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Abstract. Let G be a graph in which each vertex initially has weight 1. In each step,
the unit weight from a vertex u to a neighbouring vertex v can be moved, provided
that the weight on v is at least as large as the weight on u. The unit acquisition
number of G, denoted by au(G), is the minimum cardinality of the set of vertices with
positive weight at the end of the process (over all acquisition protocols). In this paper,
we investigate the Erdős-Rényi random graph process (G(n,m))Nm=0, where N =

(
n
2

)
.

We show that asymptotically almost surely au(G(n,m)) = 1 right at the time step the
random graph process creates a connected graph. Since trivially au(G(n,m)) ≥ 2 if
the graphs is disconnected, the result holds in the strongest possible sense.

1. Introduction

Gossiping and broadcasting are two well studied problems involving information dis-
semination in a group of individuals connected by a communication network [8]. In the
gossip problem, each member has a unique piece of information which she would like to
pass to everyone else. In the broadcast problem, there is a single piece of information
(starting at one member) which must be passed to every other member of the network.
These problems have received attention from mathematicians as well as computer scien-
tists due to their applications in distributed computing [3]. Gossiping and broadcasting
are respectively known as “all-to-all” and “one-to-all” communication problems. In this
paper, we consider the problem of acquisition, which is a type of “all-to-one” problem.

Suppose each vertex of a graph begins with a weight of 1 (this can be thought of
as the piece of information starting at that vertex). A total acquisition move is a
transfer of all the weight from a vertex u onto a neighbouring vertex v, provided that
immediately prior to the move, the weight on v is at least the weight on u. Suppose
a number of total acquisition moves are made until no such moves remain. Such a
maximal sequence of moves is referred to as an acquisition protocol and the vertices
which retain positive weight after an acquisition protocol is called a residual set.
Note that any residual set is necessarily an independent set. Given a graph G, we are
interested in the minimum possible size of a residual set and refer to this number as
the total acquisition number of G, denoted at(G).

Other models allow more relaxed consolidation moves and do not require moving
all the weight from a vertex u onto a neighbouring vertex v (but it is still required
that immediately prior to the move, the weight on v is at least the weight on u). A
unit acquisition move transfers one unit of weight and a fractional acquisition
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move allow a fractional (non-integer) amounts of weight to be transferred. Hence, in
addition to the total acquisition number at(G), the corresponding parameters are the
unit acquisition number au(G) and the fractional acquisition number af (G).
Note that unit and then fractional acquisition provide more flexibility in choosing moves
than total acquisition does; thus

af (G) ≤ au(G) ≤ at(G). (1)

The restriction to acquisition moves can be motivated by the so-called “smaller to
larger” rule in disjoint set data structures. For example, in the UNION-FIND data
structure with linked lists, when taking a union, the smaller list should always be
appended to the longer list. This heuristic improves the amortized performance over
sequences of union operations.

Examples: In order to warm-up with this graph parameter, note that an acquisition
protocol for a cycle C4k (for some k ∈ N) that leaves a residual set of every fourth
vertex is the best one can do in any of the three variants of the game; see Figure 1.
Therefore, af (C4k) = au(C4k) = at(C4k) = k.

1 1 1 1 1 1 1 1

2 2 2 20 0 0 0
→ →← ←

4 40 0 0 0 0 0
→ →

Figure 1. The acquisition moves for a fragment of a cycle C4k that leave
a residual set of size k.

An example of a graph in which inequality (1) between the unit acquisition and the
total acquisition is strict is given in Figure 2. Indeed, the graph was proposed in [15]
as an example of a minimal graph with unit acquisition number 1. Next we argue that
the total acquisition number is 2. In order to see it, note that the weight of all degree
1 vertices need to move to the adjacent vertices, as otherwise the residual set would be
of size at least 2. But after reducing the weight of the degree 1 vertices to 0, we obtain
exactly one vertex of weight 1. All legal moves associated with this vertex disconnect
the sub-graph induced by vertices with positive weights, implying that all acquisition
protocols yield residual sets of size at least 2. A total acquisition protocol yielding a
residual set of size two is depicted in Figure 2.
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Figure 2. A total acquisition protocol yielding a residual set of size 2.
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The parameter at(G) was introduced by Lampert and Slater [11] and subsequently
studied in [16, 12, 13, 14]. For work on game variations of the parameter and variations
where acquisition moves need not transfer the full weight of vertex, see [18, 15, 17]. Since
in this paper we focus on random structures, we do not comment on these interesting
but deterministic results.

