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Abstract. The Artificial Benchmark for Community Detection graph
(ABCD) is a random graph model with community structure and power-
law distribution for both degrees and community sizes. The model gen-
erates graphs with similar properties as the well-known LFR one, and
its main parameter £ can be tuned to mimic its counterpart in the LFR
model, the mixing parameter pu.

In this paper, we investigate various theoretical asymptotic properties of
the ABCD model. In particular, we analyze the modularity function,
arguably, the most important graph property of networks in the context
of community detection. Indeed, the modularity function is often used to
measure the presence of community structure in networks. It is also used
as a quality function in many community detection algorithms, including
the widely used Louvain algorithm.
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1 Introduction

One of the most important features of real-world networks is their community
structure, as it reveals the internal organization of nodes [9]. In social networks
communities may represent groups by interest, in citation networks they cor-
respond to related papers, in the Web communities are formed by pages on
related topics, etc. Being able to identify communities in a network could help
us to exploit this network more effectively.

Unfortunately, there are very few datasets with ground-truth identified and
labelled. As a result, there is need for synthetic random graph models with com-
munity structure that resemble real-world networks in order to benchmark and
tune clustering algorithms that are unsupervised by nature. The LFR (Lanci-
chinetti, Fortunato, Radicchi) model [20, 18] generates networks with communi-
ties and at the same time it allows for the heterogeneity in the distributions of
both node degrees and of community sizes. It became a standard and extensively
used method for generating artificial networks.
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In this paper, we analyze the Artificial Benchmark for Community Detection
(ABCD graph) [14] that was recently introduced and implemented*, includ-
ing a fast implementation that uses multiple threads (ABCDe)’. Undirected
variant of LFR and ABCD produce graphs with comparable properties but
ABCD/ABCDe is faster than LFR and can be easily tuned to allow the user
to make a smooth transition between the two extremes: pure (disjoint) commu-
nities and random graph with no community structure. More importantly from
the perspective of this paper, it is easier to analyze theoretically.

The key ingredient for many clustering algorithms is modularity, which is
at the same time a global criterion to define communities, a quality function of
community detection algorithms, and a way to measure the presence of commu-
nity structure in a network. The definition of modularity for graphs was first
introduced by Newman and Girvan in [25].

Despite some known issues with this function such as the “resolution limit”
reported in [10], many popular algorithms for partitioning nodes of large graphs
use it [8,24,19] and perform very well. The list includes one of the mostly used
unsupervised algorithms for detecting communities in graphs, the Louvain (hi-
erarchical) algorithm [4]. For more details we direct the reader to any book on
complex networks, including the following recent additions [15,17].

1.1 Summary of Results

In this paper, we investigate the modularity function for the ABCD model A.
The paper is structured as follows. The ABCD model is introduced in Sub-
section 2.2 and the modularity function is defined in Subsection 2.3. Results
for other random graph model in the context of the modularity function are
summarized in Section 3.

We start analyzing the ABCD model by investigating some basic properties—
see Section 4. These properties will be needed to establish results for the modu-
larity function but they are important on their own. In particular, we show that
the degree distribution is well concentrated around the corresponding expecta-
tions. Moreover, we show a concentration for the number of communities and
well as the distribution of their sizes. The same generating process is applied
in LFR so the two results hold for that model as well. The ABCD model as-
signs nodes to communities randomly. Clearly, there is no hope to predict the
volumes of small communities of constant size but sufficiently large communities
have their volumes as well as the number of internal edges well concentrated
around the corresponding expectations.

Then we move to the results for the modularity function. By design of the
ABCD model, 1 — ¢ fraction of edges should become community edges and so
should end up in some part of the ground truth partition C. (¢ is the main
parameter of the model responsible for the level of noise.) It is indeed the case
but it turns out that a negligible fraction of the background graph join them

* https://github.com/bkamins/ ABCDGraphGenerator.jl/
® https://github.com/tolcz/ ABCDeGraphGenerator.jl/
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there. As a result, the modularity function of the ground-truth partition C is
asymptotic to 1 — &, as proved in Theorem 1.

