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Abstract. An embedding is a mapping from a set of nodes of a network
into a real vector space. Embeddings can have various aims like capturing
the underlying graph topology and structure, node-to-node relationship,
or other relevant information about the graph, its subgraphs or nodes
themselves. A practical challenge with using embeddings is that there
are many available variants to choose from. Selecting a small set of most
promising embeddings from the long list of possible options for a given
task is challenging and often requires domain expertise. Embeddings can
be categorized into two main types: classical embeddings and structural
embeddings. Classical embeddings focus on learning both local and global
proximity of nodes, while structural embeddings learn information specif-
ically about the local structure of nodes’ neighbourhood. For classical
node embeddings there exists a framework which helps data scientists
to identify (in an unsupervised way) a few embeddings that are worth
further investigation. Unfortunately, no such framework exists for struc-
tural embeddings. In this paper we propose a framework for unsuper-
vised ranking of structural graph embeddings. The proposed framework,
apart from assigning an aggregate quality score for a structural embed-
ding, additionally gives a data scientist insights into properties of this
embedding. It produces information which predefined node features the
embedding learns, how well it learns them, and which dimensions in the
embedded space represent the predefined node features. Using this in-
formation the user gets a level of explainability to an otherwise complex
black-box embedding algorithm.

Keywords: Node Embeddings - Structural Node Embeddings.

1 Introduction

Inspired by early work in word embedding techniques [18], node, edge and graph
embedding algorithms have gained a lot attention in the machine learning com-
munity, in recent years. Indeed, learning an accurate and useful latent represen-
tation from network-data is an important and necessary step for any successful
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machine learning task, including node classification [19], anomaly detection [3],
link prediction [11], and community detection [20] (see also surveys [4, 10]).

In this paper, we distinguish two families of node embeddings: classical node
embeddings and structural node embeddings. The first family is very rich with
already over 100 algorithms proposed in the literature. Informally speaking, clas-
sical node embeddings fall into a broad and diverse family of embeddings that
try to assign vectors in some high dimensional space to nodes of the graph that
would allow for its approximate reconstruction using such encapsulated informa-
tion. Different classical embedding algorithms use different approaches to achieve
this task. Some of them, in order to extract useful information from graphs, try
to create an embedding in a geometric space by assigning coordinates to each
node such that nearby nodes are more likely to share an edge than those far from
each other. Some other approaches postulate that pairs of nodes that have over-
lapping neighbourhoods (not necessarily intermediate ones) should have similar
representations in the embedded space. Independently, the techniques to con-
struct the desired classical embeddings can be broadly divided into the following
three groups: linear algebra algorithms, random walk based algorithms, and deep
learning methods [1, 17].

Classical embeddings work well for machine learning tasks such as link pre-
diction. However, as the study of [23] shows, they do not guarantee good per-
formance, for example, in tasks such as community labeling that can be viewed
as a classification task or role detection. The reason is that in these challenging-
for-classical-embeddings machine learning problems, when doing inference, it is
important to preserve structural characteristics of nodes. Informally speaking,
by structural characteristics of nodes we mean the structure of nodes’ egonets,
which is the induced subgraphs of given nodes and their neighbourhoods up to
some fixed depth. The simplest form of one-dimensional structural embeddings
are node features such as degree or local clustering coefficient. Indeed, node fea-
tures have been used extensively since the very beginning of network analysis,
as most of them have natural interpretations and are usually relatively easy to
compute. From the standpoint of this discussion, it is important to highlight
that such node features do not depend on node labels, but rather on the re-
lationships between them. For example, two nodes might both have large and
comparable degrees or similar pageranks (and, as a result, end up close to each
other in the embedded space) but be distant from each other in terms of con-
crete neighbours (and so they would be far apart in classical embeddings). The
already mentioned study [23] shows that such node features are efficient in vari-
ous tasks such as community labeling. The reason is that often the role of a node
within a graph is an important predictor of some features but not necessarily its
concrete neighbours. Since using hand-crafted node features in various machine
learning tools has proven to be a useful technique, researcher have developed
various structural embedding algorithms such as RolX [12], Struct2Vec [22],
GraphWave [7] and Role2Vec [2]. Such embedding algorithms try to capture
structural characteristics of nodes, that is, put nodes that have similar structural
characteristics close together in the embedded space. Again, like with classical
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embeddings, implementations of structural embeddings differ in the way how
they define similarity between neighbourhoods of two nodes.

