
A FULLY ADAPTIVE STRATEGY FOR HAMILTONIAN CYCLES IN THE

SEMI-RANDOM GRAPH PROCESS

PU GAO, CALUM MACRURY, AND PAWE L PRA LAT

Abstract. The semi-random graph process is a single player game in which the player is initially
presented an empty graph on n vertices. In each round, a vertex u is presented to the player
independently and uniformly at random. The player then adaptively selects a vertex v, and adds
the edge uv to the graph. For a fixed monotone graph property, the objective of the player is to
force the graph to satisfy this property with high probability in as few rounds as possible.

We focus on the problem of constructing a Hamiltonian cycle in as few rounds as possible. In
particular, we present an adaptive strategy for the player which achieves it in αn rounds, where
α < 2.01678 is derived from the solution to some system of differential equations. We also show
that the player cannot achieve the desired property in less than βn rounds, where β > 1.26575.
These results improve the previously best known bounds and, as a result, the gap between the
upper and lower bounds is decreased from 1.39162 to 0.75102.

1. Introduction and Main Results

1.1. Definitions. In this paper, we consider the semi-random graph process suggested by
Peleg Michaeli, introduced formally in [3], and studied recently in [2, 9, 10, 1, 7, 12] that can be
viewed as a “one player game”. The process starts from G0, the empty graph on the vertex set
[n] := {1, . . . , n} where n ≥ 1. In each step t, a vertex ut is chosen uniformly at random from [n].
Then, the player (who is aware of graph Gt and vertex ut) must select a vertex vt and add the
edge utvt to Gt to form Gt+1. The goal of the player is to build a (multi)graph satisfying a given
property P as quickly as possible. It is convenient to refer to ut as a square, and vt as a circle so
every edge in Gt joins a square with a circle. We say that vt is paired to ut in step t. Moreover,
we say that vertex x ∈ [n] is covered by the square ut arriving at round t, provided ut = x. The
analogous definition extends to the circle vt. Equivalently, we may view Gt as a directed graph
where each arc directs from ut to vt, and thus we may use (ut, vt) to denote the edge added in step
t. For this paper, it is easier to consider squares and circles for counting arguments.

A strategy S is defined by specifying for each n ≥ 1, a sequence of functions (ft)
∞
t=1, where for

each t ∈ N, ft(u1, v1, . . . , ut−1, vt−1, ut) is a distribution over [n] which depends on the vertex ut,
and the history of the process up until step t− 1. Then, vt is chosen according to this distribution.
If ft is an atomic distribution, then vt is determined by u1, v1, . . . , ut−1, vt−1, ut. We then denote
(GSi (n))ti=0 as the sequence of random (multi)graphs obtained by following the strategy S for t
rounds; where we shorten GSt (n) to Gt or Gt(n) when clear.

Suppose P is a monotonely increasing property. Given a strategy S and a constant 0 < q < 1,
let τP(S, q, n) be the minimum t ≥ 0 for which P[Gt ∈ P] ≥ q, where τP(S, q, n) :=∞ if no such t
exists. Define

τP(q, n) = inf
S
τP(S, q, n),

where the infimum is over all strategies on [n]. Observe that for each n ≥ 1, if 0 ≤ q1 ≤ q2 ≤ 1,
then τP(q1, n) ≤ τP(q2, n) as P is increasing. Thus, the function q → lim supn→∞ τP(q, n) is
non-decreasing, and so the limit,

τP := lim
q→1−

lim sup
n→∞

τP(q, n)

n
,

1

2 PU GAO, CALUM MACRURY, AND PAWE L PRA LAT

is guaranteed to exist. The goal is typically to compute upper and lower bounds on τP for various
properties P.

1.2. Main Results. In this paper, we concentrate on the property of having a Hamiltonian cycle,
which we denote by HAM. As observed in [3], if Gt has a Hamiltonian cycle, then Gt has minimum
degree at least 2. Thus, τHAM ≥ τP = ln 2 + ln(1 + ln 2) ≥ 1.21973, where P corresponds to having
minimum degree 2. On the other hand, it is known that the famous 3-out process is Hamiltonian
with probability tending to 1 as n → ∞ (a.a.s.) [6]. As the semi-random process can be coupled
with the 3-out process, we get that τHAM ≤ 3. A new upper bound was obtained in [9] in terms of
an optimal solution to an optimization problem whose value is believed to be 2.61135 by numerical
support. In the same paper, the lower bound mentioned above was shown to not be tight. The
lower bound was increased by ε = 10−8 and so numerically negligible.

The upper bound on τHAM of 3 obtained by simulating the 3-out process is non-adaptive. That
is, the strategy does not depend on the history of the semi-random process. The above mentioned
improvement proposed in [9] uses an adaptive strategy but in a weak sense. The strategy consists
of 4 phases, each lasting a linear number of rounds, and the strategy is adjusted only at the end
of each phase (for example, the player might identify vertices of low degree, and then focus on
connecting circles to them during the next phase).

In this paper, we propose a fully adaptive strategy that pays attention to the graph Gt and
the position of ut for every single step t. As expected, such a strategy creates a Hamiltonian cycle
substantially faster than our weakly adaptive strategy, and it allows us to improve the upper bound
from 2.61135 to 2.01678.

Theorem 1.1. τHAM ≤ α ≤ 2.01678, where α is derived from a system of differential equations.

The numerical results presented in this paper were obtained using the Julia language [5]. We
would like to thank Bogumi l Kamiński from SGH Warsaw School of Economics for helping us to
implement it. The program is available on-line.1

Moreover, by investigating some specific structures that are generated by the semi-random
process, which guarantee the existence of a large set of families of edges that cannot simulta-
neously contribute to the construction of a Hamiltonian cycle, we improve the lower bound of
ln 2 + ln(1 + ln 2) ≥ 1.21973 to 1.26575. The structures we investigate in this work are different
from the ones in [9]. We attain a simpler proof than in [9], and a much stronger bound.

Theorem 1.2. Let f(s) = 2+e−3s(s+1)
(

1− s2

2 −
s3

3 −
s4

8

)
+e−2s

(
2s+ 5s2

2 + s3

2

)
−e−s (3 + 2s),

and let β ≈ 1.26575 be the positive root of f(s)− 1 = 0. Then, τHAM ≥ β.

1.3. Previous Results. Let us briefly describe a few known results on the semi-random process.
In the very first paper [3], it was shown that the process is general enough to approximate (using
suitable strategies) several well-studied random graph models. In the same paper, the process was
studied for various natural properties such as having minimum degree k ∈ N or having a fixed
graph H as a subgraph. In particular, it was shown that a.a.s. one can construct H in less than
n(d−1)/dω rounds where d ≥ 2 is the degeneracy of G and ω = ω(n) is any function that tends to
infinity as n → ∞. This property was recently revisited in [1] where the conjecture from [3] was

proven for any graph H: a.a.s. it takes at least n(d−1)/d/ω rounds to create H.
Another property that was studied in the context of semi-random processes is a property of

having a perfect matching, which we denote by PM. Since the 2-out process has a perfect matching
a.a.s. [8], we immediately get that τPM ≤ 2. By coupling the semi-random process with another
random graph that is known to have a perfect matching a.a.s. [11], the bound can be improved to
1 + 2/e < 1.73576. This bound was recently improved by the authors of this paper by investigating

1https://math.ryerson.ca/~pralat/research.html#publications

HAMILTONIAN CYCLES IN THE SEMI-RANDOM GRAPH PROCESS 3

another fully adaptive algorithm [10]. The currently best upper bound is τPM < 1.20524. In the
same paper, the lower bound observed in [3] (τPM ≥ ln(2) > 0.69314) was improved as well, and
now we know that τPM > 0.93261 [10].

Finally, let us discuss what is known about the property of containing a given spanning graphH as
a subgraph. It was asked by Noga Alon whether for any bounded-degreeH, one can construct a copy
of H a.a.s. in O(n) rounds. This question was answered positively in a strong sense in [2], in which
it was shown that any graph with maximum degree ∆ can be constructed a.a.s. in (3∆/2 + o(∆))n
rounds. They also proved that if ∆ = ω(log(n)), then this upper bound improves to (∆/2+o(∆))n
rounds. Note that both of these upper bounds are asymptotic in ∆. When ∆ is constant in n, such
as in both the perfect matching and Hamiltonian cycle setting, determining the optimal dependence
on ∆ for the number of rounds needed to construct H remains open.

2. Proof of Theorem 1.1

2.1. Algorithmic Preliminaries. In this section, we introduce some notation as well as the basic
ideas used in the design of all of our strategies.

The main ingredient for proving Theorem 1.1 is to specify a strategy which keeps augmenting
or extending a path, until the path becomes Hamiltonian. Then, with a few more steps, the
Hamiltonian path can be completed into a Hamiltonian cycle. Let us suppose that after t ≥ 0
steps, we have constructed the graph Gt which contains the path Pt. Define Ut to be the set of
vertices not in Pt, which we refer to as the unsaturated vertices of [n]. It will be convenient to
denote the (induced) distance between vertices x, y ∈ V (Pt) on the path Pt by dPt(x, y). We also
define dPt(x,Q) := minq∈Q dPt(x, q) for x ∈ V (Pt) and Q ⊆ V (Pt).

Let us first assume that ut+1 lands in Ut. In this case, we can clearly extend the path Pt by an
edge by choosing vt+1 to be an endpoint of Pt. We call such a move a (greedy) path extension.
Now, suppose that ut+1 lands on a vertex x ∈ Pt. In this case, we cannot perform a greedy path
extension, however we can still choose vt+1 in a way that will help us extend the path in the future
rounds. Specifically, set vt+1 := r for some r ∈ Ut, and colour the vertex x as well as the edge
xr. Suppose that in some round i > t+ 1, ui lands on y next to the coloured vertex x on Pi (i.e.,
dPi(x, y) = 1). In this case, set vi = r. Observe now that we can add r to the current path by
adding the edges yr and xr to it, and by removing the edge yx. Thus, despite us not landing on
an unsaturated vertex, we are still able to perform a move which extends its length by one. We
call such an operation a path augmentation.

2.2. Proof Overview. In order to prove Theorem 1.1, we analyze a strategy which proceeds in
three distinct stages. In the first stage, we execute DegreeGreedy, an algorithm which makes
greedy path extensions whenever possible, and otherwise sets up path augmentation operations
for future rounds in a degree greedy manner. Specifically, vt+1 is chosen amongst the unsaturated
vertices of minimum coloured in-degree. This degree greedy decision is done to minimize the number
of coloured vertices which are destroyed when path augmentations and extensions are made in later
rounds. This stage lasts for N phases, where N is any non-negative integer that may be viewed
as the parameter of the algorithm (here a phase is a contiguous set of steps shorter than the full
stage). For the claimed (numerical) upper bound of Theorem 1.1, N is set to 100. Setting smaller
values of the parameter N—in particular, setting N = 0—yields an algorithm that is easier to
analyse. Setting N > 100 can slightly improve the bound in Theorem 1.1, but the gain is rather
insignificant. The second stage starts at some random step t0 (i.e. t0−1 is the total number of steps
in stage one), and we execute FullyRandomized, an algorithm which makes greedy path extensions
whenever possible, and otherwise chooses vt+1 randomly amongst the unsaturated vertices. We
execute FullyRandomized until we are left with εn unsaturated vertices, where ε = ε(n) tends
to 0 as n → ∞ arbitrarily slowly. At this point, we proceed to the final stage where a clean-up

4 PU GAO, CALUM MACRURY, AND PAWE L PRA LAT

algorithm is run, which also uses path augmentations. Using elementary concentration inequalities
we prove that a Hamiltonian cycle can be constructed in an additional O(

√
εn) = o(n) steps.

