
Properties and Performance of the ABCDe Random Graph

Model with Community Structure

Bogumi l Kamiński∗ Tomasz Olczak† Bartosz Pankratz‡ Pawe l Pra lat§

François Théberge¶

September 10, 2022

Abstract

In this paper, we investigate properties and performance of synthetic random graph
models with a built-in community structure. Such models are important for evaluating
and tuning community detection algorithms that are unsupervised by nature. We propose
ABCDe—a multi-threaded implementation of the ABCD (Artificial Benchmark for Com-
munity Detection) graph generator. We discuss the implementation details of the algorithm
and compare it with both the previously available sequential version of the ABCD model and
with the parallel implementation of the standard and extensively used LFR (Lancichinetti–
Fortunato–Radicchi) generator. We show that ABCDe is more than ten times faster and
scales better than the parallel implementation of LFR provided in NetworKit. Moreover,
the algorithm is not only faster but random graphs generated by ABCD have similar prop-
erties to the ones generated by the original LFR algorithm, while the parallelized NetworKit

implementation of LFR produces graphs that have noticeably different characteristics.

1 Introduction

The standard and extensively used method for generating artificial networks that have commu-
nity structure is the LFR (Lancichinetti–Fortunato–Radicchi) graph generator [1]. Despite the
fact that this is clearly a very good model, it is known to have some scalability limitations and it
is challenging to analyze it theoretically. Moreover, the mixing parameter µ, the main parameter
of the model guiding the strength of the communities, has a non-obvious interpretation and so
can lead to unnaturally-defined networks, see [2] for a detailed discussion.

An alternative random graph model with community structure and power-law distribution for
both degrees and community sizes is the Artificial Benchmark for Community Detection graph

∗Decision Analysis and Support Unit, SGH Warsaw School of Economics, Warsaw, Poland; e-mail:
bkamins@sgh.waw.pl

†Decision Analysis and Support Unit, SGH Warsaw School of Economics, Warsaw, Poland; e-mail:
tolczak@gmail.com

‡Decision Analysis and Support Unit, SGH Warsaw School of Economics, Warsaw, Poland; e-mail:
bartosz.pankratz@ryerson.ca

§Department of Mathematics, Toronto Metropolitan University, Toronto, ON, Canada; e-mail:
pralat@ryerson.ca

¶Tutte Institute for Mathematics and Computing, Ottawa, ON, Canada; email: theberge@ieee.org

1

(ABCD). In [2] it is shown that the new model is fast, simple, and can be easily tuned to allow
the user to make a smooth transition between the two extremes: pure (disjoint) communities
and random graph with no community structure. Moreover, in [3] the modularity function of
ABCD is theoretically analyzed and it is confirmed that its asymptotic behaviour is consistent
with simulations on smaller experimental graphs. (The modularity function is, arguably, the
most important graph property of networks in the context of community detection. Indeed, the
modularity function is often used to measure the presence of community structure in networks. It
is also used as a quality function in many community detection algorithms, including the widely
used Louvain algorithm [4].) On the other hand, because of its similarity to LFR, ABCD can
be expected to preserve most of its natural graph properties and parameters. We verify this
claim in this paper using simulation. Hence, ABCD (or ABCDe introduced and discussed in
this paper) may successfully replace the LFR generator when scalability becomes a bottleneck.

In this paper we introduce the implementation of the ABCD generator that uses multiple
threads for processing, ABCDe. The goal of parallelizing sequential ABCD is to speed up
computations and thus allow for handling of larger graphs (having more nodes or being more
dense). We describe the challenges of parallelization of this algorithm and the approach we
took to ensure both its performance and reproducibility of generated graphs. We analyze the
ABCDe properties using simulation, taking into account two important aspects. First, we
analyze the properties of the graphs that it generates and compare them to graphs generated by
the LFR algorithm under matching parameterization. Next, we analyze the speed of ABCDe
against the single threaded (sequential) implementation of ABCD and selected implementations
of the LFR generator. The two selected implementations are: the original LFR algorithm [1]
and its fast implementation, that optionally uses multiple threads, provided in the NetworKit

package [5]1.

2 The Design of the ABCDe Generator

2.1 Building Blocks of the Algorithm

As a preliminary information let us start with introducing two building blocks of the ABCD
model: configuration model and Chung-Lu model. Let w = (w1, . . . , wn) be any vector of n
non-negative integers. Our goal is to be able to build two types of random graphs on n nodes,
the first one will have a given degree sequence w (configuration model) and the second one will
only have the expected degree sequence w (Chung-Lu model).

A random multi-graph M(w) with a given degree sequence known as the configuration
model (sometimes called the pairing model) was first introduced by Bollobás [6]. Assum-
ing that W :=

∑n
i=1wi is even, let us consider W points partitioned into n labelled buckets

v1, . . . , vn; bucket vi consists of wi points. A pairing of these points is a perfect matching into
W/2 pairs. (There are W !/((W/2)!2W) such pairings.) Given a pairing P , we may construct a
multi-graph G(P), with loops and parallel edges allowed, as follows: the nodes are the buckets
v1, . . . , vn, and a pair {x, y} in P corresponds to an edge {vi, vj} in G(P) if x and y are contained
in the buckets vi and vj , respectively. We take a pairing P uniformly at random from the family
of all pairings of W points and set M(w) = G(P).

1https://networkit.github.io/index.html

2

https://networkit.github.io/index.html

In the Chung-Lu model [7] that generates graph C(w) on the node set [n] = {1, . . . , n}, each
set e = {i, j}, i, j ∈ [n], is independently sampled as an edge with probability given by:

Pr(i, j) =

{
wiwj

W , i 6= j
(wi)

2

2W , i = j.

(Let us mention about one technical assumption. Note that it might happen that Pr(i, j) is
greater than one and so it should really be regarded as the expected number of edges between
i and j; for example, as suggested in Newman [16], one can introduce a Poisson-distributed
number of edges with mean Pr(i, j) between each pair of nodes i, j. However, since typically
the maximum degree ∆ satisfies ∆2 ≤ 2|E| it rarely creates a problem and so we may assume
that Pr(i, j) ≤ 1 for all pairs.)