Randomness often plays a part in the study of information dissemination problems,
usually in the form of a random network or a randomized protocol—see, for exam-
ple, [4, 5, 6]. Before we summarize what is known for the total acquisition number
from the perspective of random structures, let us introduce the two models we consider
in this paper. The binomial random graph G(n, p) is a distribution over the class

of graphs with vertex set [n] = {1, 2, . . . , n} in which every pair {i, j} ∈
(
[n]
2

)
appears

independently as an edge in G with probability p. Note that p = p(n) may (and usu-
ally does) tend to zero as n tends to infinity. We will also consider the Erdős-Rényi
random graph process, which is a stochastic process that starts with n vertices and
no edges, and at each step adds one new edge chosen uniformly at random from the set
of missing edges. Formally, let N =

(
n
2

)
and let e1, e2, . . . , eN be a random permutation

of the edges of the complete graph Kn. The graph process consists of the sequence of
random graphs (G(n,m))Nm=0, where G(n,m) = ([n], Em) and Em = {e1, e2, . . . , em}. It
is clear that G(n,m) is a graph taken uniformly at random from the set of all graphs
on n vertices and m edges. Finally, we say that an event in a probability space holds
asymptotically almost surely (a.a.s.), if its probability tends to one as n goes to
infinity. (See, for example, [10] and [1] for more details about random graphs.)

The total acquisition number of G(n, p) was studied in [2]. In particular, LeSaulnier
et al. [12] asked for the minimum value of p = p(n) such that a.a.s. at(G(n, p)) = 1.
In [2] it was proved that p = log2 n/n ≈ 1.4427 lnn/n is a sharp threshold for this
property. Moreover, in the same paper it was also proved that almost all trees T satisfy
at(T ) = Θ(n), confirming a conjecture of West. In [9], random geometric graphs
G(n, r) were studied in which n vertices are distributed uniformly at random in [0,

√
n]2

and two vertices being adjacent if and only if their distance is at most r. It was proved
that asymptotically almost surely at(G(n, r)) = Θ(n/(r log2 r)

2) for the whole range of
r = r(n) ≥ 1 such that r log2 r ≤

√
n. Another way randomness can come into the

picture is when initial weights are generated at random. This direction, in particular
the case where vertex weights are initially assigned according to independent Poisson
distributions of intensity 1, was considered in [7].

In this paper, we investigate the unit acquisition of G(n, p). It follows from (1)
and the results from [2] that a.a.s. au(G(n, p)) = at(G(n, p)) = 1, provided that p ≥
(1 + ε) log2 n/n for some ε > 0. However, perhaps surprisingly, it turns out that
p = lnn/n is a sharp threshold for au(G(n, p)) = 1—see Corollary 1.2. As a result, this
threshold coincides with the threshold for connectivity, which is a trivial lower bound
for our property; indeed, if G is disconnected, then au(G) ≥ af (G) > 1. In fact, we
prove the strongest possible result, that is, we show that au(G(n, p)) = 1 holds right at
the time step the random graph process creates a connected graph—see Theorem 1.1.
On the other hand, it follows from [2] that at this very moment, a.a.s. at(G(n, p)) > n0.3
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and so there is a drastic difference between the unit acquisition number and the total
acquisition counterpart.

Here is our main result.

Theorem 1.1. The following property holds a.a.s. Let M be a random variable defined
as follows:

M = min{m : G(n,m) is connected}.
Then,

af (G(n,M)) = au(G(n,M)) = 1.

Let ω = ω(n) be any function tending to infinity as n → ∞. It is well known that
a.a.s. m− ≤M ≤ m+, where

m− =
n

2

(
lnn− ω

)
and m+ =

n

2

(
lnn+ ω

)
.

The two models, G(n, p) and G(n,m), are in many cases asymptotically equivalent,
provided

(
n
2

)
p is close to m. In particular, we get immediately the following corollary.

Corollary 1.2. Let ω = ω(n) be any function tending to infinity as n→∞. Let

p− =
lnn− ω

n
and p+ =

lnn+ ω

n
.

• If p ≤ p−, then, a.a.s. au(G(n, p)) ≥ af (G(n, p)) ≥ 2.
• If p ≥ p+, then, a.a.s. au(G(n, p)) = af (G(n, p)) = 1.

The paper is structured as follows. In Section 2, we introduce the notation and then
prove some useful properties of the G(n, p) model. The following section, Section 3, is
devoted to the proof of the main result.

2. Notation and Preliminaries

In this section we give a few preliminary results that will be useful for the proof of
our main result, Theorem 1.1. First, we introduce standard asymptotic notation, then
we state a specific instance of Chernoff’s bound that we will find useful. Finally, we
prove some simple and well-known properties that G(n, p) has that will be used in the
proof of the main result.