There are two important questions to consider when studying embedding
algorithms. The first question is concerned with what node-features about the
graph is learned by a given embedding algorithm. And the second focuses on
how well a given node feature is learned by the set algorithm. Answering and
understanding these questions is crucial for practitioners of the field, as it will
dictate which embedding algorithm is optimal for a given task. Of course, the
decision of which algorithm to use might also depend on the properties of the
investigated network [6]. There are existing works by [14-16], which aim to
answer these questions for the classical type embedding algorithms?®. There is
however no such work to our knowledge that has been done to answer these
questions for structural embedding algorithms. In this work, we introduce an
unsupervised technique for quantifying how well a given embedding algorithm
learns a predefined set of structural features. This provides an explainability of
the embedding space in terms of structural-node-features, in addition to allowing
one to compare between various different algorithms to identify the most optimal
embedding for a given application.

2 Framework

2.1 Input/Output

In this section we introduce our framework and highlight its properties. The goal
of the framework is to evaluate possible correlations of various node embeddings
with a number of classical node features of a single graph G = (V, E) on n = |V|
nodes. The input consists of

— k dimensional node embedding—Fk vectors of real numbers, each of length n,
— ¢ node features—¥ vectors of real numbers, each of length n.

The framework outputs the following

— areal number (represented by symbol ) from the interval [0, 1] representing
how well given feature vectors may be approximated by given embedding
vectors; ¥ = 0 indicates a good approximation and the other extreme value,
1 = 1, represents a bad approximation; both pre- and post-optimization
values of i are returned, where the post-optimization v value is computed
by minimizing ¢ as a function of a vector w—formal definition and more
details will be provided soon,

— a vector w of non-negative real values of length k& and L!-norm equal to 1
that indicates which embedding dimensions contribute to the explanation of
features; here, larger values correspond to larger contribution; the w vector
consists of the weights in the embedding distance computation, and is used to
identify which embedding dimension the structural feature is mapped onto.

* https://github.com /Krainskil,/ CGE.jl
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The structure of our framework is designed to output a quantitative metric v,

which measures how well an embedding algorithm has learned a given feature (or
a collection of features). This metric can be used to both identify what features
embedding algorithms learn, in addition to how well they learn those features.
A more comprehensive explanation of this is given in the following section.

2.2 Formal Description of the Algorithm

In our framework, nodes are clustered (using k-means clustering) in the feature-
space, and distance between sampled nodes in the feature-space are calculated
and compared to the distance measured in the embedded-space. Therefore, the
algorithm has a few parameters that the user might experiment with but each
of them has a default value:

s: the number of clusters in the feature space generated by the k-means
algorithm (by default, s = \/n, where n is the number of nodes of a network);
the value s = /n is a safe estimated to ensure the convergence and stability
of the calculated v metric—more on this is discussed in the following section,
p: the fraction of sampled pairs of nodes that are from the same cluster (by
default, p = 0.5),

c: the total number of sampled pairs of nodes (by default, ¢ = min{10°,n?/s};
apart from a natural upper bound of 10°, for small networks we need to make
sure that the number of pairs of nodes sampled within clusters, p - ¢, is at
most the number of all pairs of nodes from the same cluster; indeed, at the
worst case scenario each cluster could consist of n/s nodes and so there could
be only ("2/9) -5~ n?/(2s) pairs of nodes within clusters; this would cause a
problem as the algorithm samples pairs without replacement),
standardization method: we provide two methods, MinMax that scales and
translates each feature individually such that all of them are in the range
between zero and one, and StandardScaler that scales features such that the
mean and the standard deviation are equal to zero and, respectively, one (by
default, we use the StandardScaler normalization).

The algorithm performs the following steps:

. Standardization. Transform all feature and embedding vectors using one

of the two methods, MinMax or StandardScaler. After this transformation,
all vectors are appropriately normalized and standardized. As a result, later
steps are invariant with respect to any affine transformation of these vectors.