One desired property of this random model is that it yields a distribution that preserves the
expected degree for each node, namely: for any i ∈ [n],

E[deg(i)] =
∑

j∈[n]\{i}

wiwj

W
+ 2 · (wi)

2

2W
=
wi

W

∑
j∈[n]

wj = wi.

In summary, both models are similar. The difference between them is that configuration
model ensures that the required node degree sequence is reproduced exactly, while Chung-Lu
model produces this degree sequence in expectation.

2.2 Structure of the ABCD Graph

In this section, we briefly discuss the ABCD models; details can be found in [2] or in [3]. As in
LFR, for a given number of nodes n, we start by generating a power law distribution both for
the degrees and community sizes. Those are governed by the power law exponent parameters
(γ, β). We also provide additional information to the model, again as it is done in LFR, namely,
the average and the maximum degree, and the range for the community sizes. The user may
alternatively provide a specific degree distribution and/or community sizes.

For each community, we generate a random community subgraph on the nodes from a given
community using either the configuration model (see [6]) which preserves the exact degree
distribution, or the Chung-Lu model (see [7]) which preserves the expected degree distribution.
On top of it, we independently generate a background random graph on all the nodes that is
generated the same way as the community graphs. Everything is tuned properly so that the
degree distribution of the union of all graphs follows the desired degree distribution (only in
expectation in the case of the Chung-Lu variant). In particular, the mixing parameter ξ guides
the proportion of edges which are generated via the background graph. In the two extreme
cases, when ξ = 1 the graph has no community structure while if ξ = 0, then we get disjoint
communities. In order to generate simple graphs, we may have to do some re-sampling or edge
re-wiring, which as described in [2]. This two-step process is similar to the highly scalable
BTER model [8]. (Similarly to LFR and ABCD, BTER generates graphs with a given
degree distribution but the main objective is different: it aims to preserve per-degree clustering
coefficients. In particular, this model does not have the same type of community structure as in
LFR and ABCD.)

During this process, larger communities will additionally get some more internal edges due to
the background graph. As argued in [2], this “global” variant of the model is more natural and

3

Figure 1: Two examples of ABCD graphs with low level of noise (ξ = 0.2, left) and large level
of noise (ξ = 0.4, right).

so we recommend it. However, in order to provide a variant where the expected proportion of
internal edges is exactly the same for every community (as it is done in LFR), we also provide
a “local” variant of ABCD in which the mixing parameter ξ is automatically adjusted for
every community. Both variants preserve the same number of edges between communities. The
difference is how the degree of each node is split into internal and external degree. The LFR
model, as well as our local variant of the ABCD model, keep the same fraction of neighbours
to be internal neighbours for all nodes, regardless how large the community this node belongs to
is. As a result, small communities become much denser than large communities. On the other
hand, in the global variant of the ABCD model, the internal degree naturally depends on the
size of the associated community.

Two examples of ABCD graphs on n = 100 nodes are presented in Figure 1. Degree
distribution was generated with power law exponent γ = 2.5 with minimum and maximum
values 5 and 15, respectively. Community sizes were generated with power law exponent β = 1.5
with minimum and maximum values 30 and 50, respectively; communities are shown in different
colours. The global variant and the configuration model was used to generate the graphs. The
left plot has the mixing parameter set ξ = 0.2 while the “noisier” graph on the right plot has
the parameter fixed to ξ = 0.4.

In this paper, we compare both “global” and “local” variants of the ABCD model (using
the configuration model to generate communities as well as the background graph) against the
classical LFR model.

2.3 Approach to Parallelization of the ABCD Generator

The original ABCD model was implemented using a sequential algorithm (Algorithm 1). In [2],
we discuss theoretical complexity of ABCD and LFR for this scenario.

Let us now switch to issues of parallelization of the process of generating ABCD graphs. The
model, being a union of community graphs and the background graph, is naturally structured
for concurrent processing. Since community graphs are disjoint, they can be generated inde-

4

pendently of each other. Typically they are numerous and their individual sizes are relatively
small when compared to the whole graph. Taken together they constitute a set of sufficiently
granular tasks for efficient parallel processing. Hence, in ABCDe (a multi-threaded version of
ABCD generator) we distribute community graphs for parallel generation among the available
CPU threads.

The main challenge for the design of parallelized ABCDe algorithm is posed by generation
of the background graph. In the sequential version of the algorithm, the background graph
is generated in the final stage of processing, after all the community graphs are generated.
This order of processing enables detection of potential collisions, that is, duplicate edges in the
background graph and one of the community graphs. Since the background graph shares nodes
with all the community graphs such collisions may arise and must be avoided to ensure the final
graph to be simple.

Preserving the same processing sequence in the parallel algorithm would have deteriorating
effect on performance as often the background graph is chosen to be so large that its generation
consumes a non-negligible fraction of the overall processing time. Postponing generation of
the background graph only after all the community graphs are generated would significantly
increase the fraction of time spend in sequential processing in overall processing time thus
limiting speedup from parallel processing as governed by Amdahl’s law [24].