2.1. Notation and Convention. Given two functions f = f(n) and g = g(n), we
will write f = O(g) if there exists an absolute constant c such that f ≤ cg for all n,
f = Ω(g) if g = O(f), f = Θ(g) if f = O(g) and f = Ω(g), and we write f = o(g)
or f � g if the limit limn→∞ f/g = 0. In addition, we write f = ω(g) or f � g if
g = o(f), and unless otherwise specified, ω will denote an arbitrary function that is
ω(1), assumed to grow slowly. We also will write f ∼ g if f = (1 + o(1))g.

Through the paper, as typical in the field of random graphs, for expressions that
clearly have to be an integer, we round up or down but do not specify which: the choice
of which does not affect the argument.
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2.2. Chernoff’s Bound. We will use the following consequence of Chernoff’s bound
(see, for example, [10] or [1]).

Lemma 2.1. If X is a Binomial random variable Bin(k, q) with expectation µ = kq,
and 0 < ε < 1, then

Pr[X < (1− ε)µ] ≤ exp

(
−ε

2µ

2

)
,

and if ε > 0, then

Pr [X > (1 + ε)µ] ≤ exp

(
− ε2µ

2 + ε

)
.

2.3. Typical Properties. Let ω = ω(n) be any function tending to infinity as n→∞
arbitrarily slowly. In particular, for convenience we will assume that ω = o(ln lnn).
Recall that p− = p−(n) = (lnn− ω)/n.

Let us first show that the maximum degree ∆ of G(n, p−) is not too far from the
average degree that is asymptotic to np− ∼ lnn. This is a well-known result but we
prove it for completeness.

Lemma 2.2. A.a.s. ∆(G(n, p−)) ≤ 4 lnn.

Proof. Let v be any vertex in G(n, p−). Since deg(v) is the binomial random variable
Bin(n − 1, p−) with expectation µ = (n − 1)p− ∼ lnn, we get from Chernoff’s bound
applied with ε = 4 lnn/µ− 1 ∼ 3 that

Pr
(

deg(v) > 4 lnn
)

= Pr
(

Bin(n− 1, p) > (1 + ε)µ
)

≤ exp

(
−
(

9

5
+ o(1)

)
lnn

)
= o(n−1).

Hence the expected number of vertices of degree larger than 4 lnn is o(1) and the lemma
holds by Markov’s inequality. �

We will also need an upper bound for the number of vertices of a given degree
k ∈ N ∪ {0}. Note that k is fixed, not a function of n.

Lemma 2.3. Let k ∈ N ∪ {0}. A.a.s. the number of vertices of degree k in G(n, p−) is
at most (lnn)k+o(1) ≤ (lnn)k+1.

Proof. Let us concentrate on any vertex v ∈ [n]. Since by Taylor expansion 1 − p =
exp(−p+O(p2)), we get that

Pr
(

deg(v) = k
)

=

(
n− 1

k

)
pk−

(
1− p−

)n−1−k
∼ nk

k!

(
lnn

n

)k
exp

(
−p−n+O(p2−n)

)
∼ (lnn)k

k!
exp (−(lnn− ω))

=
(lnn)keω

k!n
.
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Hence, the expected number of vertices of degree k is asymptotic to (lnn)keω/k!. It
follows from Markov’s inequality that a.a.s. the number of vertices of degree k is at
most (lnn)keωω/k! = (lnn)k+o(1) ≤ (lnn)k+1, since it is assumed that ω = o(ln lnn).
The desired property holds. �

3. The proof of the main result

Let us fix δ = 0.06. This parameter is carefully tuned for the argument to hold. It
cannot be too large nor too small. We will highlight the two places in the proof where
the specific numerical value matters. Let ω = ω(n) be any function tending to infinity
(arbitrarily slowly) as n→∞. In particular, as before, for convenience we will assume
that ω = o(ln lnn).

Recall that p− = p−(n) = (lnn−ω)/n. It is well-known that G(n, p−) is disconnected
a.a.s. In fact, it is known that a.a.s. G(n, p−) has a giant component that consists of
almost all vertices; the remaining components are isolated vertices. (This fact will also
follow from our proof.) The two models, G(n, p) and G(n,m), can be coupled such that
G(n, p−) is a subgraph of G(n,M). It is easier to work with G(n, p−) rather than with
G(n,M) since in G(n, p−) edges occur independently. As a result, we will mostly use
the former moving to the latter only for a brief moment to deal with isolated vertices
that are present in G(n, p−).