In Section 2.3, we first describe FullyRandomized, as it is easier to state and analyze than
DegreeGreedy. Moreover, if we take N = 0, which corresponds to executing FullyRandomized

from the beginning, then we will be left with a path on all but εn vertices after α∗n steps where
α∗ ≤ 2.07721. Our third stage clean-up algorithm from Section 2.4 allows us to complete the
Hamiltonian cycle in another o(n) steps. Thus, Sections 2.3 and 2.4 provide a self-contained proof
of an upper bound on τHAM of α∗ ≤ 2.07721 (see Theorem 2.6). Afterwards, in Section 2.5 we
formally state and analyze our first stage algorithm. This is the most technical section of the
paper, as DegreeGreedy makes decisions in a more intelligent manner than FullyRandomized

which necessitates more random variables in its analysis. By executing these three stages in the
aforementioned order, we attain the claimed upper bound of Theorem 1.1.

2.3. A Fully Randomized Algorithm. In order to describe our algorithm, it will be convenient
to colour certain edges of Gt red. This helps us define certain vertices used by our algorithm for
path augmentations. Specifically, x ∈ V (Pt) is one-red provided it is adjacent to precisely one
red edge of Gt. Similarly, x ∈ V (Pt) is two-red, provided it is adjacent to precisely two red edges
of Gt. We denote the one-red vertices and two-red vertices by L1

t and L2
t , respectively, and refer

to Lt := L1
t ∪ L2

t as the red vertices of Gt. By definition, L1
t and L2

t are disjoint. It will also be
convenient to maintain a set of permissible vertices Qt ⊆ V (Pt) which specifies which uncoloured
vertices on the path can be turned red. In order to simplify our analysis, we specify the size of Qt
and ensure that it only contains vertices of path distance at least 3 from the red vertices on Pt.
Formally:

(i) |Qt| = |V (Pt)| − 5|Lt|.
(ii) If Lt 6= ∅, then each x ∈ Qt satisfies dPt(x,Lt) ≥ 3.

When Lt = ∅, we simply take Qt = V (Pt). Otherwise, since |{x ∈ V (Pt) : dPt(x,Lt) ≤ 2}| ≤ 5|Lt|,
we can maintain these properties by initially taking {x ∈ V (Pt) : dPt(x,Lt) ≥ 3}, and then (if
needed) arbitrarily removing |{x ∈ V (Pt) : dPt(x,Lt) ≥ 3}| − (|V (Pt)| − 5|Lt|) vertices from it.

Upon the arrival of ut+1, there are four main cases our algorithm must handle. The first two
cases involve extending the length of the path, whereas the latter two describe what to do when it
is not possible to extend the path in the current round.

(1) If ut+1 lands within Ut, then greedily extend Pt.
(2) If ut+1 lands at path distance one from some x ∈ Lt, then augment Pt via an arbitrary red

edge of x.
(3) If ut+1 lands in Qt, then choose vt+1 u.a.r. amongst Ut, and colour ut+1vt+1 red. This case

creates a one-red vertex.
(4) If ut+1 lands in L1

t , then choose vt+1 u.a.r. amongst Ut and colour ut+1vt+1 red. This case
converts a one-red vertex to a two-red vertex.

In all the remaining cases, we choose vt+1 arbitrarily, and interpret the algorithm as passing on
the round, meaning the edge utvt will not be used to construct a Hamiltonian cycle. In particular,
the algorithm passes rounds in which ut+1 lands at path distance two from some x ∈ Lt. This
guarantees that no two red vertices are at distance two from each other and so when ut+1 lands
next to a red vertex, this neighbouring red vertex is uniquely identified. Let us say that a red vertex
is well-spaced, provided it is at distance at least 3 on the path from all other red vertices, and it
is not an endpoint of Pt. Observe that each well-spaced red vertex yields precisely two vertices on
Pt where a path augmentation involving ut+1 can occur. By construction, all but at most 2 of the
algorithm’s red vertices are well-spaced.

We now formally describe step t+ 1 of the algorithm when ut+1 is drawn u.a.r. from [n]. Specif-
ically, we describe how the algorithm chooses vt+1, how it constructs Pt+1, and how it adjusts the
colours of Gt+1, thus updating L1

t and L2
t .

HAMILTONIAN CYCLES IN THE SEMI-RANDOM GRAPH PROCESS 5

Algorithm FullyRandomized. Step t+ 1

1: if ut+1 ∈ Ut then . greedily extend the path.
2: Let vt+1 be an arbitrarily chosen endpoint of Pt.
3: Set V (Pt+1) = V (Pt) ∪ {ut+1}, E(Pt+1) = E(Pt) ∪ {ut+1vt+1}.
4: Uncolour all of the edges adjacent to ut+1.
5: else if dPt(ut+1,Lt) = 1 then . path augment via red vertices
6: Let x ∈ Lt be the (unique) red vertex adjacent to ut+1

7: Denote xr ∈ E(Gt) an arbitrary red edge of x, and set vt+1 = r, where r ∈ Ut.
8: Set V (Pt+1) = V (Pt) ∪ {r} and E(Pt+1) = E(Pt) ∪ {ut+1r, xr} \ {ut+1x}.
9: Uncolour all of the edges adjacent to r.

10: else if ut+1 ∈ Qt ∪ Lt then . construct red vertices
11: Choose vt+1 u.a.r. from Ut.
12: Colour ut+1vt+1 red. . construct a one-red or two-red vertex
13: Set Pt+1 = Pt.
14: else . pass on using edge ut+1vt+1.
15: Choose vt+1 arbitrarily from [n].
16: Set Pt+1 = Pt.
17: end if
18: Update Qt+1 such that |Qt+1| = |V (Pt+1)| − 5|Lt+1|.

We define the random variables X(t) = |V (Pt)|, L1(t) = |L1
t |, L2(t) = |L2

t |, and L(t) = |Lt| =
L1(t) +L2(t). Note that L(t) is an auxiliary random variable which we define only for convenience.
We use ∆ to denote the one step changes in our random variables (i.e., ∆X(t) := X(t+ 1)−X(t)).
Recall that t0 is the step when FullyRandomized is called. Let us first show that our random
variables cannot change drastically in one round.

Lemma 2.1 (Boundedness Hypothesis – FullyRandomized). With probability 1−O(n−1),

max{|∆X(t)|, |∆L1(t)|, |∆L2(t)|} = O(log n)

for all t0 ≤ t ≤ 3n with n−X(t) ≥ n/ log n.

Proof. Note that, by design, the path can only increase its length but it cannot absorb more than
one vertex in each round. Hence, the desired property clearly holds for the random variable X(t).
To estimate the maximum change for the random variables L1(t) and L2(t), we need to upper
bound the number of red edges adjacent to any particular unsaturated vertex v. Observe that
at any step t ≤ 3n, since we have assumed there are at least n/ log n unsaturated vertices, the
number of red edges adjacent to v is stochastically upper bounded by the binomial random variable
Bin(3n, log n/n) with expectation 3 log n. It follows immediately from Chernoff’s bound that with
probability 1−O(n−3), the number of red edges adjacent to v is O(log n), and so the desired bound
holds by union bounding over all 3n2 vertices and steps. �

Let us denote Ht = (X(i), L1(i), L2(i))0≤i≤t. Note that Ht does not encompass the entire
history of the random process after t rounds (i.e., G0, . . . , Gt, the first t + 1 graphs constructed
by the algorithm). This deferred information exposure permits a tractable analysis of the random
positioning of vt when ut is red. We observe the following expected difference equations.

Lemma 2.2 (Trend Hypothesis – FullyRandomized). For each t ≥ t0, if n−X(t) ≥ n/ log n, then

E[∆X(t) | Ht] = 1− X(t)

n
+

2L(t)

n
+O(log n/n) (1)

E[∆L1(t) | Ht] =
X(t)− 5L(t)

n
+

2L1(t)

n

(
2L2(t)

n−X(t)
− L1(t)

n−X(t)
− 1

)

6 PU GAO, CALUM MACRURY, AND PAWE L PRA LAT

+
2L2(t)

n

(
1 +

2L2(t)

n−X(t)
− L1(t)

n−X(t)

)
− L1(t)

n

+

(
1− X(t)

n

)(
2L2(t)

n−X(t)
− L1(t)

n−X(t)

)
+O(log n/n) (2)

E[∆L2(t) | Ht] =
L1(t)

n
−
(

1− X(t)

n

)
2L2(t)

n−X(t)
− 2L1(t)

n

2L2(t)

n−X(t)

−2L2(t)

n

(
1 +

2L2(t)

n−X(t)

)
+O(log n/n). (3)

The proof is obtained by examining how the landing of ut affects the random variables under
study. For instance, for X(t), observe that ∆X(t) is 1 when ut+1 lands on an unsaturated vertex,
or adjacent to a red vertex; and is 0 otherwise. Combining with the probabilities of the above two
events yields (1). The proofs for (2) and (3) are similar and the details can be found in Appendix A.

In order to analyze FullyRandomized, we shall employ the differential equation method [14].
This method is commonly used in probabilistic combinatorics to analyze random processes that
evolve step by step. The step changes must be small in relation to the entirety of the discrete
structure. For instance, in our application, this refers to adding one edge at a time to the graph
on [n] vertices. The method allows us to derive tight bounds on the associated random variables
which hold a.a.s. at every step of the random process. We refer the reader to [4] for a gentle
introduction to the methodology. The execution of FullyRandomized starts at some random step
t0, which we will prove is a.a.s. asymptotic to s0n for some constant 0 ≤ s0 < 1. Let X(t0) denote
the number of vertices on Pt after the execution of DegreeGreedy. We shall prove that there exists
some constant x̂(s0) such that |X(t0)/n − x̂(s0)| ≤ λ for some λ = o(1). If N is set to 0, then
t0 = s0 = X(0) = x̂(0) = 0.