. Clustering. Perform the classical k-means clustering of nodes (into s clus-

ters) in the feature space using the selected metrics. Let (cq,...,cs) with
n =Y., ¢ be the distribution of cluster sizes.

. Sampling. There are two types of pairs of nodes that are independently

sampled as follows.
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a) sample

X . Ca
m = min \‘p'CJ, Z (2)
1<a<s

unique pairs of nodes within clusters; a single pair of nodes is sampled
by first selecting cluster i of size ¢; with probability equal to

I O e
Yicass ((3) —2a)”

where z; is the number of pairs already sampled from cluster ¢, and then
selecting a pair of nodes from the chosen cluster, uniformly at random;
if a pair of nodes sampled this way is already present in the sampled set
we discard it, otherwise we keep it.

b) sample

p(i)

m = min {(1—1)) 'CJ, Z CaCp
1<a<b<s
unique pairs of nodes that are between clusters; a single pair of nodes is
sampled by first selecting two clusters ¢, j (i < j) with probability equal

to
CiCj — Tiyj

p(i, j) S cucpes(Cas —Tun)’
where z; ; is the number of pairs between cluster ¢ and cluster j already
sampled, and then selecting one node from each of the chosen clusters,
uniformly at random; if a pair of nodes sampled this way is already
present in the sampled set we discard it, otherwise we keep it.

4. Computing Feature Distance. For each of the sampled pairs of nodes,

compute the corresponding distance in the /-dimensional feature space dy.
For the Euclidean metric we have

dy(vi,v) = | > (fi— )2,

1<a<t

where (fi,..., fi) and (f{,..., f]) are features of nodes v; and, respectively,
vj.

5. éomputing Embedded Distance. Suppose for a moment that a normal-
ized vector of non-negative weights w = (w1, ..., wy) with Zle w; = 11is
fixed. For each of the sampled pairs of nodes, compute the corresponding
distance in the k-dimensional embedded space d.. The weighted Euclidean
distance is given by

dewiv)) = | 37 walel —ed)2,

1<a<k

where (ef,...,el) and (e],...,e,) are embeddings of nodes v; and, respec-
tively, v;.
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6. Correlation between the two spaces. To compute the correlation be-

tween the two spaces, we define a metric 1) = 1—r2 € [0,1], where r € [-1,1]
is the Pearson correlation between vectors in the embedding space and vec-
tors in the feature space. As a result, ¥ is defined such that both large
positive (close to 1) and large negative (close to -1) correlation would have
small values (close to 0). This is done so that the optimization scheme (see
the next bullet-point) is more stable.

. Optimization. Optimize vector w to minimize v, where the final value

of 1 is referred to as the post-optimization . These optimized vectors re-
flect the importance of embedded dimensions for selected features. We note
that the optimization is done using Quasi-Newtonian bounded constraint
minimization technique from Scipy Optimize method. We note that the pre-
optimization ¢ value measures the overall raw embedding of a particular
feature. To measure how well a feature is learned by a particular embedding
algorithm, 1 is optimized against that feature. The optimization process re-
moves (or minimizes) any embedded information that does not contribute
to the representation of the feature at study. Therefore, we use the post-
optimization ¢ value to conduct all experiments in this study.

2.3 Properties

Let us briefly highlight some basic and desired properties of the framework which,
in particular, justify its design and show its potential usefulness.

— The framework is designed in such a way that affine transformations of any

of the feature or embedding vectors do not change the results.

The framework does not assume any particular type of the relationship be-
tween feature space and embedded space. Instead, it is desired that if two
nodes are close in the feature space, then they are also close in the embedded
space (with a proper metrics/weighting in the embedded space).

The sampling strategy used in the framework has the following consequence.
Achieving a good v score ensures that close pairs of nodes in the feature
space are close in the embedded space. On the other hand, if some pairs of
points are far in the feature space, then the framework puts less weight on
the fact whether they are close or not in the embedded space. The rationale
behind this property is that a typical pair of nodes are likely to be far in
both spaces and so the framework should not pay too much attention to
these pairs.