3.1. Big Picture. Our strategy is to build a rooted spanning tree of the giant com-
ponent of G(n, p−). We do it in a few phases. We first build a tree that spans roughly
(1− δ)n vertices that form set T (Subsection 3.2). The remaining vertices form set R
that needs to be carefully partitioned to prepare it to be attached to the tree (Sub-
section 3.3). At this point we move our attention to isolated vertices (Subsection 3.4).
We continue the Erdős-Rényi random graph process ignoring all incoming edges unless
they are incident to one of the isolated vertices. At time M when G(n,m) becomes
connected, all isolated vertices from G(n, p−) are adjacent to at least one neighbour in
the giant component of G(n, p−). At this point, we come back to building the spanning
tree of the giant component of G(n, p−) and carefully attach the remaining vertices to
the tree (Subsection 3.5). The rooted spanning tree of G(n,M) is then formed and it
remains to show that there exists an acquisition protocol that uses only edges of the
tree and results in a residual set consisting of the root (Subsection 3.6).

The main difference between the tree T that we build here for the unit acquisition
number and the one used in [2] to deal with the total acquisition number is that there
is no need for the vertices close to the root to be of degree close to log2 n. If one
manages to create a tree with the property that most vertices at level k (with the root
being on top) have at least k leaves as their children, then the weight from these leaves
can be moved so that most vertices at level k have weight equal to k. This creates a
platform for other vertices to shift their weight (one unit at a time) all the way to the
root. We will create a tree of height asymptotic to lnn/ ln lnn allowing us to construct
it for sparse random graphs with average degree asymptotic to lnn. This property,
on one hand, simplifies the protocol but the presence of low degree vertices bring new
challenges. As a result, the construction is quite careful and tedious but everything will
become clear in Subsection 3.6.
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The argument is fairly long and in a few places quite delicate. In order to help the
reader follow it, we highlight the most important conclusions as independent claims.

3.2. Building a tree on at least (1 − δ)n vertices. Let us start with any vertex
v0 in G(n, p−) that will become the root of the final spanning tree. We will apply the
following “breadth first search” (BFS) type algorithm to build a tree. The vertex
set [n] will always be partitioned into two sets: vertices that are discovered and non-
discovered. We initiate the process by putting v0 into the queue Q and assigning
the status discovered to v0; the remaining vertices are non-discovered. In each step
of the process, we remove vertex v from the queue Q and expose edges from v to all
non-discovered vertices. These new neighbours of v (non-discovered vertices at this
point) are called children of v and v itself is a parent for them. We will additionally
label v as good if it has at least δ

2
lnn children; otherwise, v is labelled as bad. If

vertex v is good, then we arbitrarily select δ
4

lnn of its children and label them as good

whiskers. The remaining children (there are at least δ
4

lnn of them) are put into the
queue Q. After that all children of v change their status to discovered. On the other
hand, if vertex v is bad, then we label all of its children as bad whiskers and change
their status to discovered. Note that whiskers (regardless whether good or bad) are not
put into the queue and so they will become leaves in the tree. We continue the process
until the number of non-discovered vertices drops below δn or Q becomes prematurely
empty.

Consider any vertex v that was removed from the queue Q at some point of the
process. Since during the entire process the number of non-discovered vertices is always
at least δn, the number of children of v is stochastically bounded from below by the
binomial random variable Bin(δn, p−) with expectation µ ∼ δnp− ∼ δ lnn. It follows
from Chernoff’s bound applied with ε = 1− δ lnn/(2µ) ∼ 1/2 that

Pr(v is bad) ≤ Pr

(
Bin(δn, p−) <

δ

2
lnn

)
= Pr

(
Bin(δn, p−) < (1− ε)µ

)
≤ exp

(
−
(

1

8
+ o(1)

)
µ

)
= exp

(
−
(
δ

8
+ o(1)

)
lnn

)
≤ n−δ/9. (2)

In particular, since n−δ/9 = o(1), we get the following observation.

Claim 3.1. A.a.s. the root v0 is good.

Consider now any good vertex v. By Lemma 2.2, we may assume that v has at most
4 lnn children. We will use (2) and the fact that events “w is bad” associated with
children of v are all independent (they depend on the corresponding binomial random
variables associated with disjoint sets of pairs of vertices). We get that the probability
that v has at least d10/δe bad children is at most(

4 lnn

d10/δe

)
Pr(v is bad)d10/δe ≤

(
4e lnn

d10/δenδ/9

)d10/δe
= n−d10/δe δ/9+o(1) ≤ n−10/9+o(1) = o(n−1).
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Trivially, the number of good vertices is at most n. We get that the expected number
of good vertices with many bad children tends to zero and so the following claim holds.

Claim 3.2. A.a.s. no good vertex has at least d10/δe bad children.

