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Abstract

An ordered hypergraph is a hypergraph H with a specified linear ordering of the vertices, and
the appearance of an ordered hypergraph G in H must respect the specified order on V (G). In
on-line Ramsey theory, Builder iteratively presents edges that Painter must immediately color.
The t-color on-line size Ramsey number R̃t(G) of an ordered hypergraph G is the minimum
number of edges Builder needs to play (on a large ordered set of vertices) to force Painter using

t colors to produce a monochromatic copy of G. The monotone tight path P
(k)
r is the ordered

hypergraph with r vertices whose edges are all sets of k consecutive vertices.

We obtain good bounds on R̃t(P
(k)
r ). Letting m = r − k + 1 (the number of edges in P

(k)
r ),

we prove mt−1/(3
√
t) ≤ R̃t(P

(2)
r ) ≤ tmt+1. For general k, a trivial upper bound is

(
R
k

)
, where R

is the least number of vertices in a k-uniform (ordered) hypergraph whose t-colorings all contain

P
(k)
r (and is a tower of height k− 2). We prove R/(k lgR) ≤ R̃t(P

(k)
r ) ≤ R(lgR)2+ε, where ε is

a positive constant and tm is sufficiently large in terms of ε−1. Our upper bounds improve prior
results when t grows faster than m/ logm. We also generalize our results to `-loose monotone
paths, where each successive edge begins ` vertices after the previous edge.

1 Introduction

Ramsey theory studies the occurrence of forced patterns in colorings. We say that H forces G and

write H →t G when every t-coloring of the elements of H contains a monochromatic copy of G.

In this paper H and G are k-uniform hypergraphs, we color the edges of H, and t ≥ 2. Ramsey’s

Theorem [37] implies K
(k)
n →t G when n is sufficiently large, where K

(k)
n denotes the complete

k-uniform hypergraph with n vertices. Our problem involves several variations on this.

For any monotone parameter, we can study its least value on the (hyper)graphs that force G.

Besides the number of vertices (the classical problem), the most-studied parameter for this is the

number of edges, yielding the size Ramsey number (proposed in [19], with early work surveyed

in [21]). For example, Beck [3] solved a problem of Erdős by showing that the 2-color size Ramsey

number of the path Pn is linear in n; after improvements in [6, 16, 28], the current best upper

bound is 74n by Dudek and Pra lat [17].
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Another direction considers an ordered version of hypergraphs. An ordered hypergraph is a

hypergraph on a linearly ordered vertex set. In the ordered sense, H is a subhypergraph of H ′ if

H ′ contains a copy of H with the vertices appearing in the specified order. The ordered version

of Ramsey’s Theorem states that for an ordered k-uniform hypergraph G, there exist an ordered

k-uniform hypergraph H such that H →t G (meaning that every t-coloring of E(H) contains a

monochromatic copy of G in the ordered sense). This follows from Ramsey’s Theorem because

a complete ordered hypergraph with n vertices contains all ordered hypergraphs with n vertices;

that is, it is enough to force K
(k)
|V (G)| under any vertex ordering. Thus Ramsey numbers and size

Ramsey numbers for ordered hypergraphs, being the least number of vertices or edges, respectively,

in such an ordered hypergraph H, are also well-defined. Such problems have been studied in

[2, 10, 12, 22, 29, 30, 31, 32].

In particular, let [r] denote {1, . . . , r}. The monotone tight path P
(k)
r is the k-uniform ordered

hypergraph with vertex set [r] whose edges are all sets of k consecutive vertices. When G is

understood to be an ordered hypergraph, we use Rt(G) to denote the Ramsey number of G in the

ordered sense. Thus Rt(P
(k)
r ) is the least n such that every t-coloring of the edges of the k-uniform

complete ordered hypergraph with vertex set [n] contains a monochromatic copy of P
(k)
r . This

value was studied and applied in [18, 22, 29, 30].

An “on-line” version of Ramsey theory is a game between Builder and Painter, introduced by

Beck [4] and by Kurek and Ruciński [27]. In each round, Builder presents an edge that Painter must

color. Builder can force a monochromatic copy of G by presenting all edges of some H such that

H →t G. However, Builder may be able to use Painter’s choices to force G to appear sooner. On-

line Ramsey problems have been studied for the number of edges [9, 13, 14, 23, 24, 27, 35, 36], the

genus [23, 25, 34], and the maximum degree [8, 26, 39, 40]. For a monotone parameter ϕ, the on-line

ϕ Ramsey number is the least t such that Builder can force Painter to produce a monochromatic

G while keeping the value of ϕ to at most t on the presented object. The number of edges is the

number of rounds (the length of the game) and hence is the natural parameter. It is so natural that

the on-line size Ramsey number has confusingly also been called just the on-line Ramsey number,

which term more properly is the minimum number of vertices needed. Easy arguments imply that

the 2-color on-line size Ramsey number of the path Pn is at least 2n− 3 and at most 4n− 7 ([24]).