To work around this serialization bottleneck, one could parallelize generation of the back-
ground graph itself. Unfortunately, this approach is challenging by nature of a single graph
generation algorithm. Recall that we defined the configuration model graph by G(P) =
M(w) where a pairing P is sampled uniformly at random from the family of all pairings of
W :=

∑n
i=1wi points. This sampling is implemented in the following way. First, a random

permutation p := {1, . . . ,m} 7→ {1, . . . ,m} where m := W is generated using Fisher–Yates
shuffle [25]. Then, a pairing Pp := (p1, . . . , pm

2
) 7→ (pm

2
+1, . . . , pm) is obtained and a multi-graph

G(Pp) is produced.
Fisher–Yates algorithm [25] is inherently sequential and its potential parallelization would

involve high performance penalty due to thread synchronization thus cancelling gains from
parallelization. Therefore, in ABCDe the second best approach was taken where, in contrast
to sequential ABCD, the background graph is generated in parallel with community graphs.
To enable this change, generation of the background graph was split into two phases. In the first
phase, composed of tasks independent of community graph generation, the disjoint background
graph is generated and any internal self-loops or parallel edges rewired to ensure the graph to be
simple (steps 6 and 7 in Algorithm 2). Note that this phase is indistinguishable from generation
of community graphs. In the second phase, after all the community graphs and the background
graph were generated, individual graphs are merged to form the final ABCDe graph and any
parallel edges resulting from the merger are rewired, if present (steps 9 and 10 in Algorithm 2).

To ensure well-balanced distribution of work among available threads and to minimize total
processing time, we apply the following task allocation policy. Typically, the background graph
is the largest one in the ensemble and its generation is the most time consuming. It is then the
first graph picked up for processing by the first available thread so its generation could start
as soon as possible. The remaining set of community graphs is placed in a random order into
a FIFO queue and consumed for processing by a pool of available threads following a classical
producer-consumer pattern. This generates a uniform workload in expectation. Note that this
policy does not prevent unintended serialization in case of an extremely large background graph,

5

as it would still be processed by a single thread only. In this case benefits of parallelization could
be limited. Fortunately, this happens only for ξ close to 1, which is not normally used in practical
applications (usually, ξ less than 0.5 is used).

Let us also make a short remark on the optimal number of threads. ABCDe will use all
the threads available for Julia process and the number of Julia threads can be specified when
Julia process is started. As a rule of thumb, for optimal ABCDe performance one should
use the number of threads equal to the number of physical (not logical) cores as ABCDe is a
memory intensive algorithm. Increasing number of threads beyond this point will usually not
make noticeable improvement or can even deteriorate performance as excess threads would be
forced to share the same memory bus.

Finally, a note should be taken on reproducibility of results. The challenge is that generation
of each graph is an independent task and both the order and thread allocation is unspecified and
decided only at run-time by the operating system scheduler. This would lead to a situation where
running the algorithm twice for the same parameterization could potentially produce different
graphs. In order to solve this issue, each task is associated with a random number generator
seed before any graph generation is started. This way the stream of pseudo-random numbers is
ensured to be reproducible independently of task processing order, number of threads, and task
to thread allocation.

In summary, we parallelize generation of the ABCD graph in the following way:

Step 1: sequentially assign nodes to communities and split their degrees into community and
background graph;

Step 2: sequentially put all community graphs and background graph in a queue of tasks; assign
a random number generator seed to each task;

Step 3: using parallel map algorithm, generate all community graphs and background graph
independently;

Step 4: sequentially create a union of all graphs;

Step 5: sequentially resolve all conflicts between the background graph and community graphs
to ensure that the resulting graph is simple.

Steps 1, 2, 4, and 5 are done sequentially. Note that steps 1, 2, and 4 are computationally
cheap so that there would be no noticeable benefit of running them using a parallel algorithm.
Step 5 could, in general, be potentially expensive. Fortunately, for large and sparse graphs
the number of conflicts that need to be resolved in this step is small and does not significantly
affect the overall run-time of the algorithm. Step 3, the most expensive part of the algorithm, is
executed using multi-threading. In our experiments, we verify how increasing number of threads
affects the run-time of the whole algorithm.

In general, the computational complexity of the ABCDe algorithm is linear in the number
of edges generated, similarly to the sequential ABCD algorithm, as discussed in [2]. However,
as it will be seen in Section 4, the scaling of the algorithm with increasing n has a growing
constant factor. The reason for this behaviour is twofold. The first is theoretical—increasing
n changes degre distribution and community size distribution of the generated graph. These
changes lead to changes of cost of collision resolution process. The second is technical—as graph
size increases, the number of operations that are performed in CPU cache decreases. For large

6

graphs most operations end up to be cache misses. Since reading data from CPU cache is much
faster than fetching data from a new area of RAM, again the constant factor in the algorithm
increases.

Input: vector of node degrees
Output: list of edges

1 for node ∈ nodes do
2 assign node to a community;
3 split the degree among the community and the background graph;

4 end
5 for community ∈ communities do
6 generate a community graph;
7 rewire self-loops and parallel edges to ensure the community graph is simple;

8 end
9 generate the background graph;

10 rewire self-loops and parallel edges to ensure the background graph is simple;
11 create union of community graphs and the background graph;
12 rewire parallel edges to ensure the output graph is simple;
13 return edges;

Algorithm 1: ABCD (sequential)

Input: vector of node degrees
Output: list of edges

1 for node ∈ nodes do
2 assign node to a community;
3 split the degree among the community and the background graph;

4 end
5 for graph ∈ community graphs ∪ {background graph} do in parallel
6 generate a graph;
7 rewire self-loops and parallel edges to ensure the graph is simple;

8 end
9 create union of community graphs and the background graph;

10 rewire parallel edges to ensure the output graph is simple;
11 return edges;

Algorithm 2: ABCDe (parallel)

3 Properties of the Generated Graphs

In this section, we present the results of several experiments comparing the properties of graphs
generated using the sequential ABCD model and parallelized ABCDe model (both global
and local variants) against the original LFR implementation [1] as well as its fast NetworKit

implementation [5]. Note that the ABCD and ABCDe local variant of our algorithm was
developed with the goal to reproduce the behaviour of the original LFR implementation. On
the other hand, the ABCD and ABCDe global variant was proposed as an alternative to
overcome some properties of the the original LFR implementation that we believe are not
desirable—see [2] for more details.