Recall that, by definition, each good vertex has at least δ
2

lnn children but only δ
4

lnn
of them are good whiskers. Hence, by Claim 3.2, we may assume that all good vertices
have at least δ

4
lnn−O(1) ≥ δ

5
lnn good children (unless the BFS process stops naturally

once (1− δ) fraction of all vertices are discovered). Combining it with Claim 3.1 we get
the next observation.

Claim 3.3. A.a.s. the BFS process does not finish prematurely, that is, the queue Q
never becomes empty and the process ends naturally once the number of non-discovered
vertices drops below δn.

It follows from this claim that when the BFS process stops the queue Q is not empty.
We will label the vertices in the queue as good whiskers. For convenience, let us compile
a list of properties of the tree we just created.

Definition 3.4. The vertex set [n] is partitioned into two sets: T (vertices of the BFS
tree) is the set of discovered vertices and R (remaining vertices) is the set of non-
discovered vertices.

Claim 3.5. The following properties hold a.a.s.:

(i) |T | = (1− δ)n+O(lnn) ∼ (1− δ)n.
(ii) |R| = δn+O(lnn) ∼ δn.
(iii) There are O(n1−δ/9) = o(n) bad vertices.
(iv) There are O(n1−δ/9 lnn) = o(n) bad whiskers.
(v) There are Θ(n/ lnn) = o(n) good vertices. Each good vertex has at least δ

4
lnn

good whiskers.
(vi) There are (1− δ + o(1))n ∼ |T | good whiskers, that is, almost all vertices of T

are good whiskers.
(vii) All edges between good/bad vertices and R are exposed (and no edge was found).

(viii) No edge between good/bad whiskers and R is exposed.
(ix) The height of the rooted tree on vertices from T has height (1+o(1)) lnn/ ln lnn.

Since a.a.s. the maximum degree in G(n, p−) is at most 4 lnn (Lemma 2.2), when the
process stops the number of non-discovered vertices drops below δn but it is very close
to that value. Part (i) and (ii) follow. In order to see part (iii), note that by (2), the
expected number of bad vertices is at most n1−δ/9 and it follows from Chernoff’s bound
that a.a.s. it is at most, say, 2n1−δ/9. Part (iv) follows again from the observation on the
maximum degree. Since the number of bad vertices/whiskers is negligible, almost all
vertices of T are either good vertices or good whiskers. By definition, each good vertex
has at least δ

4
lnn good whiskers. Combining these two observations, we get that in fact

almost all vertices of T are good whiskers, part (vi), and so there are Θ(n/ lnn) good
vertices, part (v). Parts (vii) and (viii) follow immediately from the definition of the
process. Finally, let us estimate the height of the tree on vertices from T . As pointed
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out earlier, we may assume that each good vertex has at least δ
5

lnn good children
(except the last few levels of the tree). Hence, the height of the tree is at most

lnn

ln( δ
5

lnn)
+O(1) =

lnn

ln lnn− ln(5/δ)
+O(1) ∼ lnn

ln lnn
.

On the other hand, since the maximum degree in G(n, p−) is a.a.s. 4 lnn, we get an
asymptotic matching lower bound and so part (ix) follows.

3.3. Partitioning vertices of R. It will be very important in which order we expose
the remaining edges of G(n, p−). Moreover, we will often expose only partial informa-
tion; for example, we may want to reveal the degree of a given vertex without exposing
where its neighbours actually are.

For each vertex v ∈ R we expose degT (v), the number of neighbours in T . If
degT (v) ≥ 1−δ

1.01
lnn, then v is called high degree vertex. If degT (v) ≤ d10/δe, then v

is called low degree vertex. The remaining vertices of R are called medium degree
vertices. By Claim 3.5 (vi–viii), degT (v) is the binomial random variable Bin(w, p−),
where w ∼ (1− δ)n is the number of whiskers in T . By Chernoff’s bound applied with
µ = wp− ∼ (1− δ) lnn and

ε = 1− (1− δ) lnn

1.01µ
∼ 1− 1

1.01
=

0.01

1.01

we get that for any v ∈ R

Pr
(

degT (v) <
1− δ
1.01

lnn
)

= Pr
(

Bin(w, p−) < (1− ε)µ
)
≤ n−(1−δ)/10

5

.

Hence, the expected number of vertices of medium or low degree is at most n1−(1−δ)/105 .
Let us now fix k ∈ N ∪ {0}. For any v ∈ R,

Pr
(

degT (v) = k
)

=

(
w

k

)
pk−(1− p−)w−k

∼
(
(1− δ)n

)k
k!

(
lnn

n

)k
exp

(
−(1 + o(1))

lnn

n
(1− δ)n

)
= n−1+δ+o(1).

Hence, the expected number of vertices of low degree is at most
∑d10/δe

k=0 nδ+o(1) = nδ+o(1).
Combining the two observations together, we get the following claim by Markov’s in-
equality.