Let us now fix a sufficiently small constant ε > 0, and define the bounded domain

Dε := {(s, x, `1, `2) : −1 < s < 3,−1 < x < 1− ε, |`1| < 2, |`2| < 2}.
Consider the system of differential equations in variable s with functions x = x(s), `1 = `1(s), and
`2 = `2(s):

x′ = 1− x+ 2(`1 + `2) (4)

`′1 = x− 5(`1 + `2) + `1

(
2`2 − `1

1− x
− 1

)
+ 2`2

(
1 +

2`2 − `1
1− x

)
− `1 + 2`2 − `1 (5)

`′2 = `1 − 2`2 − 2`1

(
2`2

1− x

)
− 2`2

(
1 +

2`2
1− x

)
. (6)

The right-hand side (r.h.s.) of each of the above equations is Lipchitz on the domain Dε. Define

TDε = min{t ≥ 0 : (t/n,X(t)/n, L1(t)/n, L2(t)/n) /∈ Dε}.
Now, the ‘Initial Condition’ of Theorem D.1 is satisfied with values (s0, x̂(s0), 0, 0) and some λ =
o(1). Moreover, the ‘Trend Hypothesis’ and ‘Boundedness Hypothesis’ are satisfied with some
δ = O(log n/n), β = O(log n) and γ = o(n−1), by Lemmas 2.1 and 2.2. Thus, for every δ > 0,
X(t) = nx(t/n) + o(n), L1(t) = n`1(t/n) + o(n) and L2(t) = n`2(t/n) + o(n) uniformly for all
t0 ≤ t ≤ (σ(ε) − δ)n, where x, `1 and `2 are the unique solution to (4)–(6) with initial conditions
x(s0) = x̂(s0), `1(s0) = `2(s0) = 0, and σ(ε) is the supremum of s to which the solution can be
extended before reaching the boundary of Dε. For N = 0, s0 = 0 and the initial conditions are
simply x(0) = `1(0) = `2(0) = 0. This immediately yields the following.

Lemma 2.3 (Concentration of FullyRandomized’s Random Variables). For every δ > 0, a.a.s.
for all t0 ≤ t ≤ (σ(ε)− δ)n,

max{|X(t)− x(t/n)n|, |L1(t)− `1(t/n)n|, |L2(t)− `2(t/n)n|} = o(n).

HAMILTONIAN CYCLES IN THE SEMI-RANDOM GRAPH PROCESS 7

As Dε ⊆ Dε′ for every ε > ε′, σ(ε) is monotonely nondecreasing as ε→ 0. Thus,

α∗ := lim
ε→0+

σ(ε) (7)

exists. It is obvious that |L1(t)/n| and |L2(t)/n| are both bounded by 1 for all t and thus, when t/n
approaches α∗, either X(t)/n approaches 1 or t/n approaches 3. Formally, we have the following
proposition.

Proposition 2.4. For every ε > 0, there exists δ > 0 such that a.a.s. one of the following holds.

• X(t) > (1− ε)n for all t ≥ (α∗ − δ)n;
• α∗ = 3.

The ordinary differential equations (4)–(6) do not have an analytical solution. In both cases
N = 0 and N = 100, numerical solutions show that α∗ < 2.1. (For N = 0, α∗ ≈ 2.07721.) Thus,
by the end of the execution of FullyRandomized, there are εn unabsorbed vertices remaining, for
some ε = o(1).

2.4. A Clean-up Algorithm. Suppose that we are presented a path P on (1−ε)n vertices of [n],
where 0 < ε = ε(n) < 1/1000. The assumption on ε is a mild but convenient assumption. We will
apply the argument for ε = o(1). In this section, we provide an algorithm for the semi-random graph
process which absorbs the remaining εn vertices into P to form a Hamiltonian path, after which
a Hamiltonian cycle can be constructed. The whole procedure takes O(

√
εn + n3/4 log2 n) = o(n)

further steps in the semi-random graph process. Moreover, the algorithm is self-contained in that
it only uses the edges of P in its execution.

Lemma 2.5 (Clean-up Algorithm). Let 0 < ε = ε(n) < 1/1000, and suppose that P is a path on
(1− ε)n vertices of [n]. Then, given P initially, there exists a strategy for the semi-random graph

process which builds a Hamiltonian cycle from P in O(
√
εn+ n3/4 log2 n) steps a.a.s.

Remark 1. The constant hidden in the O(·) notation does not depend on ε. The strategy used in
the clean-up algorithm is similar to that in FullyRandomized but the analysis is done in a much
less accurate way, as we only need to prove an o(n) bound on the number of steps required to
absorb εn vertices. The proof is presented in Appendix A.

By setting N = 0 we immediately get an algorithm which a.a.s. constructs a Hamiltonian cycle
in α̂n steps, where α̂ ≤ 2.07721. To obtain the better bound in Theorem 1.1, we set N = 100, and
the execution of DegreeGreedy will be analysed in the next subsection.

Theorem 2.6. τHAM ≤ α̂ ≤ 2.07721, where α̂ is defined in (7) with initial conditions for (4)–(6)
set by x(0) = `1(0) = `2(0) = 0.

Proof. This follows by Proposition 2.4, the numerical value of α∗, and Lemma 2.5. �

2.5. A Degree-Greedy Algorithm. Let us suppose that after t ≥ 0 steps, we have constructed
the graph Gt which contains the path Pt. As before, our algorithm uses path augmentations, and
we colour the edges of Gt to help keep track of when these augmentations can be made. We now
use two colours, namely red and blue, to distinguish between edges which are added randomly (red)
and greedily (blue). Our blue edges will be chosen so as to minimize the number of blue edges
destroyed by path augmentations in future rounds.

We say that x ∈ V (Pt) is blue, provided it is adjacent to a single blue edge of Gt, and no red
edge. Similarly, x ∈ V (Pt) is red, provided it is adjacent to a single red edge of Gt, and no blue
edge. Finally, we say that x ∈ V (Pt) is magenta (mixed), provided it is adjacent to a single red
edge, and a single blue red. We denote the blue vertices, red vertices, and magenta (mixed) vertices
by Bt,Rt and Mt, respectively, and define Lt := Bt ∪ Rt ∪Mt to be the coloured vertices. By
definition, Bt,Rt and Mt are disjoint. Once again, we denote our unsaturated vertices by Ut, and

8 PU GAO, CALUM MACRURY, AND PAWE L PRA LAT

also maintain a set of permissible vertices Qt which indicate which saturated vertices are allowed
to be coloured blue. Specifically, using the same reasoning as before, we ensure the following:

(i) |Qt| = |V (Pt)| − 5|Lt|.
(ii) If Lt 6= ∅, then each x ∈ Qt satisfies dPt(x,Lt) ≥ 3.

Upon the arrival of ut+1, there are five main cases our algorithm must handle. The first two
cases involve extending the length of the path, whereas the latter three describe what to do when
it is not possible to extend the path in the current round.

(1) If ut+1 lands within Ut, then greedily extend Pt.
(2) If ut+1 lands at path distance one from x ∈ Lt, then augment Pt via a coloured edge of x,

where a blue edge is taken over a red edge if possible.
(3) If ut+1 lands in Qt, then choose vt+1 u.a.r. amongst those vertices of Ut with minimum blue

degree. The edge ut+1vt+1 is then coloured blue, and a single blue vertex is created.
(4) If ut+1 lands in Rt, then choose vt+1 u.a.r. amongst those vertices of Ut with minimum blue

degree. The edge ut+1vt+1 is then coloured blue, and a single red vertex is converted to a
magenta (mixed) vertex.

(5) If ut+1 lands in Bt, then choose vt+1 u.a.r. amongst Ut and colour ut+1vt+1 red. This case
converts a blue vertex to a magenta vertex.

In all the remaining cases, we choose vt+1 uniformly at random, and interpret the algorithm as
passing on the round. Below we formally describe step t+ 1 of the algorithm upon receiving ut+1:

Algorithm DegreeGreedy. Step t+ 1

1: if ut+1 ∈ Ut then . greedily extend the path
2: Let vt+1 be an arbitrarily chosen endpoint of Pt.
3: Set V (Pt+1) = V (Pt) ∪ {ut+1}, E(Pt+1) = E(Pt) ∪ {ut+1vt+1}.
4: Uncolour all of the edges adjacent to ut+1.
5: else if d(ut+1,Lt) = 1 then . path augment via coloured vertices
6: Let x ∈ Lt be the (unique) coloured vertex adjacent to ut+1

7: if x is red then
8: Denote xy ∈ E(Gt) the red edge of x, where y ∈ Ut.
9: else . x is blue or magenta

10: Denote xy ∈ E(Gt) the blue edge of x, where y ∈ Ut.
11: end if
12: Set vt+1 = y.
13: Set V (Pt+1) = V (Pt) ∪ {y} and E(Pt+1) = E(Pt) ∪ {ut+1y, xy} \ {ut+1x}.
14: Uncolour all of the edges adjacent to y.
15: else if ut+1 ∈ Qt ∪Rt then . construct coloured vertices
16: Choose vt+1 u.a.r. from the vertices of Ut of minimum blue degree.
17: Colour ut+1vt+1 blue. . create a blue or magenta vertex
18: Set Pt+1 = Pt.
19: else if ut+1 ∈ Bt then
20: Choose vt+1 u.a.r. from Ut.
21: Colour the edge ut+1vt+1 red. . create a magenta vertex
22: Set Pt+1 = Pt.
23: else . pass on using edge ut+1vt+1

24: Choose vt+1 u.a.r. from [n].
25: Set Pt+1 = Pt.
26: end if
27: Update Qt+1 such that |Qt+1| = |V (Pt+1)| − 5|Lt+1|. . update permissible vertices

HAMILTONIAN CYCLES IN THE SEMI-RANDOM GRAPH PROCESS 9

As in FullyRandomized, we ensure that all of the algorithm’s coloured vertices are at path
distance at least 3 from each other, and we define a coloured vertex to be well spaced in the
same way. Note that red vertices are only created when the blue edges of magenta vertices are
uncoloured as a side effect of path extensions and augmentations (see lines (4) and (14)).

For each t ≥ 0, define the random variables X(t) := |V (Pt)|, B(t) := |Bt|, R(t) := |Rt|, M(t) :=
|Mt| and L(t) := |Lt| = B(t) + R(t) + M(t). For each q ≥ 0 and t ≥ 0, define Dq(t) to be the
number of unsaturated vertices adjacent to precisely q blue edges. We define the stopping time τq
to be the smallest t ≥ 0 such that Dj(t) = 0 for all j < q, and Dq(t) > 0. It is obvious that τq
is well-defined and is non-decreasing in q. By definition, τ0 = 0. Let us refer to phase q as those
τq−1 ≤ t < τq. Observe that during phase q, each unsaturated vertex has blue degree q − 1 or q.

2.6. Analyzing phase q. Suppose that τq−1 ≤ t < τq. It will be convenient to denote D(t) :=
Dq−1(t). Given k1, k2 ≥ 0, we say that y ∈ Ut is of type (k1, k2), provided it is adjacent to k1 blue
edges within Bt and k2 blue edges within Mt. Similarly, x ∈ Bt ∪Mt is of type (k1, k2), provided
its (unique) blue edge connects to an unsaturated vertex of type (k1, k2). We denote the number of
unsaturated vertices of type (k1, k2) by Ck1,k2(t), the blue vertices of type (k1, k2) by Bk1,k2(t), and
the magenta (mixed) vertices of type (k1, k2) by Mk1,k2(t). Observe that Bk1,k2(t) = k1 · Ck1,k2(t)
and Mk1,k2(t) = k2 · Ck1,k2(t). Moreover, Dj(t) =

∑
k1,k2:

k1+k2=j
Ck1,k2(t).

In Appendix B.2, we inductively define the functions x, r and ck1,k2 for k1 + k2 ≥ 0, as well as a
constant σq ≥ 0, such that the following lemma holds:

Lemma 2.7. A.a.s. τq ∼ σqn for every 0 ≤ q ≤ N .2 Moreover, at step τq, a.a.s.