7

3.1 Experiment Setup

Properties were tested on graph with n = 10,000 nodes. Graphs were generated with various
values of the mixing parameter ξ (namely, values between 0 and 1 with a step equal to 0.05).
Recall that the parameter ξ is the main parameter of the model, responsible for the level of
noise. The detailed results can be found in the accompanying notebook; we present the result
for a specific value of ξ = 0.5 below. Both variants of the ABCD model were tested for a given
value of ξ but in the case of the two variants of the LFR model, the value of its parameter µ,
the counterpart of ξ in the ABCD model, was computed using the following formula:

µ = ξ

1−
∑
`∈[k]

W`

W

 , (1)

where W is the volume of G and W` is the volume of nodes that belong to `’th community.
In order to increase the comparability of all algorithms, we used the following coupling. For

a given set of parameters, we pre-generated the degree distributions and the community sizes.
Such pre-generated sequences were used in all four models. In both cases, the distributions were
sampled using the discrete power-law distribution with truncation range. The samplers included
in the package with the ABCD algorithm were used to do this.

As with the parameter ξ, various exponents of the power-law distributions were tested
(namely, β ∈ {1.1, 1.5, 1.9} and γ ∈ {2.1, 2.5, 2.9}) and details can be found in the associ-
ated notebook. However, in the figures we present, the degree distributions were generated with
the exponent γ = 2.5, the minimum degree δ equal to 5, and the maximum degree equal to√
n. Community sizes were generated with the exponent β = 1.5 and the lower and the upper

bounds for the sizes of communities were functions of n, namely, there were equal to 0.005n and
0.2n, respectively.

In the figures we present properties of both sequential ABCD algorithm and the ABCDe
algorithm run with 32 threads to show that indeed, as expected from the description of the
algorithms, the properties of the produced graphs are the same.

3.2 Results

For every sweep of the parameters of the model, 30 graphs were generated and for each of
them 10 representative graph properties were investigated. In the remaining of this section,
we summarize the main findings based on the experiments. We will discuss each parameter
independently but there are some general observations that we noticed. Given the results of the
measurements of 10 different graph characteristics, one can observe that both ABCD variants
are much more similar to the original LFR implementation than the NetworKit implementation
of LFR. Not surprisingly, the local variant of the ABCD model is especially close to the original
LFR model.

Since the evaluated graph parameters are standard and well-known, we do not formally
define them. We direct the reader to any book on mining complex networks such as [9].

3.2.1 Clustering Coefficients

The global clustering coefficient of a given graph G is the ratio of three times the number of
triangles to the number of pairs of adjacent edges. This parameter has a nice and important

8

ABCD
global

ABCDe 32
global

ABCD
local

ABCDe 32
local

LFR
Original

LFR
NetworKit

0.0135

0.0140

0.0145

0.0150

0.0155

0.0160

0.0165

Global Clustering Coefficient

ABCD
global

ABCDe 32
global

ABCD
local

ABCDe 32
local

LFR
Original

LFR
NetworKit

0.014

0.015

0.016

0.017

0.018

0.019

Average Local Clustering Coefficient

Figure 2: Comparison of the distribution of the global clustering coefficient (left) and average
local clustering coefficient (right).

interpretation: given a random pair of adjacent edges, the global clustering coefficient is the
probability that those three nodes form a triangle. As a result, it is often used as a measure
of the presence of the so-called triadic closure, a natural mechanism present in many complex
networks. For example, in a social network, strong triadic closure occurs because there is an
increased opportunity for nodes x and z with common neighbour y to meet.

The local clustering coefficient is defined for each node v ∈ V (G) as the number of triangles
this node is part of, divided by the total number of distinct pairs of neighbouring nodes for v.
In other words, it is the probability that two random neighbours of v are adjacent. The average
local clustering coefficient of G is obtained by averaging the local clustering coefficient over all
nodes v ∈ V (G). Formulas for those coefficients can be found in Chapter 1 of [9].

In Figure 2, we see that the global clustering coefficient is similar for all four compared
algorithms. On the other hand, the average local clustering coefficient is most similar between
the local variant of ABCD and the original LFR, while NetworKit LFR differs the most.
Havins said that, the observed differences are not substantial. Finally, let us note that the
corresponding numerical values (for both variants) are rather low, comparable to what one
would expect from a random chance based on the global density of the corresponding graphs.
This is not surprising as none of these models aim to produce graphs with large clustering
coefficients, a typical property of the so-called small-world networks. One example of a random
graph with large clustering coefficient is the classical Watts and Strogatz model [10].

3.2.2 Node Centralities

An important property of a node of a graph is how central it is with respect to the entire
graph. Such measures often reflect the relative importance of a node. There are several ways
to measure centrality. In Figure 3, we compare the distribution of four commonly used node
centrality coefficients: betweenness [11], closeness [12], PageRank [13], and degree centrality. As
usual, we only provide intuition behind these coefficient and direct the reader to Chapter 3 of [9]
for more details. The betweenness centrality for a given node is proportional to the number of
shortest paths that pass through that node. For example, in a telecommunications network, a

9

0.000 0.005 0.010
value

0.00

0.25

0.50

0.75

1.00
pr
ob
ab
ilit
y

CDF betweenness_centrality

ABCD Global
ABCDe 32 Global
ABCD Local
ABCDe 32 Local
LFR Original
LFR NetworKit

0.25 0.30 0.35
value

0.00

0.25

0.50

0.75

1.00

pr
ob
ab
ilit
y

CDF closeness_centrality

ABCD Global
ABCDe 32 Global
ABCD Local
ABCDe 32 Local
LFR Original
LFR NetworKit

0.0025 0.0050 0.0075 0.0100
value

0.4

0.6

0.8

1.0

pr
ob
ab
ilit
y

CDF degree_centrality

ABCD Global
ABCDe 32 Global
ABCD Local
ABCDe 32 Local
LFR Original
LFR NetworKit

0.0002 0.0004 0.0006 0.0008
value

0.00

0.25

0.50

0.75

1.00

pr
ob
ab
ilit
y

CDF pagerank

ABCD Global
ABCDe 32 Global
ABCD Local
ABCDe 32 Local
LFR Original
LFR NetworKit

Figure 3: Comparison of the distribution of four commonly used centrality coefficients.

node with higher betweenness would have more control over the network since more information
passes through that node. The closeness centrality is defined as the reciprocal of the sum of the
length of the shortest paths between a given node and all other nodes in the graph (assuming
the graphs is connected). As a result, nodes that are close to all other nodes are considered more
central. The PageRank centrality, developed by the Google founders, measures the importance
of nodes by assuming that important nodes are those that have many important neighbours,
something that the degree centrality ignores as it only considers the number of neighbours to
score the nodes. From those plots, we see that all measures are similar for all the benchmark
considered.