Analyzing the maximum modularity is much more complex. We have two
types of results. The first result (Theorem 2) shows that when the level of noise
is sufficiently large (£ close to one), then the maximum modularity ¢*(A) is
asymptotically larger than ¢(C), the modularity of the ground-truth. In this
regime, the number of edges within community graphs G; is relatively small
so a partition of the background graph into small connected pieces yields a
better modularity function. To show this result, we need to investigate the degree
distribution of the background graph which might be of independent interest.

The second set of results is concerned with graphs with low level of noise
(¢ close to zero). For these graphs, the situation is quite opposite. It turns out
that the ground truth partition is asymptotically the best possible, that is, the
maximum modularity ¢*(A) is only o(1) away from ¢(C), the modularity of the
ground truth partition C; both of them are asymptotic to 1 —¢ (see Theorem 3).
For some technical reason, it is assumed that §, the minimum degree of A, is suf-
ficiently large: the lower bound of 100 easily works but it may be improved with
more detailed treatment. Having said that, it seems that one needs a different
approach to uncover the real bottleneck. On the other hand, the above property
is not true if 6 = 1 (see Theorem 4): if 6 = 1, then ¢*(A) is substantially larger
than ¢(C), regardless of how close to zero & is.

Finally, let us mention that all proofs, statements of various technical lemmas,
and results of simulations are omitted in this proceeding version of the paper.
For much more details, we direct the reader to the journal counterpart of this
short paper that is available on ArXiv [11].

1.2 Simulations

This paper focuses on asymptotic theoretical results of the ABCD model. Hav-
ing said that, we performed a number of simulations and compared asymptotic
predictions with graphs generated by computer. These simulations show that
the behaviour of small random instances is similar to what is predicted by the
theory. This is a good news for practitioners as it shows that, despite the fact
that the generative algorithm is randomized, the model has good stability. We
discuss the results of simulations in the full journal version of the paper. The
code with experiments is accessible on GitHub repository®.

1.3 Open Problems

Theoretical results and simulations suggest that if §, the minimum degree of A,
satisfies § > ¢ for some &y > 2, then there exists a constant & = £(d) (that
possibly depends also on other parameters of the ABCD model A) such that
the following holds w.h.p. (that is, with probability tending to one as n — c0):

5 https://github.com/bkamins/ ABCDGraphGenerator.jl/
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— if 0 < € < &, then ¢*(A) ~ ¢(C), where C is the ground truth partition of
the set of nodes of A,
— if € > &o, then ¢*(.A) is separated by a constant from ¢(C).

Our results make the first step towards this conjecture by showing upper and
lower bounds for such threshold constant £y, when dg = 100. The bounds for &
are not close to each other. The next step would be to narrow the gap down or
perhaps to determine the threshold value exactly, provided that &g is sufficiently
large. Another natural direction would be to decrease the lower bound for 9,
that is, to decrease the value of §y. We showed that § = 1 does not have the
desired property but maybe §y = 27 Or maybe one can always construct a
better partition than C when § = 2, regardless how small parameter £ is? These
questions are left as open questions for future investigation.

2 Definitions (of ABCD Model and Modularity)

2.1 Asymptotic Notation

Our results are asymptotic in nature, that is, we will assume that the number of
nodes n — oo. Formally, we consider a sequence of graphs G,, = (V,,, E,,) and we
are interested in events that hold with high probability (w.h.p.), that is, events
that hold with probability tending to 1 as n — oo. It would be also convenient to
consider events that hold with extreme probability (w.e.p.), that is, events that
hold with probability at least 1 — exp(—£2((logn)?)). An easy but convenient
property is that if a polynomial number of events hold w.e.p., then w.e.p. all of
them hold simultaneously.

2.2 ABCD Model

Table 1: Parameters of the ABCD model

parameter|range |description

n N number of nodes

¥ (2,3) |power-law exponent of degree distribution

é N minimum degree at least §

¢ (0, 7%1} maximum degree at most nS

B8 (1,2) |power-law exponent of distribution of community sizes
s N\ [§] |community sizes at least s

T (¢,1) |community sizes at most n”

¢ (0,1) |level of noise

The ABCD model is governed by 8 parameters summarized in Table 1. For
a fixed set of parameters, we generate the ABCD graph A following the steps
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outlined below. Each time we refer to graph A in this paper, we implicitly (or
explicitly, but it happens rather rarely) fix all of these parameters.