X(τq) ∼ x(σq)n, R(τq) ∼ r(σq)n,
Ck1,k2(τq) ∼ ck1,k2(σq)n for all (k1, k2) where k1 + k2 = q.

Although the method in the proof for Lemma 2.7 is similar to that of Lemmas 2.1, 2.2, 2.3
and Proposition 2.4, the analysis is much more intricate and involved. We postpone the details to
Appendix B, and now complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Set N = 100. By Lemma 2.7, the execution of DegreeGreedy ends at some
step t0 ∼ σNn. Moreover, X(t0) ∼ x(σN)n. Numerical computation shows that σN ≈ 2.00189.
Next, the algorithm executes FullyRandomized. Let α∗ be as defined in (7) where the initial
conditions to the differential equations (4)–(6) are set by s0 = σN , x(s0) = x(σN) ≈ 0.99991, and
`1(s0) = `2(s0) = 0. Numerical computations show that α∗ ≈ 2.01678. By Proposition 2.4 and
the fact that α∗ < 3, the execution of the first two stages (DegreeGreedy and FullyRandomized)
finishes at some step (α∗ + o(1))n, and the number of unsaturated vertices remaining is o(n).
Finally, the clean-up algorithm constructs a Hamiltonian cycle with an additional o(n) steps by
Lemma 2.5. The theorem follows. �

3. Proof of Theorem 1.2

Suppose Gt has a Hamiltonian cycle Ht = H after t ≥ 0 steps. Recall that for the (directed)
semi-random edge (ui, vi), we refer to ui as its square and vi as its circle. We begin with the
following observations:

(O1) H uses exactly n squares;
(O2) H uses at most 2 squares on each vertex;
(O3) Suppose (ui, vi) is an edge of Gt, and vi received at least two squares. Then, either H uses

at most one square on vi, or H does not contain the edge (ui, vi).

2For functions f = f(n) and g = g(n), f ∼ g is shorthand for f = (1 + o(1))g.

10 PU GAO, CALUM MACRURY, AND PAWE L PRA LAT

The first two observations above are obvious. For (O3), notice that if H uses exactly 2 squares on
vi, then these 2 squares correspond to 2 edges in H that are incident to vi. Moreover, neither of
these edges can be (ui, vi), as ui is the square of (ui, vi). Thus, the edge (ui, vi) cannot be used by
H as vi has degree 2 in H.

Define Zx as the number of squares on vertex x ∈ [n], the observation (O2) above indicates the
consideration of the random variable

Z =
n∑
x=1

(1Zx=1 + 2 · 1Zx≥2) = 2n−
n∑
x=1

(2 · 1Zx=0 + 1Zx=1) ,

which counts the total number of squares that can possibly contribute to H, truncated at 2 for each
vertex. Observation (O3) above indicates the consideration of the following two sets of structures:

Let W1 be the set of pairs of vertices (x, y) at time t such that

(a) x receives its first square in some step i < t, and y receives the corresponding circle in the
same step;

(b) no more squares land on x after step i;
(c) at least two squares land on y after step i.

Let W2 be the set of pairs of vertices (x, y) at time t such that

(a) x receives its first square in some step i < t, and y receives the corresponding circle in the
same step;

(b) exactly one more square lands on x either before or after step i;
(c) at least two squares land on y after step s.

Note that for every (x, y) ∈ W1, at most 2 squares on x and y together can be used in H,
although x and y together contribute 3 to the value of Z. Similarly, for every (x, y) ∈ W2, at most
3 squares on x and y together can be used in H, although x and y together contribute 4 to the
value of Z.

Therefore, the total number of squares contributing to H is at most Z−|W1|−|W2|+W , where W
accounts for double counting, which sometimes happens when there are (x1, y1), (x2, y2) ∈ W1∪W2

where {x1, y1} ∩ {x2, y2} 6= ∅. More precisely, let

T1 = {((x1, y1), (x2, y2)) ∈ W1 ×W2 : y1 = x2}
T2 = {((x1, y1), (x2, y2)) ∈ W2 ×W2 : y1 = x2}.

Then, W := |T1|+ |T2|.3
The random variable Z is well understood. From the limiting Poisson distribution of the number

of squares in a single vertex, we immediately get that a.a.s. Z ∼ (2− 2e−s − e−ss)n for s := t/n.
We will estimate the expectation of |W1|, |W2|, |T1|, |T2| as well as the concentration of these

random variables. However, concentration may fail if the semi-random process uses a strategy
which places many circles on a single vertex. Intuitively, placing many circles on a single vertex is
not a good strategy for quickly building a Hamiltonian cycle, as it wastes many edges. To formalise
this idea, let µ :=

√
n (indeed, choosing any µ such that µ→∞ and µ = o(n) will work). We say

that a strategy for the semi-random process is µ-well-behaved up until step t, if no vertex receives
more than µ circles in the first t steps. In [10, Definition 3.2 – Proposition 3.4], it was proven that
it is sufficient to consider µ-well-behaved strategies in the first t = O(n) steps for establishing a
lower bound on the number of steps needed to build a perfect matching. These definitions and
proofs can be easily adapted for building Hamilton cycles in an obvious way. We thus omit the
details and only give a high-level explanation below.

The key idea is that within t = O(n) steps of any semi-random process, the number of vertices
of in-degree greater than µ is at most O(n/µ) = o(n). Therefore, if a Hamiltonian cycle C is built

3Note that the cases where ((x1, y1), (x2, y2)) ∈ W1 ×W1 such that y1 = y2 and ((x1, y1), (x2, y2)) ∈ W2 ×W2

such that y1 = x2 do not cause double counting.

HAMILTONIAN CYCLES IN THE SEMI-RANDOM GRAPH PROCESS 11

in t steps, then the subgraph H of C induced by the set S of vertices of in-degree at most µ in Gt
is a collection of paths spanning all vertices in S which must also contain n−O(n/µ) = (1− o(1))n
edges. We call such a pair (S,H) an approximate Hamiltonian cycle. It follows from the
above argument that it takes at least as long time to build a Hamiltonian cycle as to build an
approximate Hamiltonian cycle. It is then easy to show by a coupling argument that if a strategy
builds an approximate Hamiltonian cycle in t = O(n) steps, then there exists a well-behaved
strategy that builds an approximate Hamiltonian cycle in t steps as well. Note that observations
(O2)–(O3) hold for approximate Hamiltonian cycles, and (O1) holds for approximate Hamiltonian
cycles with n replaced by (1− o(1))n. Thus, no approximate Hamiltonian cycles can be built until
step Z − |W1| − |W2| + W ≥ (1 − o(1))n. We now estimate the sizes of W1, W2, T1, and T2 in
the semi-random process when executing a well-behaved strategy S. Crucially, the sizes of these
sets do not rely on the decisions made by S. Recall that (GSs)s≥0 denotes the sequence of graphs
produced by S.

Lemma 3.1. Suppose S is µ-well-behaved. For every t = Θ(n), the following a.a.s. holds in GSt ,

Z − |W1| − |W2|+W ∼ f(s)n,

where s := t/n and f(s) is defined in Theorem 1.2.

Proof of Theorem 1.2. Recall that β is the positive root of f(s) = 1. Then, for every ε > 0,
Z − |W1| − |W2| + W ≤ (1 − O(ε))n a.a.s. in GS(β−ε)n for any µ-well-behaved S. Therefore,

τHAM ≥ β. �

4. Conclusion and Open Problems

We have made significant progress on reducing the gap between the previous best upper and
lower bounds on τHAM. That being said, we do not believe that any of our new bounds are tight.
For instance, in the case of our lower bound, one could study the appearance of more complicated
substructures which prevent any strategy from building a Hamiltonian cycle. One way to likely
improve the upper bound would be to analyze an adaptive algorithm whose decisions are all made
greedily. Rather, in the terminology of DegreeGreedy, when a (second) square lands on a blue
vertex, the edge is greedily chosen amongst unsaturated vertices of minimum blue degree (opposed
to u.a.r.). Unfortunately, it seems challenging to analyze this algorithm via the differential equation
method, but it is likely that this algorithm will lead to an improved upper bound on τHAM of less
than 2.

Another direction is to understand which graph properties exhibit sharp thresholds. Given
property P, the definition of τP ensures that there exists a strategy S∗ such that for all ε > 0,
GS
∗

t (n) satisfies P a.a.s. for t ≥ (τP + ε)n. On the other hand, GS
∗

t (n) may satisfy P with constant
probability for t ≤ (τP−ε)n without contradicting the definition of τP . Thus, for P to have a sharp
threshold, the following property must also hold. For each strategy S and ε > 0, if t ≤ (τP − ε)n,
then a.a.s. GSt (n) does not satisfy P. It is known that for basic properties, such as minimum
degree k ≥ 1, sharp thresholds do exist [3]. Moreover, in [2] it was shown that if H is a spanning
graph with max degree ∆ = ω(log n), then the appearance of H takes (∆/2 + o(∆))n rounds, and
H (deterministically) cannot be constructed in fewer than ∆n/2 rounds. However, in general it
remains open as to whether or not a sharp threshold exists when H is sparse (i.e., ∆ = O(log n)).
Very recently, the second author and Surya [12], a developed a general machinery for proving the
existence of sharp thresholds in adaptive random graph processes. Applied to the semi-random
graph process, they show that sharp thresholds exist for the property of being Hamiltonian as well
as to containing a perfect matching. This provides some evidence that sharp thresholds do exist
when ∆ = O(log n), and we leave this an interesting open problem.

12 PU GAO, CALUM MACRURY, AND PAWE L PRA LAT

References

[1] Natalie Behague, Trent Marbach, Pawe l Pra lat, and Andrzej Ruciński. Subgraph games in the semi-random
graph process and its generalization to hypergraphs. arXiv preprint arXiv:2105.07034, 2022.

[2] Omri Ben-Eliezer, Lior Gishboliner, Dan Hefetz, and Michael Krivelevich. Very fast construction of bounded-
degree spanning graphs via the semi-random graph process. Proceedings of the 31st Symposium on Discrete
Algorithms (SODA’20), pages 728–737, 2020.

[3] Omri Ben-Eliezer, Dan Hefetz, Gal Kronenberg, Olaf Parczyk, Clara Shikhelman, and Miloš Stojaković. Semi-
random graph process. Random Structures & Algorithms, 56(3):648–675, 2020.

[4] Patrick Bennett and Andrzej Dudek. A gentle introduction to the differential equation method and dynamic
concentration. CoRR, 2020.

[5] J. Bezanson, A. Edelman, S. Karpinski, and V.B. Shah. Julia: A fresh approach to numerical computing. SIAM
review, 59(1):65–98, 2017.