An embedding algorithm might learn many node features, which may not
contribute to the representation of particular structural feature. This addi-
tional learned information can be removed and minimized by adjusting the
weights associated with appropriate embedding dimensions. For example,
the feature PageRank may get mapped to dimension of 1 (out of 8) of an
embedding space. In this case, dimensions 2 to 7 do not contribute to the
representation of PageRank and can be removed by setting the weights for
those dimensions to 0. This process is done automatically by our framework
during the optimization process of the ¥ value.
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3 Experimentation

In this section, we investigate and analyze various desired algorithmic properties
of our framework. We focus on six embedding algorithms, four structural ones
(LSME [5], Role2Vec [2], Struc2Vec [22], and RolX [13]) and two classical
ones (Node2Vec [9] and DeepWalk [21]). The goal of our analysis here is to
understand and analyze various properties of our framework. In addition, we
showcase how one could use our framework in applications such as node classi-
fication, by investigating the performance of a number of node and structural
embedding algorithms. We break up our analysis into two main parts. First
(Subsection 3.2), we explore some of the basic properties of our framework, such
as algorithm stability and behaviour. Second (Subsection 3.3), we showcase the
application of our framework in a node classification case study. In this section,
we use the default hyper-parameters for every embedding algorithm.

3.1 Synthetic Graphs Design

For experiments in this section we use synthetically generated graph G which is
composed of three structurally distinct sets of subgraphs. As shown in Figure 1,
these subgraphs are labelled Web, Star and dStar. The Web and Star subgraphs
each have three types of nodes (w0, wl and w2) and (s0, sl, s2), while dStar
subgraph has two types of nodes (ds0, ds1). The overall synthetic graph is created
by joining N,, Web, Ny Star and Ny, dStar subgraphs by randomly creating links
between w2, s2 and ds1 nodes. The edge creation process is as follows; from joined
set of w2, s2 and dsl nodes randomly select two nodes n, and ny. If n, # ny
and eq, ¢ E, where F is the set of edges of G, then create an edge eq,. Repeat
this process until all w2, s2 and dsl nodes are connected to at least one other
node. Based on this description, we can fully define our synthetic graph using 8
parameters: G({ Ny, Ns, Nas}, {kw1, kw2 }, {ks1, ks2 }, {kas1}). Here, Ny, N, Ngs
are the number of Web, Star and dStar subgraphs in the overall graph and, k,
correspond to the number of nodes in layer x of each subgraph. Each layer of
the subgraphs is connected to the previous/next layers as shown in Figure 1. For
example, k,,1 = 5, based on Figure 1. In this section, we create a synthetic graph
with the following parameters: G({N,, = 200, Ny = 200, Ngs = 200}, {ky1 =
5, kwa = 10},{ks1 = 5,kso = 10},{kgs1 = 5}), resulting a synthetic graph with
7,600 nodes. We have chosen this structure for our synthetic graph to allow for a
simple yet structurally distinct nodes to be used for our classification tasks. Since
our framework is designed for structural embedding algorithms, we wanted to
use synthetic graphs where nodes have known structural roles (ground-truth).
As we shall show in Section 3.3, we use the synthetic graph described above
to build classifiers for identifying root nodes Sy, and analyze each embedding
algorithm’s performance for this task.
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WEB

STAR

dSTAR Q%

Fig. 1. Synthetic graph G({N, = 200, Ns = 200, Ngs = 200},{kwi = 5,kw2 =
10}, {ks1 = 5, ks2 = 10}, {kas1 = 5}) composed of a collection of Web, Star and dStar
subgraphs.

3.2 Algorithmic Properties of the Framework

In this section, we analyze various algorithmic properties of our framework such
as the convergence and stability of various metrics and the behaviour of struc-
tural vs. classical embedding algorithms. As we described in Section 2.2, the
quality of learned representation of a structural feature (for example degree cen-
trality) is measured using the post-optimization ¢ value. The optimization is
done by minimizing 1 as a function of weights associated with each embedding
dimension. To test the effectiveness of this approach, we performed two experi-
ments. In each experiment, we embed the synthetically created graph described
in the previous section using either LSME or a fixed-embedding algorithm. Here,
the fixed-embedding maps the simplest centrality measure, degree centrality, di-
rectly onto one of the N embedding dimensions. Furthermore, the other N — 1
dimensions are filled with random numbers. This simulates a synthetic embed-
ding algorithm, which learns a perfect representation of a feature and maps it
onto one of the dimensions of the embedding space. For our experiments, we
used NV = 8 as the dimension of both embedding algorithms. Once the embed-
ding vectors are generated, we use our framework to measure the performance of
each embedding with respect to the degree centrality. In other words, we measure
how well did each embedding learn the representation of degree centrality. The
purpose for this experiment is to showcase the optimization process and high-
light how our framework can be used to study how well features are mapped
into the embedded space.