Claim 3.6. The following properties hold a.a.s.:

(i) At most n1−(1−δ)/106 vertices in R are of medium or low degree.
(ii) At most nδ+o(1) vertices in R are of low degree.

Vertices of high and medium degree do not cause any problems, they can be appro-
priately attached to the tree (see Subsection 3.5). However, we need to pay attention to
low degree vertices. For each low degree vertex v ∈ R we expose degR(v), the number
of neighbours in R.
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For each low degree vertex v ∈ R with degR(v) ≥ 107/(1 − δ), we expose all neigh-
bours in R. By Claim 3.6 (i), the probability that none of them is of high degree is at
most (

n1−(1−δ)/106

|R|

)107/(1−δ)

=

(
n−(1−δ)/10

6

(δ + o(1))

)107/(1−δ)

= O(n−10) = o(n−1).

Hence, by Markov’s inequality, a.a.s. each low degree vertex v of this type has a high
degree neighbour that we call its parent and denote it by P (v). Vertex v itself is called
dangerous.

The remaining low degree vertices have less than 107/(1− δ) neighbours in R and at
most d10/δe neighbours in T (by the definition of being of low degree). Hence, their
degrees are at most C − 2, where C = d10/δe + 1 + 107/(1 − δ). By Lemma 2.3, we

may assume that there are at most
∑C−2

k=0 (lnn)k+1 ≤ (lnn)C of them.
If v has at least one neighbour in R, then we simply expose the location of that

neighbour, call it a parent of v (P (v)), and v itself becomes dangerous. Since the
expected number of parents that are not of high degree is at most

(lnn)C · n
1−(1−δ)/106

|R|
= n−(1−δ)/10

6+o(1) = o(1),

a.a.s. all parents are of high degree.
Suppose now that v has no neighbour in R but has at least one neighbour in T .

As before, we simply expose the location of that neighbour and attach v to the tree
through that neighbour that, as usual, is called a parent of v and denoted P (v). There
are two things that need to be checked. First, observe that by Claim 3.5 (iv) and (vi),
the expected number of vertices that get attached to some bad whisker is at most

(lnn)C · O(n1−δ/9 lnn)

|T |
≤ n−δ/9+o(1) = o(1).

Hence, a.a.s. all vertices are attached to good whiskers. Moreover, the expected number
of good vertices in T with at least 2 of its good whiskers attached to some low degree
vertex is at most

n ·
(

(lnn)C

2

)
·
(

4 lnn

(1− δ + o(1))n

)2

= n−1+o(1) = o(1).

Indeed, there are at most n choices for good vertices, at most
(
(lnn)C

2

)
choices for low

degree vertices, and 4 lnn
(1−δ+o(1))n is an upper bound for the probability that a given low

degree vertex is adjacent to a whisker of the selected good vertex.

Combining all observations together we arrive with the following claim.

Claim 3.7. A.a.s. the following properties hold. Each vertex v in R that is of low
degree satisfies one of the following properties:

(i) v has a parent P (v) in R that is of high degree.
(ii) v has a parent P (v) in T that is a good whisker.

(iii) v is an isolated vertex in G(n, p−).
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Moreover, good vertices have at most one of their good whiskers attached to some low
degree vertex.

3.4. Dealing with Isolated Vertices. Low degree vertices in R that are not isolated
are already attached to their parents. Dangerous vertices have their parents in R that
are of high degree. The remaining low degree vertices have their parents already in
T . It is time to deal with isolated vertices that form a set I ⊆ R that are present in
G(n, p−). By Lemma 2.3, we may assume that |I| ≤ (lnn)o(1).

Recall that the binomial random graph and the Erdős-Rényi process are coupled
such that G(n, p−) ⊆ G(n,M). We may then simply start the process from G(n, p−)
and continue until we reach G(n,M), that is, when the last isolated vertex disappears.
We ignore all incoming edges unless they are adjacent to one of the vertices in I. If
one of the endpoints of an edge is v ∈ I that is still isolated, then the other endpoint
becomes a parent P (v) of v. Since v is isolated, its parent is a random vertex taken
uniformly at random from [n] \ {v}. The expected number of parents created this way
that are either bad whiskers in T or medium/low degree in R is, by Claim 3.5 (iv) and
Claim 3.6 (i), at most

(lnn)o(1) · O(n1−δ/9 lnn) +O(n1−(1−δ)/106)

n− 1
≤ n−min{δ/9,(1−δ)/106}+o(1) = o(1).

We get the following claim by Markov’s inequality.

Claim 3.8. A.a.s. the following properties hold. There are at most (lnn)o(1) isolated
vertices in G(n, p−). Each isolated vertex v has a parent P (v) identified that is either a
good whisker in T or a high degree vertex in R.