[6] Tom Bohman and Alan Frieze. Hamilton cycles in 3-out. Random Structures & Algorithms, 35(4):393–417, 2009.
[7] Sofiya Burova and Lyuben Lichev. The semi-random tree process, 2022.
[8] Alan M Frieze. Maximum matchings in a class of random graphs. Journal of Combinatorial Theory, Series B,

40(2):196–212, 1986.
[9] Pu Gao, Bogumi l Kamiński, Calum MacRury, and Pawe l Pra lat. Hamilton cycles in the semi-random graph

process. European Journal of Combinatorics, 99:103423, 2022.
[10] Pu Gao, Calum MacRury, and Pawe l Pra lat. Perfect matchings in the semi-random graph process. SIAM Journal

on Discrete Mathematics, in press, 2022.
[11] Michal Karoński, Ed Overman, and Boris Pittel. On a perfect matching in a random digraph with average

out-degree below two. Journal of Combinatorial Theory, Series B, 143, 03 2020.
[12] Calum MacRury and Erlang Surya. Sharp thresholds in adaptive random graph processes. CoRR, 2022.
[13] Lutz Warnke. On wormald’s differential equation method. CoRR, abs/1905.08928, 2019.
[14] Nicholas C Wormald. The differential equation method for random graph processes and greedy algorithms.

Lectures on approximation and randomized algorithms, 73:155, 1999.

Appendix A. Proofs of Lemmas 2.2 and 2.5

Proof of Lemma 2.2. As discussed, FullyRandomized ensures that at time t there are at most 2 red
vertices which are not well-spaced. Thus, since our expected differences each allow for a O(log n/n)
term, without loss of generality, we can assume that all our red vertices are well-spaced. Note that
all our explanations below assume that we have conditioned on Ht.

The first expected difference is easy to see. Observe that ∆X(t) is 1 when ut+1 lands on an
unsaturated vertex, or adjacent to a red vertex. Clearly, these are disjoint events, and they occur
with probabilities 1−X(t)/n and 2L(t)/n, respectively.

In order to derive the second and third expected differences, we make use of the following crucial
observation:

(O1) Conditional on Ht, the circles of the red edges of Lt are distributed u.a.r. amongst the
unsaturated vertices Ut.

Note that were we to condition on the full history, i.e., G0, . . . , Gt, then these circles would be
determined by the history of the process, and so the only randomness in the expectations would
be over the draw of ut+1. By averaging over this additional randomness, we are able to get the
claimed expected differences.

Consider now the second expected difference and assume that ut+1 lands on an unsaturated
vertex. Firstly, observe that this event occurs with probability 1 − X(t)/n. On the other hand,
all the red edges adjacent to ut+1 will be uncoloured after the path augmentation involving ut+1

is made. Now, because of (O1), there are L1(t)
n−X(t) red edges belonging to L1

t which are adjacent

to ut+1 in expectation. After the path augmentation involving ut+1, these edges are uncoloured

and so L1(t)
n−X(t) one-red vertices are destroyed in expectation. Now, in expectation there are also

2L2(t)
n−X(t) + O(log n/n) red edges adjacent to ut+1 which belong to distinct two-red vertices. To see

this, fix a two-red vertex x ∈ L2
t and observe that because of (O1), precisely one red edge of x is

HAMILTONIAN CYCLES IN THE SEMI-RANDOM GRAPH PROCESS 13

adjacent to ut+1 with probability 2
n−X(t) −

1
(n−X(t))2

. Since n−X(t) ≥ n/ log n by assumption, this

probability is 2
n−X(t) +O((log n/n)2), and so the 2L2(t)

n−X(t) +O(log n/n) term follows after summing

over all the vertices of L2
t . Now, after the path augmentation involving ut+1, these red edges are

uncoloured. Since these red edges belonged to distinct two-red vertices, the path augmentation

creates 2L2(t)
n−X(t) + O(log n/n) new one-red vertices in expectation. These two cases explain the(

1− X(t)
n

)(
2L2(t)
n−X(t) −

L1(t)
n−X(t)

)
term.

Let us now consider when ut+1 lands on a saturated vertex and dPt(ut+1,Lt) = 1, where x is
the unique red vertex adjacent to ut+1. If x is a one-red vertex, then let r be such that xr is the
red edge of x. Observe that after the augmentation, xr will be uncoloured, and x will no longer

be a red vertex. Moreover, in expectation there are L1(t)
n−X(t) +O(log n/n) other red edges belonging

to L1
t which will be uncoloured. Thus, 1 + L1(t)

n−X(t) + O(log n/n) one-red vertices will be destroyed

in expectation. On the other hand, there are 2L2(t)
n−X(t) + O(log n/n) red edges adjacent to r which

belong to distinct two-red vertices in expectation. Thus, 2L2(t)
n−X(t) +O(log n/n) two-red vertices will

become one-red vertices in expectation after augmenting via xr and ut+1r. Since ut+1 lands next

to a one-red vertex with probability, 2L1(t)
n , this explains the 2L1(t)

n

(
2L2(t)
n−X(t) −

L1(t)
n−X(t) − 1

)
term.

An analogous argument explains the 2L2(t)
n

(
1 + 2L2(t)

n−X(t) −
L1(t)
n−X(t)

)
term.

Consider when ut+1 lands in Qt. Observe that this occurs with probability |Qt|
n = X(t)−5L(t)

n . In
this case, vt+1 is chosen u.a.r. amongst Ut and ut+1vt+1 is coloured red. Thus, ut+1 becomes a red

vertex, and so L1(t) increases by 1 and we get ∆L1(t) = 1. This explains the X(t)−5L(t)
n term.

The final case to consider is when ut+1 lands on a saturated vertex, and ut+1 ∈ L1
t . Observe that

this occurs with probability L1(t)
n . Moreover, the algorithm will then choose vt+1 u.a.r. amongst Ut

and colour the edge ut+1vt+1 red. After this move, ut+1 will be converted from a one-red vertex to

a two-red vertex, and so ∆L1(t) = 1. This explains the −L1(t)
n term.

By combining the contributions from all of the above cases, we get the second expected difference.
The third expected difference follows via an analogous argument. �

Proof of Lemma 2.5. Let j0 = εn. For each k ≥ 1, let jk = (1/2)jk−1 if jk−1 > n1/4, and let
jk = jk−1 − 1 otherwise. Clearly, jk is a decreasing function of k. Let τ1 be the smallest natural
number k such that jk ≤ n1/4. Let τ be the natural number k such that jk = 0. Obviously,
τ1 = O(log n) and τ = O(n1/4).

We use a cleaning-up algorithm, which runs in iterations. The k-th iteration repeatedly absorbs
jk−1 − jk vertices into P , leaving jk unsaturated vertices in the end. The k-th iteration of the
cleaning-up algorithm works as follows.

(i) (Initialising): Uncolour all vertices in the graph;

(ii) (Building reservoir): Let mk :=
√
ε(1/2)k/2n for k ≤ τ1 and mk := n1/2 if τ1 < k ≤ τ . Add

mk semi-random edges as follows. If ut lands on an unsaturated vertex, a red vertex or a
neighbour of a red vertex in P , then let vt be chosen arbitrarily. This edge utvt will not be
used in our construction. Otherwise, colour ut red and choose an arbitrary vt among those
unsaturated vertices with the minimum number of red neighbours. Colour utvt red. Note
that each red vertex is adjacent to exactly one red edge;

(iii) (Absorbing via path augmentations): Add semi-random edges as follows. Suppose that ut
lands on P and at least one neighbour of ut on P is red. (Otherwise, vt is chosen arbitrarily,
and this edge will not be used in our construction.) Let x be such red vertex (if ut has two
neighbours on P that are red, then select one of them arbitrarily). Let y by the neighbour
of x where xy is red, and let vt = y. Extend P by deleting the edge xut and adding the

14 PU GAO, CALUM MACRURY, AND PAWE L PRA LAT

edges xy and yut. Uncolour all red edges incident to y and all red neighbours of y (which,
of course, includes vertex x).

Notice that, in each iteration, mk ≥ n1/2. Indeed, this is obviously true for τ1 < k ≤ τ . On the
other hand, if k ≤ τ1, then jk = εn(1/2)k and so mk =

√
njk ≥

√
n (in fact, mk = Ω(n5/8)).

Let Tk denote the length of the k-th iteration of the cleaning-up algorithm. It remains to prove
that a.a.s.

∑
k≤τ Tk = O(

√
εn+n3/4 log2 n). Let Rk be the number of red vertices obtained after step

(ii) of iteration k. Obviously, Rk ≤ mk. On the other hand, each ut is coloured red with probability
at least 1− jk−1/n− 3mk/n ≥ 1− ε− 3

√
ε ≥ 0.95. Hence, Rk can be stochastically lower bounded

by the binomial random variable Bin(mk, 0.95). By the Chernoff bound, with probability at least

1− n−1, Rk ≥ 0.9mk, as mk ≥ n1/2.
First, we consider iterations k ≤ τ1. Let R̃k be the number of red vertices at the end of step (iii).

Note that the minimum degree property of step (ii) ensures each unsaturated vertex is adjacent to
at most Rk/jk−1 + 1 ≤ mk/jk−1 + 1 red vertices. Moreover, exactly jk−1 − jk = (1/2)jk−1 vertices
are absorbed in step (iii). As a result,

R̃k ≥ Rk −
(
mk

jk−1
+ 1

)
· jk−1

2
≥ 0.9mk −

mk

2
− jk−1

2
≥ 0.3mk,

as jk−1 = 2jk ≤ 2
√
εmk ≤ 0.1mk. It follows that throughout step (iii), there are at least 0.3mk

red vertices. Thus, for each semi-random edge added to the graph, the probability that a path
extension can be performed is at least 0.3mk/n = 0.3

√
ε(1/2)k/2. Again, by the Chernoff bound,

with probability at least 1− n−1, the number of semi-random edges added in step (iii) is at most

2(jk−1 − jk) ·
2k/2

0.3
√
ε
≤ 7
√
ε(1/2)k/2n.

Combining the number of semi-random edges added in step (ii), it follows that with probability at

least 1− n−1, Tk ≤ mk + 7
√
ε(1/2)k/2n = 8

√
ε(1/2)k/2n.

Next, consider iterations τ1 < k ≤ τ . In each iteration, exactly one unsaturated vertex gets
absorbed. The number of semi-random edges added in step (ii) is mk = n1/2. We have argued
that with probability at least 1−n−1, Rk ≥ 0.9mk. Thus, for each semi-random edge added to the
graph, the probability that a path extension can be performed is at least 0.9mk/n = 0.9n−1/2. By
the Chernoff bound, with probability at least 1− n−1, the number of semi-random edges added in
step (iii) is at most n1/2 log2 n. Thus, with probability at least 1 − n−1, Tk ≤ n1/2 + n1/2 log2 n ≤
2n1/2 log2 n.

Taking the union bound over all k ≤ τ , since τ = O(n1/4), it follows that a.a.s.∑
k≤τ

Tk ≤
∑
k≤τ1

8
√
ε(1/2)k/2n+

∑
τ1<k≤τ

2n1/2 log2 n = O(
√
εn+ n3/4 log2 n)

We have shown that a.a.s. by adding O(
√
εn+n3/4 log2 n) additional semi-random edges we can

construct a Hamiltonian path P . To complete the job and turn it into a Hamiltonian cycle, let
u and v denote the left and, respectively, the right endpoint of P . First, add n1/2 semi-random
edges utvt where vt is always u, discarding any multiple edges that could possibly be created.
For each such semi-random edge utu, colour the left neighbour of ut on P blue. Next, add add
n1/2 log2 n semi-random edges utvt where vt is always v. Suppose that some ut = x is blue. Then,
a Hamiltonian cycle is obtained by deleting xy from P and adding the edges xv and uy, where y
is the right neighbour of x on P . By Chernoff bound, a.a.s. a semi-random edge added during the
second round hits a blue vertex, completing the proof. �

Appendix B. Proof of Lemma 2.7

We once again must first argue that our random variables cannot change drastically in one round
during phase q.