Figure 2 shows the results for the pre and post optimization values for the
weights associated with each embedding dimension. In the pre-optimization state
(top-left and bottom-left), the values for the weights are set randomly. The opti-
mization algorithm then identifies the dimensions which the representation of the
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Fig. 2. Pre and post optimization values for weights associated with each embed-
ding dimension (8 dimensional embedding). Top-left and bottom-left figures show pre-
optimization random initialization of the weights for LSME embedding and fixed
embedding, respectively. Top-right and bottom-right are the post-optimization values
of the weight for LSME and fixed embedding.

degree centrality was mapped onto. As expected, the post-optimization weights
for the fixed embedding is collapsed to only dimension 0 (w0), which holds a
copy of degree centrality for the nodes. For the LSME algorithm, degree cen-
trality was mapped by the embedding algorithm onto primarily dimension 2 and
partially onto dimension 0 and 4. It is important to note that the post optimiza-
tion weights by themselves are not complete measure of how well the embedding
has learned the node feature. To capture the complete picture, one has to also
consider the post optimization score )—more on this soon. The experiments in
Figure 2 were repeated multiple times with randomized initial weights, and the
results of the experiments were consistent with the above findings.

Before we dive deeper into the other properties of the framework, we want
to consider the stability of the algorithm as a function of the node sample size
(parameter ¢) and the number of clusters produced by k-means algorithm (pa-
rameter s). To apply the framework to large graphs, we would want our algorithm
to converge for both ¢ < n and s < n, where n is the number of nodes of the
graph. To measure the stability of the algorithm, we perform two experiments
using LSME and Role2Vec on a synthetic graph. The performance of the em-
bedding algorithms are measured using the degree centrality as the node feature.
Figures 3 and 4 show the convergence of 1 as a function of the normalized num-
ber of clusters and the normalized sample size respectively, where normalization
is done with respect to the size of the graph. Let us first consider the behaviour
of 1 as a function of s, the number of clusters. It is important to note that while
we vary s in this experiment, values for other parameters are kept as default.
As we can see in Figure 3, 1 converges to its long-run average when the number
of clusters is approximately 2% to 3% of the total size of the graph. Both here
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and in Figure 4, the long-run average is defined as the expected value for v
as sample size or number of clusters approaches the size of the graph. Finally,
we conclude that our default value for the number of clusters (s = /n) is a
good approximation since for the current experiment (n = 1,000) the number of

clusters is approximately 3% of the size of the graph ( Vli’)%%o ~ 0.03). Next, we
look at the convergence of 1 as a function of ¢, the sample size. Similarly to the
previous experiment, we vary ¢ while setting other parameters to their default
values. As one can see in Figure 4, the value for ¢ converges for sample of sizes
greater than or equal to 20% to 30% of the size of the graph. The results of our
experiments point at two facts. First that the algorithm converges and is stable
for both ¢ < n and s < n. Second, the default values for the hyperparameters

are good and safe estimates.
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Fig. 3. Post-optimization score v as a function of normalized number of clusters. Nor-
malization is with respect to the size of the graph. On the left/right ¢ is computed for
the degree centrality using the LSME /Role2Vec embedding algorithms, respectively.
The horizontal lines are the long-run average of .

We now turn our attention to experiments comparing the general behaviour
of structural embedding as compared to classical node embedding algorithms.
Classical node embedding algorithms such as Node2Vec [9] and DeepWalk [21]
have difficulty learning structural properties of graphs. To showcase that our
framework can be used as an unsupervised method for capturing this effect,
we perform four experiments using two structural and two classical embedding
algorithms. All four algorithms are ran against synthetic graphs (created using
the procedure in Section 3.1) to generate 8-dimensional embedding vectors. Each
embedding is then evaluated using our framework, where its performance is
measured against 12 classical and widely used node features. For each node
feature, we compute the post optimization 1 value. As we noted previously,
the value of v is inversely correlated to how well the embedding was able to
learn a given representation. In particular, ©» = 1 means that the embedding
was not able to learn anything for a given feature, and in the other extreme
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Fig. 4. Post-optimization score 1 as a function of normalized sample size. Normal-
ization is with respect to the size of the graph. On the left/right v is computed for
the degree centrality using the LSME /Role2Vec embedding algorithms, respectively.
The horizontal lines are the long-run average of 1.

