00 1.000e+00
nb max coreness 1.000e+00 6.918e+00 2.752e+00 4.465e+00 3.535e+00 8.000e+00 1.000e+00
nb std coreness 1.332e-15 2.131e+00 1.956e+00 1.869e+00 1.836e+00 2.041e+00 1.708e+00
nb mean eccentricity 1.000e+00 7.858e+00 3.543e+00 3.018e+00 3.868e+00 9.000e+00 1.000e+00
nb min eccentricity 1.000e+00 7.641e+00 3.397e+00 2.948e+00 3.658e+00 9.000e+00 1.000e+00
nb max eccentricity 1.000e+00 8.065e+00 3.652e+00 3.124e+00 4.037e+00 9.000e+00 1.000e+00
nb std eccentricity 1.332e-15 5.647e-01 5.983e-01 3.995e-01 4.102e-01 5.774e-01 5.964e-01
nb mean harmonic centrality 1.000e+00 1.425e-01 1.754e-01 6.839e-02 7.325e-02 1.677e-01 2.221e-01
nb min harmonic centrality 1.000e+00 1.348e-01 1.720e-01 6.665e-02 7.481e-02 1.523e-01 2.221e-01
nb max harmonic centrality 1.000e+00 1.505e-01 1.802e-01 7.232e-02 7.251e-02 1.767e-01 2.221e-01
nb std harmonic centrality 1.332e-15 1.960e-02 1.792e-02 1.241e-02 1.241e-02 1.909e-02 1.839e-02
nb mean pagerank 1.000e+00 2.587e-03 6.013e-02 8.740e-03 4.995e-02 8.351e-04 1.021e-01
nb min pagerank 1.000e+00 2.156e-03 6.006e-02 8.771e-03 5.003e-02 2.732e-04 1.021e-01
nb max pagerank 1.000e+00 3.318e-03 6.030e-02 8.864e-03 4.975e-02 1.169e-03 1.021e-01
nb std pagerank 1.332e-15 1.482e-03 5.014e-04 1.556e-03 8.927e-04 1.017e-03 1.503e-04

Table 7: Statistics for the Italian Election dataset node features.
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