As usual, if an isolated vertex v has a parent in R, then it is called dangerous.

3.5. Connecting Remaining Vertices. We are now back to building a spanning
rooted tree of the giant component of G(n, p−). All low degree vertices in R are already
dealt with. It remains to attach high and medium degree vertices to T . They need to
be appended to some good whisker but we will also need to make sure that no good
vertex has all of its good whiskers selected by some vertex in R. Hence, we cannot
blindly connect all remaining vertices in R to some good whiskers (as it would create
a problem a.a.s.) but rather we need to do it carefully by selecting a perfect matching
between high and medium degree vertices in R and pairs of good whiskers. Moreover,
parents of dangerous vertices will have to be attached to some special places so we need
to put them aside for a moment and deal with them later. The reason for all of these
restrictions will become clear in Subsection 3.6.

Let R ⊆ R be the set of high and medium degree vertices in R that are not parents
of any dangerous vertices. Our goal is to attach all vertices from R to good whiskers
in T . By definition, each vertex in R has at least d10/δe + 1 neighbours in T . We
expose the information whether these neighbours are bad or good whiskers but we do
not expose their exact locations yet. The probability that a given vertex v ∈ R has at
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least d10/δe neighbours being bad whiskers is, by Claim 3.5 (i) and (iv)(
d10/δe+ 1

d10/δe

)(
O(n1−δ/9 lnn)

|T |

)d10/δe
= O(1) ·

(
n−δ/9 lnn

)d10/δe
= n−(δ/9)d10/δe+o(1) ≤ n−10/9+o(1) = o(n−1).

Hence, we get the next claim by Markov’s inequality.

Claim 3.9. A.a.s. each vertex in R ⊆ R has at least two neighbours in T that are good
whiskers.

Now, it is time to connect vertices from R to good whiskers that are partitioned into
buckets. Every bucket consists of two good whiskers (except possibly one bucket, if
the number of good whiskers is odd). To get the desired partition, we investigate good
vertices, one by one, and assign their good whiskers into buckets, leaving at most one
good whisker unassigned per good vertex. Then, we arbitrarily put the remaining good
whiskers into buckets leaving at most one good whisker that will have its own bucket.

We expose the two neighbours of vertices in R that are guaranteed to exist by
Claim 3.9. Our goal is to show that there exists a matching between set R and buckets
that saturates R. In order to do that, we prove that the Hall’s condition (both neces-
sary and sufficient condition for the desired perfect matching to exist) holds a.a.s.: for
all X ⊆ R, we have |N(X)| ≥ |X|, where N(X) is the set of buckets the two edges
from X are incident to.

The Hall’s condition fails if, for some value of k such that 2 ≤ k ≤ |R|, there exists
a set X ⊆ R of k vertices and a set Y of k − 1 buckets such that all neighbours of
X are in Y , that is, N(X) ⊆ Y . By Claims 3.5 (ii), 3.6 (i), and 3.8, we may assume

that |R| ∼ |R| ∼ δn. Hence, there are
(
(δ+o(1))n

k

)
choices for X. By Claim 3.5 (vi),

we may assume that there are
(
((1−δ)/2+o(1))n

k−1

)
choices for Y . The probability that both

neighbours of a given vertex in X are in Y is at most (2(k − 1)/((1 − δ + o(1))n))2.
Hence, the expected number of sets X ⊆ R of size k for which the condition fails is at
most

ξk =

(
(δ + o(1))n

k

)(
(1−δ

2
+ o(1))n

k − 1

)(
2(k − 1)

(1− δ + o(1))n

)2k

≤
(
e(δ + o(1))n

k

)k(e(1−δ
2

+ o(1))n

k − 1

)k−1(
2(k − 1)

(1− δ + o(1))n

)2k

≤ 1

n

(
2e2δ

1− δ
+ o(1)

)k
(k − 1)k+1

kk
.

Observe that
(k − 1)k+1

kk
= (k − 1)

(
1− 1

k

)k
= O(k),

and so

ξk =
O(k)

n

(
2e2δ

1− δ
+ o(1)

)k
.
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Since δ = 0.06, we get that (2e2δ)/(1 − δ) < 0.95. (This is the first time when the
numerical value of δ matters. For the argument to hold, it has to be small enough.)
It follows that the expected number of sets X ⊆ R of any size for which the condition
fails is at most

|R|∑
k=2

ξk =

|R|∑
k=2

O(k)

n
0.95k ≤

(lnn)2∑
k=2

O(k)

n
+

|R|∑
k=(lnn)2

O
(

0.95(lnn)2
)

= o(1).