Degree Distribution Let v € (2,3), 6 € N, and ¢ € (0,1). Degrees of nodes
of ABCD graph A are generated randomly following the (truncated) power-law
distribution P(7, 9, () with exponent 7, minimum value ¢, and maximum value
D = nf. In order to make sure the sum of degrees is even, if needed, we decrease
by one the degree of one node of the largest degree.

It is easy to show that for any w = w(n) tending to infinity as n — oo w.h.p.
the maximum degree of A is at most n'/("=Dw (of course, by definition, it is
deterministically at most n¢). As a result, for any two values of (1, (s € (ﬁ, 1)
one may couple the two corresponding ABCD graphs A so that w.h.p. they
produce exactly the same graph. Hence, for convenience but without loss of

1

generality, we will later on assume that ¢ € (0, ﬁ}

Distribution of Community Sizes Let 8 € (1,2), s € N\ [§], and 7 €
(¢,1). Community sizes of ABCD graph A are generated randomly following
the (truncated) power-law distribution P(S,s,7) with exponent [, minimum
value s, and maximum value S = n”. Communities are generated with this
distribution as long as the sum of their sizes is less than n, the desired number
of nodes. Suppose that the last community has size z and after adding it to the
remaining ones, the sum of their sizes will exceed n by k € N U {0}. If &k = 0,
then there is nothing else to do. If z—k > s, then the size of the last community
is reduced to z — k so that the total number of nodes is exactly n. Otherwise,
we select z — k < s old communities at random, increase their sizes by one, and
remove the last community so that the desired property holds.

The assumption that 7 > ( is introduced to make sure large degree nodes
have large enough communities to be assigned to. Similarly, the assumption that
s > §+1 is required to guarantee that small communities are not too small and
so that they can accommodate small degree nodes.

Assigning Nodes into Communities At this point, the degree distribution
(w1 > wy > ... > wy,) and the distribution of community sizes (¢; > co > ... >
¢¢) are already fixed. The final ABCD graph A will be formed as the union
of £ + 1 independent graphs: ¢ community graphs G; = (Cy, E;), i € [{], and a
single background graph Gy = (V, Ep), where V = Uie[l] C;. Roughly &w; edges
incident to node ¢ will, by definition, belong to its own community but a few
additional edges from the background graph might end up in that community.
In order to create enough room for these edges, node of degree w; will be allowed
to be assigned to a community of size c; if the following inequality is satisfied:

[(1—=&p)wi] <c¢;j—1, where ¢ =1 — Z (ex/n)*.

kel{]



6 Kaminski, Pankratz, Pratat, and Théberge

Note that this condition is equivalent to the following one:

Cj—l
1-&¢

An assignment of nodes into communities will be called admissible if the above
inequality is satisfied for all nodes. We show that there are many admissible
assignments. In particular, there are linearly many nodes of degree § but, for-
tunately, w.h.p. communities of size more than n¢ (more than the maximum
degree) have space for almost all nodes. We select one admissible assignment
uniformly at random. Sampling uniformly one of such assignments turns out to
be relatively easy from both theoretical and practical points of view.

(1)

w; <

Distribution of Weights Parameter £ € (0,1) reflects the amount of noise
in the network. It controls the fraction of edges that are between communities.
Indeed, asymptotically (but not exactly) 1 — ¢ fraction of edges are going to end
up within one of the communities. Each node will have its degree w; split into
two parts: community degree y; and background degree z; (w; = y; + z;). Our
goal is to get y; = (1 — §)w; and z; ~ {w;. However, both y; and z; have to be
non-negative integers and for each community C' C V, >~ v; has to be even.
Note that since ) ;. w; is even, so is

Zzi :Z(wi_yi> :Zwi_zzyi~

i€V i€V % C ieC

For each community C' C V we identify the leader, a node of the largest
degree w; associated with community C. (If many nodes in C' have the largest
degree, then we arbitrarily select one of them to be the leader.) For non-leaders
we split the weights as follows:

Yi = {(1 - g)wi—‘ and 2 = wi — Y,

where for a given integer a € Z and real number b € [0, 1) the random variable
la + b] is defined as

(2)

a with probability 1 — b
la+0b] = : s
a+1 with probability b.
(Note that E[|a+b]] = a(1—b)+ (a+1)b = a+b.) For the leader of community
C we round (1 — &)w; up or down so that the sum of weights in each cluster is
even. If (1 —&)w; € N and the sum of weights y; in C is odd, then we randomly
make a decision whether subtract or add one to make the sum to be even.

Creating Graphs As already mentioned, the final ABCD graph A = (V| E)
will be formed as the union of ¢ 4+ 1 independent graphs: £ community graphs
G; = (Ci, E;), i € [{], and a single background graph Go = (V, Ey), where V =
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Uie[e] C;, that is, F = Uie[Z]U{O} FE;. Each of these ¢ + 1 graphs will be created
independently. The partition C = {C1, Cs,...,C,} will be called a ground-truth
partition.

Suppose then that our goal is to create a graph on n nodes with a given de-
gree distribution w := (wi,ws,...,w,), where w is any vector of non-negative
integers such that w := Zie[n] w; is even. We define a random multi-graph P(w)
with a given degree sequence known as the configuration model (sometimes
called the pairing model), which was first introduced by Bollobds [5]. (See [3,
27, 28] for related models and results.) We start with w points that are parti-
tioned into n buckets labelled with labels v, vs, ..., v,; bucket v; consists of w;
points. It is easy to see that there are W pairings of points. We select one
of such pairings uniformly at random, and construct a multi-graph P(w), with
loops and parallel edges allowed, as follows: nodes are the buckets vy, vs, ..., vy,
and a pair of points zy corresponds to an edge v;v; in P(w) if z and y are
contained in the buckets v; and v;, respectively.

2.3 Modularity Function

The modularity function favours partitions of the set of nodes of a graph G in
which a large proportion of the edges fall entirely within the parts but bench-
marks it against the expected number of edges one would see in those parts in
the corresponding Chung-Lu random graph model [7] which generates graphs
with the expected degree sequence following exactly the degree sequence in G.

Formally, for a graph G = (V| F) and a given partition A = {A;, Ao, ..., Ay}
of V', the modularity function is defined as follows:

B e(A;) vol(4;)\?
o8 = 3 ‘EA(vom) | 3)

A;EA

where for any A C V, e(A) = [{uv € E : u,v € A}| is the number of edges in
the subgraph of G induced by set A, and vol(A) = > ., deg(v) is the volume
of set A. In particular, vol(V) = 2|E|. The first term in (3), >_ 4, ca €(4i)/|E],
is called the edge contribution and it computes the fraction of edges that fall
within one of the parts. The second one, Y7, . (vol(4;)/vol(V))?, is called the
degree tax and it computes the expected fraction of edges that do the same in
the corresponding random graph (the null model). The modularity measures the
deviation between the two.

The maximum modularity ¢*(G) is defined as the maximum of g(A) over all
possible partitions A of V; that is, ¢*(G) = maxa ¢(A). In order to maximize
q(A) one wants to find a partition with large edge contribution subject to small
degree tax. If ¢*(G) approaches 1 (which is the trivial upper bound), we observe
a strong community structure; conversely, if ¢*(G) is close to zero (which is the
trivial lower bound), there is no community structure. The definition in (3) can
be generalized to weighted edges by replacing edge counts with sums of edge
weights. It can also be generalized to hypergraphs [12,13].
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3 Related Results for Random Graphs

Analyzing the maximum modularity ¢*(G) for sparse random graphs is a chal-
lenging task. The most attention was paid to random d-regular graphs G, 4
but even for this family of graphs we only know upper and lower bounds for
q*(Gn,a) that are quite apart from each other. For example, for random 3-regular
graph G, 3 we only know that w.h.p.

0.667026 < ¢*(Gn,3) < 0.789998.