HAMILTONIAN CYCLES IN THE SEMI-RANDOM GRAPH PROCESS 15

Lemma B.1 (Lipschitz Condition – DegreeGreedy). If |∆C(t)| := max k1,k2∈N∪{0}:
k1+k2∈{q−1,q}

|∆Ck1,k2(t)|,

then with probability 1−O(n−1),

max{|∆X(t)|, |∆C(t)|, |∆R(t)|} = O(log n)

for all τq−1 ≤ t < τq with n−X(t) = Ω(n).

Proof. Since q ≤ N is a constant which does not depend on n, we can apply the same argument to
bound the red edges of each ∆Ck1,k2(t) as in Lemma 2.1, and then union bound over all k1, k2 ≥ 0
such that k1 + k2 ∈ {q − 1, q}. �

Let Ht denote the history of the above random variables during the first t rounds. We now state
the conditional expected differences of our random variables, where we assume that τq−1 ≤ t < τq
is such that n−X(t) = Ω(n). Firstly, observe that once again:

E[∆X(t) | Ht] = 1− X(t)

n
+

2L(t)

n
+O(1/n) (8)

We now consider ∆R(t):

E[∆R(t) | Ht] =
M(t)

n
− R(t)

n
− 2(B(t) +M(t))

n

R(t)

(n−X(t))

+
∑
j,h:

j+h∈{q−1,q}

2h(Mj,h(t) +Bj,h(t))

n

−2R(t)

n

(
1 +

R(t)

n−X(t)
− M(t)

n−X(t)

)
− R(t)

n
+O(1/n) (9)

Consider ∆Ck1,k2(t) and first assume that k1 + k2 = q − 1:

E[∆Ck1,k2(t) | Ht] =
Mk1−1,k2+1(t)

n
· 1k1>0 −

Ck1,k2(t)

n
−
Mk1,k2(t)

n

+
2(B(t) +M(t))

n

(
Mk1−1,k2+1(t)

n−X(t)
· 1k1>0 −

Mk1,k2(t)

n−X(t)

)
−

2(Bk1,k2(t) +Mk1,k2(t))

n

+
2R(t)

n

(
Mk1−1,k2+1(t)

n−X(t)
· 1k1>0 −

Mk1,k2(t)

n−X(t)
−
Ck1,k2(t)

n−X(t)

)
−(X(t)− 5L(t))

n

Ck1,k2(t)

D(t)

+
Bk1+1,k2−1(t)

n
· 1k2>0 −

R(t)

n

Ck1,k2(t)

D(t)
−
Bk1,k2(t)

n
+O(1/n) (10)

When k1 + k2 = q, two terms from the above expression are modified slightly, and have their
signs reversed:

E[∆Ck1,k2(t) | Ht] =
Mk1−1,k2+1(t)

n
· 1k1>0 −

Ck1,k2(t)

n
−
Mk1,k2(t)

n

+
2(B(t) +M(t))

n

(
Mk1−1,k2+1(t)

n−X(t)
· 1k1>0 −

Mk1,k2(t)

n−X(t)

)
−

2(Bk1,k2(t) +Mk1,k2(t))

n

+
2R(t)

n

(
Mk1−1,k2+1(t)

n−X(t)
· 1k1>0 −

Mk1,k2(t)

n−X(t)
−
Ck1,k2(t)

n−X(t)

)
+

(X(t)− 5L(t))

n

Ck1−1,k2(t)

D(t)

16 PU GAO, CALUM MACRURY, AND PAWE L PRA LAT

+
Bk1+1,k2−1(t)

n
· 1k2>0 +

R(t)

n

Ck1,k2−1(t)

D(t)
−
Bk1,k2(t)

n
+O(1/n) (11)

B.1. Proving the Expected Differences. Consider step t of phase q which we assume satisfies
n − X(t) = Ω(n). Similarly to FullyRandomized, DegreeGreedy ensures that all but at most
2 of its coloured vertices are well-spaced. Thus, we may assume without loss of generality that
all of our coloured vertices are well-spaced. Since every well-spaced coloured vertex has its own
two neighbouring vertices where a path augmentation may occur, it follows that E[∆X(t) | Ht] =

1− X(t)
n + 2L(t)

n +O(1/n).
In order to prove the remaining expected differences, we analyze the expected values of the

random variables ∆R(t) and ∆Ck1,k2(t) when ut+1 lands in subset A ⊆ [n] for a number of choices
of A. More precisely, we derive tables for E[∆R(t) · 1ut+1∈A | Ht] and E[∆Ck1,k2(t) · 1ut+1∈A | Ht]
when A ⊆ [n] varies across a number of subsets. Since these are disjoint subsets of [n], and the
random variables are 0 if ut+1 lands outside of these subsets, we can sum the second column entries
to get the claimed expected differences. Note that the entries of our tables do not contain the often
necessary O(1/n) term.

In the below derivations, we once again make use of the following crucial observation:

(O1) Conditional on Ht, the circles of the red edges of Lt are distributed u.a.r. amongst the
unsaturated vertices Ut.

In all our below explanations, we assume that we have conditioned on Ht. We also abuse no-
tation and simultaneously identify our random variables as sets (i.e., Ck1,k2(t) denotes the set of
unsaturated vertices of type (k1, k2) after t steps).

A ⊆ [n] E[∆R(t) · 1ut+1∈A | Ht]

Ut
M(t)
n − R(t)

n

Path distance 1 from Bt ∪Mt −2(B(t)+M(t))
n

R(t)
n−X(t) +

∑
j,h:

j+h∈{q−1,q}

2(Bj,h(t)+Mj,h(t))·h
n

Path distance 1 from Rt −2R(t)
n

(
1 + R(t)

n−X(t)

)
+ 2R(t)

n
M(t)
n−X(t)

Rt −R(t)
n

Table 1. Expected Changes to ∆R(t)

Proof of Table 1. We provide complete proofs only of row entries 1 and 3, as 2 follows similarly to
3 and 4 follows similarly to 1.

In order to see the first row entry, observe that there are R(t)
n red edges between Rt and Ut.

Moreover, if ut+1 lands on an unsaturated vertex, then a path extension is made, and all the edges

adjacent to ut+1 are uncoloured. Thus, in expectation R(t)
n red vertices are destroyed when ut+1

lands in Ut. We also claim that M(t)
n red vertices are created in expectation when ut+1 lands in Ut.

In order to see this, suppose that x is a magenta vertex, with blue edge xb and red edge xr, where
b, r ∈ Ut. Now, if r 6= b and ut+1 lands on b, then the edge xb is uncoloured, and x becomes a
red vertex. On the other hand, r is distributed u.a.r. amongst Ut (see (O1)), and in particular, is
distinct from b with probability 1 − 1

n−X(t) . Thus, x is converted to a red vertex with probability

1
n

(
1− 1

n−X(t)

)
= 1/n+O(1/n2), since n−X(t) = Ω(n). By summing over all the magenta vertices,

we recover a M(t)/n+O(1/n) term which implies the M(t)/n−R(t)/n row entry.
Let us now consider what happens when ut+1 lands on Pt next to a red vertex. Clearly, this

event occurs with probability 2R(t)/n, as we have assumed that all the red vertices are well-spaced.

HAMILTONIAN CYCLES IN THE SEMI-RANDOM GRAPH PROCESS 17

Let us suppose that ut+1 lands on red vertex x, and its red edge is xr for some r ∈ Ut. In this
case, a path augmentation involving xr occurs and all the adjacent edges of r are uncoloured after

r is added to the path. By (O1), there are 1 + R(t)−1
n−X(t) red edges adjacent to r in expectation. This

accounts for the −2R(t)
n

(
1 + R(t)

n−X(t)

)
term. In order to see the second term of this row entry, first

observe that

M(t) =
∑
j,h:

j+h∈{q−1,q}

h · Cj,h(t). (12)

Now, fix j, h ≥ 0 such that j + h ∈ {q − 1, q}, and consider c ∈ Cj,h(t). Observe that by definition,
c is adjacent to precisely h magenta vertices of Mj,h(t) via blue edges. We claim that all h of these
magenta vertices will be reclassified as red vertices provided the following events occur:

• The circle vt+1 lands on c.
• All the red edges of these h magenta vertices are not adjacent to c.

By (O1), the first event occurs with probability 1/(n − X(t)). and the latter with probability(
1− 1

n−X(t)

)h
. Thus, since h is a constant, each c ∈ Cj,h(t) contributes

h

n−X(t)

(
1− 1

n−X(t)

)h
=

h

n−X(t)
+O(1/n2)

red vertices in expectation. By summing over c ∈ Cj,h(t), this accounts for the
h·Cj,h(t)
n−X(t) term.

Finally, we sum over j, h and apply (12) to get the M(t)
n−X(t) term.

�

Consider now ∆Ck1,k2(t), where k1 + k2 = q − 1.

A ⊆ [n] E[∆Ck1,k2(t) · 1ut+1∈A | Ht]

Ut
Mk1−1,k2+1(t)

n · 1k1>0 −
Ck1,k2

(t)

n − Mk1,k2
(t)

n

Path distance 1 from Bt ∪Mt
2(B(t)+M(t))

n

(
Mk1−1,k2+1(t)

n−X(t) · 1k1>0 −
Mk1,k2

(t)

n−X(t)

)
− 2(Bk1,k2

(t)+Mk1,k2
(t))

n

Path distance 1 from Rt 2R(t)
n

(
Mk1−1,k2+1(t)

n−X(t) · 1k1>0 −
Mk1,k2

(t)

n−X(t) −
Ck1,k2

(t)

n−X(t)

)
Qt − (X(t)−5L(t))

n

Ck1,k2
(t)

D(t)

Rt −R(t)
n

Ck1,k2
(t)

D(t)

Bt −Bk1,k2
(t)

n +
Bk1+1,k2−1(t)

n · 1k2>0

Table 2. Expected Changes to ∆Ck1,k2(t) for k1 + k2 = q − 1

Proof of Table 2. Assume that k1, k2 are both non-zero, as this is the most involved case. We
provide complete proofs of row entries 1, 3 and 4. Row entry 2 follows similarly to row entry 3, and
row entry 5 follows similarly to row entry 4. Row entry 5 has a simple proof, so we omit it.

We begin with row entry 1 when ut+1 lands on an unsaturated vertex. First consider the

−
(
Ck1,k2

(t)

n +
Mk1,k2

(t)

n

)
term. Fix a unsaturated vertex c of type (k1, k2), and suppose that

x1, . . . , xk2 are its magenta neighbours of type (k1, k2). By definition, cxi is coloured blue, and
each xi also has a red edge rixi for i = 1, . . . , k2. We claim that c is destroyed with probabil-
ity (k2 + 1)/n + O(1/n2). In order to see this, first observe that because of (O1), the vertices

18 PU GAO, CALUM MACRURY, AND PAWE L PRA LAT

c, r1, . . . , rk2 are distinct with probability

k2∏
i=1

(
1− i

n−X(t)

)
= 1 +O(1/n).