3.2.3 Degree Correlation

In assortative graphs, high degree nodes tend to link to other high degree nodes, while low degree
nodes are more often adjacent to low degree nodes. On the other hand, disassortative graph
behave differently: high degree nodes tend to be connected to low degree nodes and vice-versa.
In order to capture the preference of nodes it is often useful to investigate the degree correlation
function which for a given value of d computes the average degree of neighbours of all nodes

10

20 40 60 80 100
Degree

18.5

19.0

19.5

20.0

20.5

21.0

21.5

22.0

kn
n(

ℓ)

KNN(ℓ)

ABCD G oba
ABCDe 32 G oba
ABCD Loca
ABCDe 32 Loca
LFR Origina
LFR NetworKit

Figure 4: Comparison of the degree correlation function.

of degree d. There are two standard ways to measure the overall assortativity of a graph G,
the degree correlation coefficient and the correlation exponent (see [14] and [15], or Chapter 4
in [9]). For both measures, a negative value indicates an assortative network, a value close to
zero a neutral one, and a positive value a disassortative one. Many important properties of
graphs, such as speed of spreading information or forming large components, are affected by
these measures.

In Figure 4, we see that the shape of the degree correlation function is similar for all random
graph models, with a clear negative slope. Hence, all benchmarks produce slightly disassortative
graphs. In Figure 5, we see that the correlation coefficient is the largest for the original LFR
and the smallest for NetworKit LFR; both ABCD variants are similar and are roughly in the
middle of the range of observed values. Results for the correlation exponent are similar for both
ABCD variants and the original LFR, but it is lower for NetworKit LFR.

3.2.4 Community Edges and Modularity

We say that an edge is inside a community if both of its nodes are part of the same community;
we also refer to those as community edges. Participation coefficient of a given node, as defined in
Chapter 5 of [9], provides more detailed information and measures the distribution of a node’s
neighbours among the communities of a graph. It is equal to 0 if all of its neighbours are
in the same community, and it is close to 1 if its neighbours are equally divided amongst all
communities. In Figure 6, we see that the proportion of edges that are inside communities is
very similar for local ABCD and original LFR; it is slightly lower for global ABCD and much
lower for NetworKit LFR. We also plot the average participation coefficient, with the same
conclusions (albeit, symmetric).

The most important graph property of networks in the context of community detection is the
modularity function [17]. Indeed, the modularity function is often used to measure the presence
of community structure in networks. It is also used as a quality function in many community
detection algorithms, including the widely used Louvain algorithm. It is defined as the difference
between the proportion of edges inside communities and the expected value of this quantity over
some null random graph model. Thus, large (positive) modularity indicates the presence of

11

ABCD
global

ABCDe 32
global

ABCD
local

ABCDe 32
local

LFR
Original

LFR
NetworKit

−0.035

−0.030

−0.025

−0.020

−0.015

−0.010

−0.005
Correlation Coefficient

ABCD
global

ABCDe 32
global

ABCD
local

ABCDe 32
local

LFR
Original

LFR
NetworKit

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

Correlation Ex onent

Figure 5: Comparison of distribution for the correlation coefficient (left) and the correlation
exponent (right).

communities in a graph. In Figure 7, we see that the modularity function is similar for both
ABCD variants and original ABCD, but is again much lower for NetworKit LFR.

ABCD
global

ABCDe 32
global

ABCD
local

ABCDe 32
local

LFR
Original

LFR
NetworKit

0.47

0.48

0.49

0.50

0.51

0.52

0.53

Proportion of the Edges Inside the Communities

ABCD
global

ABCDe 32
global

ABCD
local

ABCDe 32
local

LFR
Original

LFR
NetworKit

0.64

0.65

0.66

0.67

0.68

Average participation coefficient

Figure 6: Comparison of proportion of edges inside communities (left) and distribution of average
participation coefficient (right).

3.2.5 Shortest Paths

The shortest path between two nodes in a connected graph is the minimum number of hops
to go from one node to the other. Several studies, inspired by the famous Milgram’s small-
world experiment, suggest that many real-world networks exhibit surprisingly small average
distance between pairs of nodes. As a result, this property (often referred to as “six degrees of
separation”) is often investigated and expected from good random graph models. In Figure 8,
we compare the average shortest path length (obtained via sampling as there are usually too

12

ABCD
global

ABCDe 32
global

ABCD
local

ABCDe 32
local

LFR
Original

LFR
NetworKit

0.43

0.44

0.45

0.46

0.47

Modularity

Figure 7: Comparison of distribution of modularity.

many node pairs to investigate). One can see that this quantity is similar for all benchmark
algorithms we tested.

ABCD
global

ABCDe 32
global

ABCD
local

ABCDe 32
local

LFR
Original

LFR
NetworKit

3.79

3.80

3.81

3.82

3.83

Average Shortest Path Length

Figure 8: Comparison of distribution of average shortest path length.

4 Speed Tests of Graph Generation

In this section, we present the results of performance comparison of ABCD, ABCDe, and LFR.
For LFR, we use the NetworKit implementation as it is approximately 10 times faster than the
original LFR implementation. Moreover, let us mention that both ABCDe and NetworKit

LFR implementation support multi-threading. For experiments on these benchmarks, we used
1 to 32 threads.