These bounds were recently proved in [21] but the main goal of that paper was
to confirm the conjecture from [22] that w.h.p. ¢*(G,,3) > 2/3+¢ for some € > 0.
We refer the reader to [22,26] for numerical bounds on ¢*(G,, 4) for other values
of d > 3 and for some explicit but weaker bounds. It is also known that w.h.p.
¢ () ~ 1 [22].

The binomial random graphs G(n,p) were studied in [23] where it was
shown that w.h.p. ¢*(G(n,p)) ~ 1, provided that pn < 1, On the other hand,
w.h.p. ¢*(G(n,p)) = O(1/,/pn), provided that pn > 1 and p < 1 — ¢ for some
e > 0. The modularity of the well-known Preferential Attachment (PA)
model [2] and the Spatial Preferential Attachment (SPA) model [1] was
studied in [26]. Finally, the modularity of a model of random geometric graphs
on the hyperbolic plane [16], known as the KPKBYV model after its inventors,
was recently studied in [6].

4 Some Properties of ABCD

4.1 Degree Distribution

Let v € (2,3), § € N, and ¢ € (0,1). Recall that the degrees of nodes of
the ABCD model are generated randomly following the (truncated) power-law
distribution P(7, 9, () with exponent 7, minimum value ¢, and maximum value
D = nf. More precisely, if X € P(v,4,¢), then for any k € {6,6 +1,...,D},
kL —y 1—y _ 1—y
g =Pr(X =k)= I},Hx il = kl_ (k+1)1_
f& xVdx 6= — (D + 1) v

=(14+0n= O L Ok k™ (y-1)50""L (4)

The first lemma provides an upper bound for the maximum degree, which
justifies our assumption that ¢ € (0,1/(y—1)]. The second lemma shows that the
degree distribution is well concentrated around the expectation. Since the state-
ments are quite technical, we omit them. However, let us mention the following
corollary. The volume of all nodes in A is w.e.p. equal to

D D
vol(V) = Y " kYy = (14 O((logn)™")) dn, where d := ) kqx.
k=6 k=34
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4.2 Distribution of Community Sizes

Let 8 € (1,2), s € N, and 7 € ((,1). Recall that community sizes of the ABCD

model are generated randomly following the (truncated) power-law distribution

P(B, s, ) with exponent 8, minimum value s, and maximum value S = n”. More

precisely, if X € P(8,s,7), then after following exactly the same computation
as in (4) we get that for any k € {s,s+1,...,5},

k+1 -B 1-8 1-8

P = Pr(X = k) %Hx dx _ k1,3 (k‘—|—1)17
[ e Pde ST (S+1)t=~F

=14+0nTEY Lok k(B —1)s"L. (5)

Our next lemma shows that community sizes of ABCD are well concentrated
around their expectation. Again, we omit technical statements only reporting
that w.e.p. the number of communities is equal to

! = E(n) = (1 + O((logn)_1)> énl—T(Q—ﬁ),

where
2-p
(B—1)s=1

é:

4.3 Assigning Nodes into Communities and Distribution of Weights

Recall that at this point of the process, the degree distribution (w; > wq >

. > wy) and the distribution of community sizes (¢; > ¢z > ... > ¢y) are
already fixed. In order to assign nodes to communities we will use the following
easy and natural algorithm. We consider nodes, one by one, starting from w;
(high degree node) and finishing with w,, (low degree node). Recall that node i
of degree w; has to be assigned to a community of size ¢; so that inequality (1)
holds. We assign node w; randomly to one of the communities that have size
larger than [(1 — £¢)w;] and still have some “available spots”. We do it with
probability proportional to the number of available spots left. One can show
that the above simple algorithm generates one of the admissible assignments
uniformly at random.

The volumes of small communities are not well concentrated around their
means. On the other hand, the volumes of very large communities are well con-
centrated around their means, as our next lemma shows. As usually, we skip the
statement directing the reader to the journal version of this paper.

5 Modularity

5.1 Modularity of the Ground-truth Partition: ¢(C)
Let us start by investigating the modularity of the ground-truth partition of A.

Theorem 1. Let C = {C1,Cs,...,Cy} be the ground-truth partition of the set
of nodes of A. Then, w.e.p.