Let us now condition on these vertices being distinct. Observe that if ut+1 lands on c, then ut+1 is
added to the path, and so c is destroyed. On the other hand, if ut+1 lands on ri, then ri is added to
the path, and so the edge rixi is no longer red. In particular, xi is converted to a blue vertex, and
so the type of c is reclassified as (k1 + 1, k2 − 1). In either case, c is destroyed. Thus, conditional
on the vertices b, r1, . . . , rk2 being distinct, c is destroyed with probability (k2 + 1)/n. As such, c is
destroyed with the claimed probability of (k2 + 1)/n+O(1/n2). By summing over all c ∈ Ck1,k2(t)

and using the fact that k2 ·Ck1,k2(t) = Mk1,k2(t), we attain the −
(
Ck1,k2

(t)

n +
Mk1,k2

(t)

n

)
term. The

Mk1−1,k2+1(t)

n term follows similarly, where reclassifying unsaturated vertices of type (k1− 1, k2 + 1)
to type (k1, k2) causes Ck1,k2(t) to increase.

We now consider the third row entry when ut+1 lands at path distance one from Rt. First
observe that this event occurs with probability 2R(t)/n. At this point, using the previous argument
and (O1), the path augmentation involving vt+1 causes each c ∈ Ck1,k2(t) to be destroyed with
probability (k2 + 1)/(n − X(t)) + O(1/n2). Moreover, each c′ ∈ Ck1−1,k2+1(t) is reclassified as
type (k1, k2) with probability (k2 + 1)/(n −X(t)) + O(1/n2). By summing over c ∈ Ck1,k2(t) and

c′ ∈ Ck1−1,k2+1(t), we attain the
Mk1−1,k2+1(t)

n−X(t) − Mk1,k2
(t)

n−X(t) −
Ck1,k2

(t)

n−X(t) expression. After multiplying

by 2R(t)/n, we attain row entry 3.
Let us now consider row entry 4 when ut+1 lands on a permissible vertex x ∈ Qt. Clearly, this

event occurs with probability |Qt|/n = (X(t)− 5L(t))/n. In this case, the algorithm chooses vt+1

u.a.r. amongst D(t), the unsaturated vertices of minimum degree q− 1, and colours the edge xvt+1

blue. Thus, if we fix c ∈ Ck1,k2(t), then c will be chosen with probability 1/D(t) since k1+k2 = q−1.
In this case, c gains a blue edge connected to a blue vertex, and thus will be reclassified as type
(k1 + 1, k2). Thus, each c ∈ Ck1,k2(t) will be reclassified with probability

X(t)− 5L(t)

n

1

D(t)
.

By summing over all c ∈ Ck1,k2(t), we get the − (X(t)−5L(t))
n

Ck1,k2
(t)

D(t) term. �

Finally, when k1 + k2 = q, the expressions in rows (4) and (5) are modified slightly.

A ⊆ [n] E[∆Ck1,k2(t) · 1ut+1∈A | Ht]

Ut
Mk1−1,k2+1(t)

n · 1k1>0 −
Ck1,k2

(t)

n − Mk1,k2
(t)

n

Path distance 1 from Bt ∪Mt
2(B(t)+M(t))

n

(
Mk1−1,k2+1(t)

n−X(t) · 1k1>0 −
Mk1,k2

(t)

n−X(t)

)
− 2(Bk1,k2

(t)+Mk1,k2
(t))

n

Path distance 1 from Rt 2R(t)
n

(
Mk1−1,k2+1(t)

n−X(t) · 1k1>0 −
Mk1,k2

(t)

n−X(t) −
Ck1,k2

(t)

n−X(t)

)
Qt (X(t)−5L(t))

n

Ck1−1,k2
(t)

D(t)

Rt R(t)
n

Ck1,k2−1(t)

D(t)

Bt −Bk1,k2
(t)

n +
Bk1+1,k2−1(t)

n · 1k2>0

Table 3. Expected Changes to ∆Ck1,k2(t) for k1 + k2 = q

HAMILTONIAN CYCLES IN THE SEMI-RANDOM GRAPH PROCESS 19

Proof of Table 3. The explanations for the case of k1+k2 = q are identical to those of k1+k2 = q−1,
except that vertices of type (k1, k2) are created (instead of destroyed) when ut+1 satisfies ut+1 ∈ Qt
or ut+1 ∈ Rt.

�

B.2. Proving Lemma 2.7. In this section, we inductively prove Lemma 2.7. Firstly, when q = 0,
by definition τ0 = 0, and so σ0 := 0 trivially satisfies the conditions of Lemma 2.7. Let us now
assume that q ≥ 1 and for each of 0 ≤ i ≤ q − 1 we have defined σi and functions x, r and cj,h on
[0, σi] for each j, h ≥ 0 with j + h = i, and Lemma 2.7 holds for all 0 ≤ i ≤ q − 1. We shall define
σq which satisfies σq > σq−1, extend each x, r and cj,h to [0, σq], and define new functions ck1,k2 on
[0, σq] for k1 + k2 = q. We shall then prove that these functions satisfy the assertion of Lemma 2.7
with respect to τq and σq, which will complete the proof of the lemma.

Fix a sufficiently small constant ε > 0, and define the bounded domain

Dε :=

(s, x, r, (cj,h)j+h∈{q−1,q}) : σq−1 − 1 < s < 3, |x| < 1− ε, |r| < 2, |cj,h| < 2, ε <
∑

j,h: j+h=q−1

cj,h < 2

 .

It will be convenient to define auxiliary functions to simplify our equations below. Specifically,
set bk1,k2 = k1 · ck1,k2 and mk1,k2 := k2 · ck1,k2 , as well as b =

∑
j,h:

j+h∈{q−1,q}
bj,h and m =∑

j,h:
j+h∈{q−1,q}

mj,h. Finally, set d =
∑

j,h:
j+h=q−1

cj,h. Observe the following system of differential

equations:

x′ = 1− x+ 2 (13)

r′ = m− r − 2(b+m)r

1− x
+

∑
j,h:

j+h∈{q−1,q}

2h(mj,h + bj,h)

−2r

(
1 +

r

1− x
− m

1− x

)
− r (14)

If k1 + k2 = q − 1, then:

c′k1,k2 = mk1−1,k2+1 · 1k1>0 − ck1,k2 −mk1,k2

+2(b+m)

(
mk1−1,k2+1 · 1k1>0 −mk1,k2

1− x

)
− 2(bk1,k2 +mk1,k2)

+2r

(
mk1−1,k2+1 · 1k1>0 −mk1,k2 − ck1,k2

1− x

)
−(x− 5`)

ck1,k2
d

+ bk1+1,k2−1 · 1k2>0 − r
ck1,k2
d
− bk1,k2 (15)

Otherwise, if k1 + k2 = q, then:

c′k1,k2 = mk1−1,k2+1 · 1k1>0 − ck1,k2 −mk1,k2

+2(b+m)

(
mk1−1,k2+1 · 1k1>0 −mk1,k2

1− x

)
− 2(bk1,k2 +mk1,k2)

+2r

(
mk1−1,k2+1 · 1k1>0 −mk1,k2 − ck1,k2

1− x

)
+(x− 5`)

ck1−1,k2

d
+ bk1+1,k2−1 · 1k2>0 + r

ck1,k2−1

d
− bk1,k2 (16)

20 PU GAO, CALUM MACRURY, AND PAWE L PRA LAT

The right-hand side (r.h.s.) of each of the above equations is Lipchitz on the domain Dε, as d is
bounded below by ε. Define

TDε := min{t ≥ 0 : (t/n,X(t)/n,R(t)/n, (Ck1,k2(t)/n)k1+k2∈{q,q−1}) /∈ Dε}

By the inductive assumption, the ‘Initial Condition’ of Theorem D.1 is satisfied for some λ = o(1)
and values σq−1, x(σq−1), r(σq−1) and cj,h(σq−1), where cj,h(σq−1) := 0 for j+h = q. Moreover, the
‘Trend Hypothesis’ is satisfied with δ = O(1/n), by the expected differences of (8)-(11). Finally,
the ‘Boundedness Hypothesis’ is satisfied with β = O(log n) and γ = O(n−1) by Lemma B.1.
Thus, by Theorem D.1, for every δ > 0, a.a.s. X(t) = nx(t/n) + o(n), R(t) = nr(t/n) + o(n) and
Ck1,k2(t) = nck1,k2(t/n) + o(n) uniformly for all σq−1n ≤ t ≤ (σ(ε)− δ)n, where x, `1 and ck1,k2 are
the unique solution to (13)-(16) with the above initial conditions, and σ(ε) is the supremum of s to
which the solution can be extended before reaching the boundary of Dε. This immediately yields
the following lemma.

Lemma B.2 (Concentration of DegreeGreedy’s Random Variables). For every δ > 0, a.a.s. for
all τq−1 ≤ t ≤ (σ(ε)− δ)n and k1, k2 ≥ 0 such that k1 + k2 ∈ {q, q − 1},

max{|X(t)− x(t/n)n|, |R(t)− r(t/n)n|, |Ck1,k2(t)− ck1,k2(t/n)n||} = o(n).

As Dε ⊆ Dε′ for every ε > ε′, σ(ε) is monotonely nondecreasing as ε → 0, and so σq :=
limε→0+ σ(ε) exists. Moreover, the derivatives of the functions x, r, and ck1,k2 are uniformly bounded
on (σq−1, σq), which implies that the functions must be uniformly continuous. The latter condition
implies that the functions are (uniquely) continuously extendable to [σq−1, σq], and so the following
limits exist:

x(σq) := lim
s→σq−

x(s) (17)

r(σq) := lim
s→σq−

r(s) (18)

ck1,k2(σq) := lim
s→σq−

ck1,k2(s). (19)

Random variables |R(t)/n| and |Ck1,k2(t)/n| for k1 + k2 ∈ {q, q − 1} are both bounded by 1 for
all t. Thus, when t/n approaches σq, X(t)/n approaches 1, or t/n approaches 3, or D(t)/n :=∑

j,h:
j+h=q−1

Cj,h(t)/n approaches 0. Formally, we have the following proposition:

Proposition B.3. For every ε > 0, there exists δ > 0 such that a.a.s. one of the following holds.

• D(t) < εn for all t ≥ (σq − δ)n;
• X(t) > (1− ε)n for all t ≥ (σq − δ)n;
• σq = 3.

The ordinary differential equations (13)-(16) again do not have an analytical solution. However,
numerical solutions show that σq < 3, and x(σq) < 1. Thus, after executing DegreeGreedy for
t = σqn + o(n) steps, there are D(t) < εn vertices of type q − 1 remaining for some ε = o(1). At
this point, by observing the numerical solution (17)–(19) at σq, we know that there exists some
absolute constant 0 < p < 1 such that (X(t)− 5L(t))/n ≥ p, where we recall that L(t) counts the
total number of coloured vertices at time t. Hence, at each step, some vertex of type q− 1 becomes
of type q with probability at least p. Thus, by applying Chernoff’s bound, one can show that a.a.s.
after another O(εn/p) = o(n) rounds, all vertices of type q − 1 are destroyed. It follows that a.a.s.
|τq/n− σq| = o(1), and so Lemma 2.7 is proven.