13

4.1 Experiment Setup

We generated graphs with NetworKit LFR and ABCDe using k = 2i threads for 0 ≤ i ≤ 5. We
independently tested single-threaded ABCD. We compare the time complexity of each method
as a function of the number of nodes n in the graph, where n = 10i for 4 ≤ i ≤ 9. The
other parameters were set as for the experiments analyzing properties of the graph presented
in the previous section, except for the sizes of the smallest and the largest communities which
we vary with n, respectively 0.005n and 0.2n. The range of the values used were chosen based
on the objective of the experiment but also the capacity of the machines. For n < 104 the
gain from using multi-threading was negligible whereas experiments with n > 109 were too
computationally expensive for the machines used.

Since the process of generating the background graph is not parallelized, it is expected that
the speed of generating ABCDe should depend on the size of the background graph which, in
turn, depends on the parameter ξ. Results of experiments investigating this relationship (see
Figure 10) are presented for a fixed value of n = 107. (As usual, we refer the reader to notebooks
for results for other values of n.) In order to couple LFR and global versions of ABCD and
ABCDe so that they have a comparable number of edges in the background graph, the mixing
parameter µ was approximated using formula (1).

The experiments are focused on the graph generation process itself, thus the time spent on
generating the degree distribution and community sizes are not included in the comparisons.
Similarly to the properties test, pre-generated degree distributions and community sizes were
used.

The code for execution and analysis of the experiments was written in Julia 1.6.1 program-
ming language. It is available on GitHub repository2, and so are Jupyter notebooks as well as
the results for all combinations of parameters3. Julia is a high-level, high-performance, dynamic
programming language that recently gains a lot of interest in scientific computing applications
[18]. ABCD and ABCDe graphs were generated using the following packages written in
the Julia language. ABCDGraphGenerator v0.1.04 was used for single threaded implementa-
tion (ABCD). ABCDeGraphGenerator v0.2.45 was used for a multi threaded implementation
(ABCDe). LFR graphs were generated using Python v3.8.8 with the NetworKit v8.1 mod-
ule6. This implementation of the LFR algorithm was chosen because it is considered to be the
fastest one available at the time of running of the experiments.

Experiments were performed on the machines with 32 Intel Xeon Processors (Cascadelake)
2.30 GHZ vCPUs with 160GB RAM memory, 120GB disk space and Ubuntu 20.04.1 operating
system. They were run simultaneously on four machines for approximately two weeks, totalling
in over 2000 vCPU hours.

4.2 Results

We first show results of experiments comparing multi-thread ABCDe with single-thread LFR.
Then, we compare it with multi-thread LFR for varying n (the number of nodes) and ξ (the

2https://github.com/bartoszpankratz/ABCDe_Experiments/tree/main/speed%20test
3https://github.com/bartoszpankratz/ABCDe_Experiments
4https://github.com/bkamins/ABCDGraphGenerator.jl
5https://github.com/tolcz/ABCDeGraphGenerator.jl
6https://networkit.github.io/

14

 https://github.com/bartoszpankratz/ABCDe_Experiments/tree/main/speed%20test
 https://github.com/bartoszpankratz/ABCDe_Experiments
 https://github.com/bkamins/ABCDGraphGenerator.jl
 https://github.com/tolcz/ABCDeGraphGenerator.jl
https://networkit.github.io/

ξ n ABCDe1 ABCDe2 ABCDe4 ABCDe8 ABCDe16 ABCDe32

0.2 104 32.14 45.11 57.2 63.73 53.98 38.58
0.2 105 12.96 17.05 24.22 25.71 28.07 26.62
0.2 106 16.96 25.28 35.82 36.01 39.66 39.95
0.2 107 23.52 35.47 47.21 50.73 54.19 54.21
0.2 108 15.31 23.79 32.57 36.5 37.24 35.77
0.2 109 45.84 53.17 50.77 47.48 46.56 40.29
0.5 104 19.95 24.92 29.21 30.89 27.51 21.99
0.5 105 20.73 29.09 34.03 33.8 36.17 35.55
0.5 106 30.18 43.44 51.05 51.26 50.95 56.79
0.5 107 33.89 44.04 47.34 47.89 49.9 50.38
0.5 108 27.96 39.04 42.48 43.75 44.81 44.17
0.5 109 38.19 39.96 41.52 37.91 37.31 35.06
0.8 104 29.34 33.57 35.55 35.26 34.22 29.81
0.8 105 35.76 42.93 46.36 43.89 46.71 47.51
0.8 106 43.46 57.65 56.28 57.69 61.3 69.14
0.8 107 39.78 43.1 46.88 47.83 46.31 48.35
0.8 108 38.52 44.49 46.3 48.31 49.1 46.57
0.8 109 37.69 41.57 41.14 44.24 46.05 34.27

Table 1: Comparison of graph generation speed in reference to NetworKit LFR (single threaded)
as a function of graph size and ξ. The values reported are normalized so they reflect how many
times faster is the graph generation process in comparison to the reference NetworKit LFR
implementation; hence, the larger the values the better. Number X in the name of the model
ABCDeX represents the number of threads used to generate the graph. The best results are
shown in bold.

mixing parameter), respectively. As a general conclusion, we see 10–50 fold speed-ups using
ABCDe instead of LFR. Another general observation is that using multiple threads does yield
speed-ups but the difference could be small beyond 8 threads.

4.2.1 Speed-up with Multi-thread ABCDe

In Table 1, we show the speed-up of ABCDe algorithm over NetworKit LFR run on a single
thread. In particular, even single-thread ABCDe algorithm is faster than NetwrorKit LFR for
varying values of graph size n and ξ parameter; we observe from 13 to 45 times speed-up which
is a practically significant improvement regarding that the LFR generation time for graphs
with n = 109 nodes was roughly 60 hours in our experiments. Let us also point out that the
new ABCDe algorithm (run in a single-thread mode) is faster than the old sequential ABCD
implementation by around 30% (as reported in Figure 9) (the changes leading to these speedups
are of code optimization nature, like reduction of volume of memory allocations, and were guided
by profiling of code runtime; they did not introduce new algorithmic ideas). Additionally, one
can observe that increasing the number of threads improves the speed of the ABCDe graph
generation, with best results achieved typically when using 8 threads or more (unfortunately
the individual timings were not very stable since it was impossible to maintain the same level of
system load of the test machine in the cloud infrastructure because the time of running of the
whole experiment was long).