¢*(A) 2 ¢(C) = (1 + O((logn)~ =) (1 —¢).
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5.2 Maximum Modularity: ¢*(G)

As mentioned in Section 3, analyzing the maximum modularity ¢*(G) for sparse
random graphs is a challenging task and typically only bounds for ¢*(G) are
known that are far apart from each other. Since the ABCD model A is more
complex than other sparse random graphs, especially random d-regular graphs,
there is no hope for tight bounds for the maximum modularity function but we
will make some interesting observations below.

Large Level of Noise Let us start with investigating graphs with a large level
of noise, that is, with £ close to one. For such graphs, one should focus on the
background graph Gy which involves all but a small fraction of edges. It turns
out that Gq is connected w.h.p., provided that its minimum degree is at least
3, or otherwise w.h.p. it has a giant component. By restricting ourselves to a
spanning tree of the giant component of Gy, we may partition the set of nodes
into small parts such that each part induces a connected graph. This is not much,
but for noisy graphs it yields the modularity that is larger than the modularity
of the ground-truth partition.

Theorem 2. Let v € (2,3), § € N, ¢ € (0, ﬁ}, and £ € (0,1).

(a) If €6 > 3, then set a = 1.

(b) If £6 < 3, then there exists a universal constant o > 0 which depends on the
parameters of the model but it is always separated from 0 (that is, a is not
a function of n).

There exists a partition C of the set of nodes V' of A such that the following
properties hold w.h.p.

'(4) 2 9(€) > (1+ O 1-0/2) 2
200 D
= (1+0((logn)™)) R where d = Z kqy.
k=0

(Note that g; is defined in (4).)

Recall that the modularity function of the ground-truth partition is w.e.p.
asymptotic to 1 —&. The above theorem implies that if § > 4 and the graph has a
large level of noise, namely, £ > 3/§ and £ > 1 —2/d, then w.h.p. the modularity
function obtained from dissecting the spanning tree of Gy is larger! The same
conclusion can be derived when ¢ < 3 by considering £ sufficiently close to one.

Low Level of Noise This time we will investigate graphs with a low level of
noise, that is, with £ close to zero. Let us fix a value of § € N such that § > 100.
For any @ € N and b € N\ {1,2} such that ab < 0, let

b—2vb—1 ab b—1
2b ab+b—1 ab+b—-1

c(a,b) = —0.011. (6)
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Let b c(ab) 1
ab c(a

0) = in(1—-—,——~,—]. 7

€0(9) aeN,bel\IIr{E{Dl(,2},ab<6mm( 6§ 4 720) (7)

It is clear that &y(9) is a non-decreasing function of 6. Moreover, £,(100) ~ 0.0217

(the maximum is achieved for a = 8 and b = 12), and £y(0) = 1/20 for ¢ > 340.

Our first result says that ABCD graph 4 with minimum degree § > 100 and
& € (0,&(0)) has w.h.p. the maximum modularity ¢*(.A) asymptotically equal
to the modularity function on the ground-truth.

Theorem 3. Let 6 € N such that § > 100 and 0 < & < &y(9), where £y(0) is
defined in (7). Let C = {C1,Cs,...,Cy} be the ground-truth partition of the set
of nodes of A. Then, w.h.p. ¢*(A) ~ q(C) ~1—¢.

The lower bound of 100 for ¢ as well as the constants £(d) are not tuned for
the strongest result. Since the proof technique we use will not allow us to close
the gap anyway, we aimed for a simple argument that works for large enough ¢
and relatively simple constants. Having said that, the above property is not true
for 0 = 1; that is, if A has minimum degree § = 1, then one may find a partition
of the nodes of A that yields larger modularity than the one associated with the
ground-truth.

Theorem 4. Fiz § = 1 and let 0 < £ < 1. Let C = {C4,Cs,...,Cs} be the
ground-truth partition of the set of nodes of A. Then, w.e.p.

d d
> (1+0((logn)~"7%)) (1 - €) = ¢(C),

(A > (1+ O((logn)fhim)) ((1 &)+ Eﬂ (2 B ql)>

where qy, is defined in (4) and d = Zszg kqp.
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