HAMILTONIAN CYCLES IN THE SEMI-RANDOM GRAPH PROCESS 21

Appendix C. Proof of Lemma 3.1

Lemma C.1. Suppose S is µ-well-behaved up until time t = Θ(n). A.a.s. the following holds for
GSt :

|W1| ∼ n
∑
i≤t

1

n

(
1− 1

n

)t ∑
i≤j1<j2≤t

1

n2

(
1− 1

n

)j2
(20)

|W2| ∼ n
∑

i1≤i2≤t

1

n2

(
1− 1

n

)t ∑
i1≤j1<j2≤t

1

n2

(
1− 1

n

)j2
+

∑
i2<j1<j2≤t

1

n2

(
1− 1

n

)j2 (21)

|T1| ∼ n
∑
i≤t

1

n

(
1− 1

n

)t ∑
i≤j1<j2≤t

1

n2

(
1− 1

n

)t

×

 ∑
j1≤h1<h2≤t

1

n2

(
1− 1

n

)h2
+

∑
j2<h1<h2≤t

1

n2

(
1− 1

n

)h2 (22)

|T2| ∼ n
∑

i1<i2≤t

1

n2

(
1− 1

n

)t ∑
i1≤j1<j2≤t

1

n2

(
1− 1

n

)t

×

 ∑
j1≤h1<h2≤t

1

n2

(
1− 1

n

)h2
+

∑
j2<h1<h2≤t

1

n2

(
1− 1

n

)h2
+

∑
i1<i2≤t

1

n2

(
1− 1

n

)t ∑
i2≤j1<j2≤t

1

n2

(
1− 1

n

)t

×

 ∑
j1≤h1<h2≤t

1

n2

(
1− 1

n

)h2
+

∑
j2<h1<h2≤t

1

n2

(
1− 1

n

)h2 . (23)

Proof. We prove (20) and briefly explain the expressions in (21)–(23) whose proofs are similar to
that of (20). Fix a vertex x ∈ [n] and a square ui for i ≤ t. The probability that ui lands on x
in step i is 1/n. Condition on this event. The probability that x receives no squares in any steps
other than i is (1 − 1/n)t−1 ∼ (1 − 1/n)t. Let y be the vertex which the strategy chooses to pair
with ui with. Fix any two integers i < j1 < j2 ≤ t, the probability that y receives its first two
squares at times j1 and j2 is n−2(1− 1/n)j2−2 ∼ n−2(1− 1/n)j2 . Summing over all possible values
of i, j1, j2 and multiplying by n, the number of choices for x, gives E|W1|.

For concentration of |W1| we prove that E|W1|2 ∼ (E|W1|)2. For any pair of ((x1, y1), (x2, y2))
inW1×W1, either x1, y1, x2, y2 are pairwise distinct, or y1 = y2. It is easy to see that the expected
number of pairs where x1, y1, x2, y2 are pairwise distinct is

n2
∑
i1≤t
i2≤t

1

n2

(
1− 1

n

)2(t−1) ∑
i1≤j1<j2≤t
i2≤h1<h2≤t

1

n4

(
1− 1

n

)j2−2+h2−2

∼ (E|W1|)2.

The expected number of pairs where y1 = y2 is at most µn as there are most n choices for x1 and
given (x1, y1), there can be at most µ choices for (x2, y2) since S is µ-well-behaved. Since µ = o(n),
µn = o(n2) which is o((E|W1|)2). Thus we have verified that E|W1|2 ∼ (E|W1|)2 and thus by the
second moment method, a.a.s. |W1| ∼ E|W1|.

The proofs for the expectation and concentration of |W2|, |T1| and |T2| are similar. We briefly
explain the expressions in (21)–(23):

22 PU GAO, CALUM MACRURY, AND PAWE L PRA LAT

In (21), i1 and i2 denote the two steps at which x receives a square. Since there are two squares
on x, there are two choices of circles, namely vi1 and vi2 . The two summations over (j1, j2) accounts
for the two choices of vi1 and vi2 , depending on which is to be covered by two squares. Thus, j1
and j2 denote the steps where the first two squares on vi1 or vi2 arrive.

In (22), i denotes the step where x1 receives its only square; j1 and j2 denote the two steps where
y1 = x2 receives its two squares. Hence, there are two choices for y2, and h1 and h2 denote the two
steps of the first two squares y2 receives.

In (23), i1 and i2 denote the two steps where x1 receives its two squares—hence there are two
choices for y1. Integers j1 and j2 denote the two steps where y1 = x1 receives its two squares—
hence there are two choices for y2. Finally, h1 and h2 denote the steps where y2 receives its first
two squares. �

From Lemma C.1, we deduce that for t = sn,

|W1| ∼ ne−s
∫ s

0
dx

∫ s

x
dy1

∫ s

y1

e−y2dy2 = ne−s
(

1− e−ss2

2
− e−ss− e−s

)
|W2| ∼ ne−s

∫ s

0
dx1

∫ s

x1

dx2

(∫ s

x1

dy1

∫ s

y1

e−y2dy2 +

∫ s

x2

dy1

∫ s

y1

e−y2dy2

)
= ne−s

(
s− e−ss2 − e−ss3

2
− e−ss

)
|T1| ∼ ne−2s

∫ s

0
dx

∫ s

x
dy1

∫ s

y1

dy2

(∫ s

y1

dz1

∫ s

z1

e−z2dz2 +

∫ s

y2

dz1

∫ s

z1

e−z2dz2

)
= ne−2s

(
−1 + s− e−ss3

3
− e−ss2

2
− e−ss4

8
+ es

)
|T2| ∼ ne−2s

∫ s

0
dx1

∫ s

x1

dx2

∫ s

x1

dy1

∫ s

y1

dy2

(∫ s

y1

dz1

∫ s

z1

e−z2dz2 +

∫ s

y2

dz1

∫ t

z1

e−z2dz2

)
+ ne−2s

∫ s

0
dx1

∫ s

x1

dx2

∫ s

x2

dy1

∫ s

y1

dy2

(∫ s

y1

dz1

∫ s

z1

e−z2dz2 +

∫ s

y2

dz1

∫ s

z1

e−z2dz2

)
= ne−2s

(
−s+ s2 − e−ss

(
s4

8
+
s3

3
+
s2

2
− 1

))
It follows now that Z − |W1| − |W2|+W ∼ f(s)n where recall that

f(s) = 2 + e−3s(s+ 1)

(
1− s2

2
− s3

3
− s4

8

)
+ e−2s

(
2s+

5s2

2
+
s3

2

)
− e−s (3 + 2s) .

Appendix D. The Differential Equation Method

In this section, we provide a self-contained non-asymptotic statement of the differential equation
method. The statement combines [13, Theorem 2], and its extension [13, Lemma 9], in a form
convenient for our purposes, where we modify the notation of [13] slightly. In particular, we rewrite
[13, Lemma 9] in a less general form in terms of a stopping time T . We need only check the
‘Boundedness Hypothesis’ (see below) for 0 ≤ t ≤ T , which is exactly the setting of Lemmas 2.1
and B.1.

Suppose we are given integers a, n ≥ 1, a bounded domain D ⊆ Ra+1, and functions (Fk)1≤k≤a
where each Fk : D → R is L-Lipschitz-continuous on D for L ≥ 0. Moreover, suppose that
R ∈ [1,∞) and S ∈ (0,∞) are any constants which satisfy max1≤k≤a |Fk(x)| ≤ R for all x =
(s, y1, . . . , ya) ∈ D and 0 ≤ s ≤ S.

HAMILTONIAN CYCLES IN THE SEMI-RANDOM GRAPH PROCESS 23

Theorem D.1 (Differential Equation Method, [13]). Suppose we are given σ-fields F0 ⊆ F1 ⊆ · · · ,
and for each t ≥ 0, random variables ((Yk(t))1≤k≤a which are Ft-measurable. Define TD to be the
minimum t ≥ 0 such that

(t/n, Y1(t)/n, . . . , Yk(t)/n) /∈ D.
Let T ≥ 0 be an (arbitrary) stopping time4 adapted to (Ft)t≥0, and assume that the following
conditions hold for δ, β, γ ≥ 0 and λ ≥ δmin{S,L−1}+R/n:

(i) The ‘Initial Condition’: For some (0, ŷ1, . . . , ŷa) ∈ D,

max
1≤k≤a

|Yk(0)− ŷkn| ≤ λn.

(ii) The ‘Trend Hypothesis’: For each t ≤ min{T, TD − 1},
|E[Yk(t+ 1)− Yk(t) | Ft]− Fk(t/n, Y1(t)/n, . . . , Ya(t)/n)| ≤ δ.

(iii) The ‘Boundedness Hypothesis’: With probability 1− γ,

|Yk(t+ 1)− Yk(t)| ≤ β,
for each t ≤ min{T, TD − 1}:

Then, with probability at least 1− 2a exp
(
−nλ2
8Sβ2

)
− γ, we have that

max
0≤t≤min{T,σn}

max
1≤k≤a

|Yk(t)− yk(t/n)n| < 3λ exp(LS)n, (24)

where (yk(s))1≤k≤a is the unique solution to the system of differential equations

y′k(s) = Fk(s, y1(s), . . . , ya(s)) with yk(0) = ŷk for 1 ≤ k ≤ a, (25)

and σ = σ(ŷ1, . . . , ŷa) ∈ [0, S] is any choice of σ ≥ 0 with the property that (s, y1(s), . . . , ya(s)) has
`∞-distance at least 3λ exp(LS) from the boundary of D for all s ∈ [0, σ).

Remark 2. Standard results for differential equations guarantee that (25) has a unique solution
(yk(s))1≤k≤a which extends arbitrarily close to the boundary of D.

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada
Email address: pu.gao@uwaterloo.ca

Department of Computer Science, University of Toronto, Toronto, Canada
Email address: cmacrury@cs.toronto.edu

Department of Mathematics, Toronto Metropolitan University, Toronto, Canada
Email address: pralat@ryerson.ca

4The stopping time T ≥ 0 is adapted to (Ft)t≥0, provided the event {τ = t} is Ft-measurable for each t ≥ 0.

	1. Introduction and Main Results
	1.1. Definitions
	1.2. Main Results
	1.3. Previous Results

	2. Proof of Theorem 1.1
	2.1. Algorithmic Preliminaries
	2.2. Proof Overview
	2.3. A Fully Randomized Algorithm
	2.4. A Clean-up Algorithm
	2.5. A Degree-Greedy Algorithm
	2.6. Analyzing phase q

	3. Proof of Theorem 1.2
	4. Conclusion and Open Problems
	References
	Appendix A. Proofs of Lemmas 2.2 and 2.5
	Appendix B. Proof of Lemma 2.7
	B.1. Proving the Expected Differences
	B.2. Proving Lemma 2.7

	Appendix C. Proof of Lemma 3.1
	Appendix D. The Differential Equation Method