15

104 105 106 107 108 109

n

0.0

0.2

0.4

0.6

0.8

 T
im

e
/ m

 (m
icr

os
ec

on
ds

)

Time Performance as a Function of n
ABCD
ABCDe 1
ABCDe 2
ABCDe 4
ABCDe 8
ABCDe 16
ABCDe 32

104 105 106 107 108

n

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

 T
im

e
/ m

 (m
icr

os
ec

on
ds

)

Time Performance as a Function of n
LFR 1
LFR 2
LFR 4
LFR 8
LFR 16
LFR 32

Figure 9: Comparison of time (in microseconds) to generate a single edge as a function of the
graph order. In the left plot we present statistics for ABCD model and in the right plot for
LFR model. Numbers in the legend are the number of threads used to generate the graphs.

4.2.2 Comparing Multi-thread ABCDe and LFR—Varying n

In Figure 9, we present a comparison of average generation time per edge as a function of n,
the order of a graph, for ABCDe and NetworKit LFR, with varying number of threads (for
sequential ABCD and for LFR the experiments were not run for n = 109 as their run-time
was very long; we only run the LFR algorithm once to measure its baseline timing for Table 1,
which was around 60 hours). The parameter ξ was fixed to ξ = 0.5. The results are consistent
with the data presented in Table 1 with ABCDe over 10 times faster than NetworKit LFR for
all considered scenarios. However, there are two additional characteristics that should be noted.
First of all, observe that both algorithms decrease speed of edge generation as n increases.
However, this speed decrease is much slower for ABCDe. Indeed, in the case of ABCDe,
moving from n = 104 to n = 108, the edge generation time increases by no more than a factor of
2.5. On the other hand, for NetworKit LFR, the increase is over 5 fold and so a better scaling
is observed for ABCDe. For n = 109 we observe a bump in processing time of ABCDe.
This bump is due to the fact that this size of graph was at the limit of processing capability of
the available infrastructure. A similar bump for LFR due to the same resource limits reasons
is expected, which conformed in Table 1, where the relative speedup of ABCDe over LFR
does not drop for n = 109. The second aspect we would like to highlight are the speed-ups
obtained when increasing the number of threads. Here one can also see that ABCDe scales
better; for example, when moving from 1 to 2 threads there is a noticeable speed-up in ABCDe
(roughly 20%), while for NetworKit LFR it is relatively small (less than 5%). Moreover, when
we compare using 1 vs. 32 threads, the speed-up for ABCDe is over 2-fold, while for NetworKit
LFR it is less than 1.5-fold.

4.2.3 Comparing Multi-thread ABCDe and LFR—Varying ξ

For the last experiment, we fix the number of nodes to n = 107 and vary the mixing parameters ξ.
The results are shown in Figure 10. The speed-up obtained with ABCDe is still enormous
compared to LFR, but we also see that both algorithms behave similarly with respect to the
different number of threads used. The largest speed-ups with multiple threads are observed for

16

low values of ξ; for ABCDe model, this is not too surprising since in that case most of the time
is spent for generating community graphs which are completely independent tasks.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ξ

0.0

0.1

0.2

0.3

0.4

0.5

0.6
 T
im

e
/ m

 (m
icr

os
ec

on
ds

)

Time Performance as a Function of ξ

ABCD
ABCDe 1
ABCDe 2
ABCDe 4
ABCDe 8
ABCDe 16
ABCDe 32

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ξ

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

 T
im
e
/ m

 (m
icr
os
ec
on
ds
)

Time Performance as a Function of ξ

LFR 1
LFR 2
LFR 4
LFR 8
LFR 16
LFR 32

Figure 10: Comparison time (in microseconds) to generate a singe edge as a function of the
parameter ξ. In the left plot we present statistics for ABCD model and in the right plot for
LFR model. Numbers in the legend are the number of threads used to generate the graphs.

5 Conclusions and Future Directions

In this paper, we showed that the multi-thread ABCDe is over 10 times faster than LFR
and scales better than parallel implementation of the LFR algorithm provided in NetworKit.
Moreover, the algorithm is not only faster but graphs generated by ABCDe algorithm have
similar properties to graphs generated by the original LFR algorithm, while the parallelized
NetworKit implementation of LFR produces graphs that have noticeably different character-
istics. In the paper we described the technical approach we have taken to parallelize the ABCDe
algorithm. Additionally, the produced algorithm ensures reproducibility of the generated graph
independent from task execution ordering or number of threads used.

Despite the fact that ABCDe is already very fast, there are some ways the generation process
can be improved. In particular, the current “bottleneck” and an area for further research is to
design a faster, parallelized implementation of the background graph. This would allow to make
a better use of multiple threads in scenarios when the parameter ξ is large and so most of the
edges are present in the background graph. Currently, as it is shown in Figure 10, the scalability
with number of threads of ABCDe algorithm degrades as ξ increases.

Another further direction worth investigating would be to generalize the ABCD/ABCDe
model to include more sophisticated, higher-order structures as well as to capture the dynamics
of networks. A good starting point would be to deal with hypergraphs in which edges (called
hyperedges) may contain more than two nodes. Indeed, the modularity function for graphs was
recently generalized to hypergraphs [19] and a number of research groups started working on
scalable algorithms [20, 21] as well as software implementations such as the HyperNetX package7

but there is need for synthetic hypergraph benchmarks. One of the very first attempts include the
hypergraph stochastic block model [22] but now it is time for more realistic models producing
power-law degree distribution and other desired properties. Temporal graph generators that

7https://github.com/pnnl/HyperNetX

17

https://github.com/pnnl/HyperNetX

control both the evolution of the degree distribution as well as the distribution of community
sizes are even more challenging. One of the very first such models is RTGEN, A Relative
Temporal Graph GENerator [23] that was recently introduced.