Hence, by Markov’s inequality, a.a.s. the Hall’s condition holds and we get the next
claim.

Claim 3.10. A.a.s. there exists a matching between set R and the set of buckets that
saturates R.

We connect vertices in R to the tree using the edges of the matching. Good whiskers
that are associated with vertices in R are called lucky. Since it is a matching saturating
R, the number of lucky whiskers is equal to |R| ∼ δn. It remains to connect parents of
dangerous vertices (that are in R) to the tree. By Claim 3.7 and 3.8, these parents are
of high degree, that is, they have at least 1−δ

1.01
lnn neighbours in T . Since dangerous

vertices are of low degree, by Claim 3.6 (ii) there are at most nδ+o(1) parents to deal
with. Our goal is to connect them to lucky whiskers. As usual, the reason for this will
be clear in Subsection 3.6.

We expose edges from parents of dangerous vertices to T . The expected number of
them with no lucky neighbour is at most

nδ+o(1)
(

1− (1 + o(1))
|R|
|T |

) 1−δ
1.01

lnn

= exp

((
δ +

1− δ
1.01

· ln
(

1− δ

1− δ

)
+ o(1)

)
lnn

)
≤ exp(−0.001 lnn) = o(1).

(This is the second time when the numerical value of δ matters. For the argument
to hold, δ has to be large enough. A careful reader probably noticed that a typical
vertex in R has no lucky neighbour with probability (1− p−)|R| = n−δ+o(1) and so the
argument would not work if dangerous vertices simply select any vertex from R as a
parent. That was the reason we carefully selected them to be of high degree.) As usual,
Markov’s inequality is enough to get the last claim. This concludes our tedious process
of constructing the rooted tree.

Claim 3.11. A.a.s. parents of dangerous vertices are attached to lucky whiskers in T .

3.6. Acquisition Protocol on the Tree. In previous subsections, we created a rooted
spanning tree T that is a subgraph of G(n,M). Our last task is to use edges of T to
perform an acquisition protocol that yields a residual set consisting only of the root v0
of T . It will imply that au(G(n,M)) ≤ au(T ) = 1 and so it will finish the proof.

Since tree T is rooted at vertex v0 we may introduce levels depending on the distance
from the root. Whiskers that are at the greatest distance from v0 are on level 3 and the
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closer to the root vertices are, the larger the corresponding level is. Let us summarize
the structure of the tree before we prove that its unit acquisition number is equal to 1.
See Figure 3 for an illustration.

(i) The root, vertex v0, is at the highest level h ∼ lnn/ ln lnn. (By Claim 3.5 (ix).)
(ii) All good vertices are on levels between 4 and h.
(iii) All good vertices have at least ( δ

8
+ o(1)) lnn � h children that are leaves.

(Indeed, by definition each good vertex has at least δ
4

lnn good whiskers. By
Claim 3.7, at most one of them is attached to a low degree vertex. By Claim 3.8,
at most (lnn)o(1) of them are attached to vertices that were isolated in G(n, p−).
By Claim 3.10, at most δ

8
lnn+ 1 of them are lucky, that is, attached to vertices

in R.)
(iv) All bad vertices are either leaves or their children are leaves.
(v) All vertices in R are at distance 1 or 2 from some good whisker. Those that

are distance 2 (dangerous vertices) are connected through their parents to some
good and lucky whiskers. By definition, that lucky whisker has at least one leaf
attached.

The acquisition protocol works as follows. Because of properties (i-iii), we may move
the weight from some children of good vertices that are leaves so that each good vertex
on level k has weight equal to k. If a bad vertex has at least one leaf attached, then
we move one unit from an arbitrary leaf to this bad vertex. By property (iv), each bad
vertex is either a leaf or has weight equal to 2. If a good whisker has at least one leaf
attached, then we move one unit from one of the leaves so that this good whisker has
weight equal to 2. In particular, all lucky whiskers have weight 2. If a vertex v ∈ R
is a parent of some dangerous vertex, then we move the weight from that vertex to v
and then move one unit from v to the corresponding lucky good whisker. After that
operation, the lucky good whisker has weight equal to 3. If v is a parent to another
dangerous vertex, we pick one of them arbitrarily and move its weight to v.

After that operation, our job is easy as the rooted and weighted tree has a very nice
property. For any edge uv in the tree (u is closer to the root than v), the weight on
u is larger than the weight on v. It is straightforward to see that one can now move
all weight to the root v0. Indeed, in each step, one can consider the tree induced by
vertices with non-zero weight, pick an arbitrary leaf, and move one unit from there all
the way up to the root. We may repeat this step until all weight is accumulated on v0.
This finishes the proof of the main theorem and the paper.
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