1 = 0 means that the embedding was able to learn prefect representation of
the feature. With that said, let us consider the results presented in Figure 5.
On the top-left and bottom-left, we show the post-optimization value for 9 as a
function of various node features for LSME and Role2Vec, respectively. It is
clear that these two embedding algorithms performed differently, as measure by
our framework. The LSME algorithm performs much better than Role2Vec.
It is important to note that we have chosen to use the default settings and
parameters for each algorithm and did not perform any optimization. In addition,
we have only focused on a set of 12 structural features, while algorithms could
be learning features not in our set. While the structural embedding algorithm
LSME was able to learn some structural node features, as expected, classical
embedding algorithms (Node2Vec and DeepWalk) struggle with this task.
This is clearly shown in the top-right and bottom right-plots of Figure 5, where
the post-optimization ¢ values for all node features are close to 1. Lastly, both
Node2Vec and DeepWalk perform similarly to one another, indicating the
similarity in the underlying algorithms.

3.3 Role Classification Case Study

In this subsection, we explore the use case of our framework for analyzing role
classification in a synthetic network introduced earlier. A common task in net-
work analysis is to classify nodes based on the role the nodes play in their local
network structure. To build features for a classification algorithm, one could ei-
ther use manually calculated structural properties of the nodes (node features)
or leverage structural or node embedding features; as an automated way of learn-
ing various structural properties of nodes. One major challenge with using some
embedding algorithms as a source for feature engineering, is the lack of explain-
ability of the learned representations. It is not easy to identify what structural
properties of the nodes are learned and how a given learned representation is
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mapped onto the embedding space. To explore these ideas and showcase one pos-
sible use case of our framework, we consider the synthetic network introduced
in Subsection 3.1, and use w0, s0 and dsO root nodes as the target nodes we
would like to classify. The root nodes considered here have very similar local
structure, creating a relatively challenging tasks for a classifier. The goal of our
analysis is to design and build a classifier using both node features and features
extracted from various embedding algorithms. Lastly, we show how one could use
our framework as an unsupervised technique to gain insight into the performance
of embedding algorithms in applications such as role classification. We use six
embedding algorithms, two classical algorithms (Node2Vec and DeepWalk)
and four structural based ones (LSME, Struc2Vec, RolX, and Role2Vec).
We hope to answer the following questions: can one use our framework to iden-
tify embedding algorithms that best learn various structural properties of nodes,
which could hint at their performance in a role classification task? Additionally,
can one extract insights into the predictability strength of each node feature and
how those features are learned by a given embedding algorithm?
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Fig. 5. Post-optimization ¢ values (y-axis) computed as a function of 12 node features
(z-axis) for various classical and structural embedding algorithms.

We first start by analyzing each embedding algorithm using our framework.
We consider 12 node features as a benchmark and compute v for each feature.
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The performance of each embedding algorithm is presented in Figure 5. As be-
fore, v is inversely proportional to how well an embedding algorithm has learned
a given feature, where ¢y = 1 means that a given feature was not learned by the al-
gorithm. As we can see in Figure 5, classical embedding algorithms (Node2Vec
and DeepWalk) fail to learn the structural properties of the graphs. This aligns
with our expectations, since classical algorithms are designed to learn classical
node properties. Furthermore, Role2Vec also fails to learn any structural pro-
prieties of the graph, while LSME, Struc2Vec, and RolX perform quite well.
It is important to note that we used the default hyper-parameters for each al-
gorithm, and it is possible to achieve better results if one optimizes the learning
process. Using current results, one would expect LSME, Struc2Vec, and RolX
algorithms to perform better than Node2Vec, DeepWalk, and Role2Vec in
classification tasks, where the structural properties of the nodes are of impor-
tance. With the results from Figure 5 in mind, we build 7 classifiers with the
goal of classifying w0, sO and dsO nodes in graph G using features built using
manually computed node features and features from each of our six embedding
algorithms. The classifiers are trained to predict 3 classes, one for each root
node (w0, sO and ds0). Note that we do not mix features between embedding
algorithms and node-features, in this analysis. For example, the accuracy of the
classifier built using DeepWalk, in Figure 6, only includes features extracted
from the embedding of the nodes by the DeepWalk algorithm.
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Fig. 6. Accuracy of 7 classifiers built using node and embedding features. Here, accu-
racy is measured as the combined accuracy of the following classes (w0, sO and ds0).