6 Acknowledgment

Hardware used for the computations was provided by the SOSCIP consortium8. Launched
in 2012, the SOSCIP consortium is a collaboration between Ontario’s research-intensive post-
secondary institutions and small- and medium-sized enterprises (SMEs) across the province.
Working together with the partners, SOSCIP is driving the uptake of AI and data science solu-
tions and enabling the development of a knowledge-based and innovative economy in Ontario by
supporting technical skill development and delivering high-quality outcomes. SOSCIP supports
industrial-academic collaborative research projects through partnership-building services and
access to leading-edge advanced computing platforms, fuelling innovation across every sector of
Ontario’s economy.

References

[1] A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for testing community
detection algorithms. Phys. Rev. E, 78(4), 2008.

[2] B. Kamiński, P. Pra lat, and F. Théberge, Artificial Benchmark for Community Detection
(ABCD)—Fast Random Graph Model with Community Structure, Network Science 9(2)
(2021), 153–178.

[3] B. Kamiński, B. Pankratz, P. Pra lat, and F. Théberge, Modularity of the ABCD Random
Graph Model with Community Structure, arXiv:2203.01480, 2022.

[4] V.D. Blondel, J-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of com-
munities in large networks. Journal of statistical mechanics: theory and experiment,
2008(10):P10008, 2008.

[5] Staudt C. L., Sazonovs A., and Meyerhenke H.: NetworKit: A Tool Suite for Large-scale
Complex Network Analysis, (2015)

[6] Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of labelled
regular graphs. European Journal of Combinatorics, 1, 311–316 (1980)

[7] Chung, F. and Lu, L.: Complex Graphs and Networks. American Mathematical Society
(2006)

[8] Kolda, T. G., Pinar, A., Plantenga, T., and Seshadhri, C.: A scalable generative graph
model with community structure. SIAM Journal on Scientific Computing, 36(5), C424–
C452 (2014)

[9] B. Kamiński, P. Pra lat and F. Théberge, Mining Complex Networks, Chapman and
Hall/CRC (2021).

8https://www.soscip.org/

18

https://www.soscip.org/

[10] Watts, Duncan J., and Steven H. Strogatz. ”Collective dynamics of ‘small-world’networks.”
nature 393, no. 6684 (1998): 440-442.

[11] L. Freeman. “A set of measures of centrality based on betweenness”. Sociometry (1977).

[12] L. Freeman. “Centrality in social networks: conceptual clarification”. Soc. Networks 1
(1979), 215–239.

[13] S. Brin and L. Page. “The anatomy of a large-scale hypertextual Web search engine”.
Comput. Networks ISDN Systems 30(1-7) (1998), 107–117.

[14] R. Pastor-Satorras, A. Vazquez, A. Vespignani. “Dynamical and correlation properties of
the Internet”. Phys. Rev. Lett. 87 (2001), 258701.

[15] M.E.J. Newman. “Assortative mixing in networks”. Phys. Rev. Lett. 89 (2002), 208701.

[16] M.E.J. Newman. Networks: An introduction. Oxford University Press (2010).

[17] M.E.J. Newman, M. Girvan. “Finding and evaluating community structure in networks”.
Phys. Rev. E. 2004; 69: 026–113.

[18] Bezanson, J., Edelman, A., Karpinski, S., and Shah, V.: Julia: A fresh approach to numer-
ical computing. SIAM Review, 69, 65–98 (2017).

[19] B. Kamiński, V. Poulin, P. Pra lat, P. Szufel, and F. Théberge, Clustering via Hypergraph
Modularity, PLoS ONE 14(11): e0224307.

[20] T. Kumar, S. Vaidyanathan, H. Ananthapadmanabhan, S. Parthasarathy and B. Ravin-
dran, A New Measure of Modularity in Hypergraphs: Theoretical Insights and Implications
for Effective Clustering. In: Cherifi H., Gaito S., Mendes J., Moro E., Rocha L. (eds) Com-
plex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in
Computational Intelligence, vol 881. Springer, Cham.

[21] B. Kamiński, P. Pra lat and F. Théberge, Community Detection Algorithm Using Hyper-
graph Modularity, Proceedings of the 9th International Conference on Complex Networks
and their Applications, Studies in Computational Intelligence 943, Springer, 2021, 152–163.

[22] Maria Chiara Angelini, Francesco Caltagirone, Florent Krzakala, and Lenka Zdeborová.
Spectral detection on sparse hypergraphs. In 2015 53rd Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pages 66–73. IEEE, 2015.

[23] Massri, M., Miklos, Z., Raipin, P. and Meye, P., 2022, March. RTGEN: A Relative Temporal
Graph GENerator. In DATAPLAT workshop at the EDBT/ICDT 2022 Joint Conference.

[24] Gene M. Amdahl. 1967. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, spring joint computer
conference (AFIPS ’67 (Spring)). Association for Computing Machinery, New York, NY,
USA, 483–485. https://doi.org/10.1145/1465482.1465560

[25] Fisher, Ronald A., and Frank Yates. Statistical tables for biological, agricultural and med-
ical research. Oliver and Boyd Ltd, London, 1943.

19

	Introduction
	The Design of the ABCDe Generator
	Building Blocks of the Algorithm
	Structure of the ABCD Graph
	Approach to Parallelization of the ABCD Generator

	Properties of the Generated Graphs
	Experiment Setup
	Results
	Clustering Coefficients
	Node Centralities
	Degree Correlation
	Community Edges and Modularity
	Shortest Paths

	Speed Tests of Graph Generation
	Experiment Setup
	Results
	Speed-up with Multi-thread ABCDe
	Comparing Multi-thread ABCDe and LFR—Varying n
	Comparing Multi-thread ABCDe and LFR—Varying

	Conclusions and Future Directions
	Acknowledgment