The overall accuracy of each classifier is plotted in Figure 6. Here, accu-
racy is measured as the combined accuracy of the following classes (w0, s0 and
ds0). For each embedding, we train 10 models and select the best performing



14 A. Dehghan et al.

model and overage the performance across 10 samples. As expected, based on
our analysis in Figure 5, classifiers built using node features, Struc2Vec, RolX,
and LSME perform much better than those built using Role2Vc, DeepWalk,
and Node2Vec. It is important to consider the following when analyzing these
results. The fact that a classifier built using solely node feature performs well, in-
dicates that any embedding that learns structural properties of the node should
also perform well. However, this logic does not apply in reverse. The poor per-
formance of an embedding based on our framework does not necessarily indicate
that it will perform poorly in a classification task, since there may be features
with predictive power which are not captured by the reference features of our
framework. We note that, the set of reference features is modifiable and could
be updated to include additional structural features. One could extend the 12
features in the benchmarking set to capture high order structural properties of
the graph, to allow for a more extensive list of structural properties. Lastly, we
point out that one could use the output of the framework to study the specific
features learned by each embedding algorithm. For example, both LSME and
Struc2Vec fail to learn Constrain, which is the measure of Burt’s Constraint
[8] for each node, (see Figure 5) as a structural feature, while RolX performs
better in this regard. This is an important observation in scenarios where one
would want to combine the features from different embedding algorithm to built
feature sets with more predictive power. It is natural that each embedding al-
gorithm learns slightly different properties of the graph. Our framework can be
used as a tool to map out the embedding space and understand it through the
lens of structural features of the graph.

4 Conclusion

In this work, we introduced an unsupervised embedding evaluation framework
which can be used to both explain what structural properties of nodes embedding
algorithms learn, in addition to how well each algorithm learns a particular
structural feature. As we noted above, for tasks such as role-discovery or role-
classification, one needs to rely on structural properties of nodes learned by
structural embedding algorithms. However, there are numerous challenges with
using structural embedding algorithms. First, there is a diverse set of structural
features that an algorithm could learn. Therefore, it is not easy to define a
single metric for measuring the performance of structural embedding algorithms.
Second, measuring performance of embedding algorithms is often done using
supervised techniques, which relies on the availability of labeled dataset.

In Section 2, we introduced a framework, which addresses the above two chal-
lenges. In our framework, we introduce a collection of core structural features,
against which one could measure the performance of a structural embedding
algorithm. In addition, we introduce a technique for performing these measure-
ments in an unsupervised way, which avoids the need for the availability of
labelled datasets. By introducing a mapping between the embedding and the
feature space, we are able to define a metric (1)) for measuring the performance
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of embedding algorithms. In addition, we can use this metric to explain which
features are learned by a given algorithm. As we have shown in Section 3.2, this
feature of our framework is especially useful for the explainability of algorithms
that rely on deep-learning such as LSME. Furthermore, using a synthetic graph
as a benchmark, we showcased several use cases for our framework.

In Section 3.3, we showed that one could use our framework to measure
the performance of a number of classical and structural embedding algorithms
against a set of structural features. The performance of the embedding algo-
rithms, as measured by 1, correlates with the performance of the algorithms in
a role classification task. This highlights the utility of our framework, which can
be used to gain insights into the performance of embedding algorithms in scenar-
ios where labeled data is not available. In addition, one could use our framework
to identify difficult to embed structural features and use the i value as iter-
ative way of modifying an embedding algorithm to learn specific feature-sets.
The unsupervised framework developed and showcased in this work can be used
as a versatile and useful tool for practitioners studying structural properties of
complex networks.
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