We combine these three variations on the Ramsey problem, studying the number of edges

used in the on-line model to force an ordered hypergraph. In particular, we study the on-line

size Ramsey number of monotone tight paths. Appropriate notation is needed for the resulting

parameter. One common practice in Ramsey theory is to add a circumflex accent (R̂) to indicate

a size Ramsey number. Some recent papers use a tilde accent (R̃) to indicate the on-line version of

the size Ramsey number (a circular accent R̊ has been used with on-line versions of other parameter

Ramsey numbers). These choices free the subscript for the number of colors. For ordered Ramsey

numbers, OR was used in [29], but now we follow [9, 31, 32] in using the same notation as in the

classical problem when it is understood that the target and host are ordered hypergraphs. Thus

we use R̃t(P
(k)
r ) for the t-color on-line size Ramsey number of the monotone tight path P

(k)
r .

Our results and proofs are motivated by the characterization of the t-color off-line vertex Ramsey
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number of P
(k)
r in terms of the size of an associated poset (partially ordered set), obtained by

Moshkovitz and Shapira [30] (see [29] for an exposition and alternative presentation of the proof).

Henceforth let m be the number of edges in P
(k)
r ; note that m = r − k + 1. The arguments and

bounds are stated more cleanly in terms of m. Let Q1 be the poset consisting of t disjoint chains

of size m − 1. For j > 1, let Qj be the poset consisting of all the down-sets in Qj−1, ordered by

inclusion. The value of R̃t(P
(k)
r ) is given in terms of |Qk|, and the bounds on |Qk| follow inductively.

Theorem 1 (Moshkovitz and Shapira [30]). Rt(P
(k)
r ) = |Qk|+ 1. Furthermore,

towk−2(m
t−1/2

√
t) ≤ |Qk| ≤ towk−2(2m

t−1),

where m = r − k + 1 and towh(x) equals x when h = 0 and 2towh−1(x) when h ≥ 1.

This result immediately implies R̃t(P
(k)
r ) ≤

(|Qk|+1
k

)
, since

(|Qk|+1
k

)
is the number of edges in

K
(k)
|Qk|+1. Building on ideas used in the exposition of this proof in [29], for sufficiently small positive

ε we present a strategy for Builder that proves an upper bound of |Qk|(lg |Qk|)2+ε when tm is

sufficiently large in terms of ε−1, where lg is the base-2 logarithm. Our Painter strategy for the

lower bound yields roughly the same lower bound as in Theorem 1. Hence our upper and lower

bounds on R̃t(P
(k)
r ) are towers of the same height.

The arguments for the upper and lower bound generalize trivially to the non-diagonal case

R̃t(P
(k)
r1 , . . . , P

(k)
rt ), where Builder seeks to force a copy of P

(k)
ri in color i for some i. Simply let Q1

be the disjoint union of t chains such that the ith chain has ri − k + 1 elements.

Fox, Pach, Sudakov, and Suk [22] considered a game with a more restricted Builder, which was

introduced by Conlon, Fox, and Sudakov [11]. Builder can only introduce a new vertex at the end

of the ordering and can only present an edge joining the newest vertex to earlier vertices. Painter

colors each presented edge immediately. Our Builder can simulate this game, so the optimal value

ft(m) in their game is at least R̃t(P
(2)
m+1). For constant t (and here k = 2), Fox et al. [22] proved

t− 1− o(t)
log t

mt logm ≤ ft(m) ≤
(

1 +
t− 1

log(1 + 1/(t− 1))
log(m+ 1)

)
(mt + 1).

Since their Builder is weaker, their lower bound is naturally larger than ours; neither result implies

the other. For large t (growing faster than m/ logm), our upper bound is smaller than theirs, but

for constant t their upper bound is better.

They also studied the k-uniform version of their game, where their objective was to obtain an

upper bound on the vertex Ramsey number of the monotone tight path in terms of the length of

their game. Since Rt(P
(k)
r ) = |Qk|+ 1 by [30], in their game also Builder must use more than |Qk|

vertices to end the game.

Indeed, if Painter knows that the game is being played by their Builder, meaning that vertices

will only be introduced from left to right, then Painter can use our strategy (in the general k-

uniform case) with a supply of Qk vertices (treating them as described in Section 3), achieving

|Qk|/k as a lower bound against their Builder. Similarly, when the vertices are known initially

(that is, in the off-line setting), our Painter strategy also implies that any hypergraph forcing P
(k)
r

has more than |Qk| vertices, thus yielding the lower bound Rt(P
(k)
r ) > |Qk| in Theorem 1. A closer
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look at the upper bound strategy for Builder also yields the upper bound Rt(P
(k)
r ) ≤ |Qk|+ 1. The

ideas in our proof are similar to the ideas in the proofs in [30] and [29].

Our proofs also generalize easily to describe the Ramsey number of the monotone `-loose k-

uniform path P k,`
r for 1 ≤ ` ≤ k. Here each edge consists of k consecutive vertices, and two

consecutive edges have k − ` common vertices. (In particular, r = k + `(m− 1) when there are m

edges.) Note that P
(k)
r = P k,1

r , while P k,k
r is a k-uniform matching in which each edge ends before

the next edge begins in the vertex ordering. Let h = dk/`e. Our arguments for the on-line version

of the problem yield Rt(P
k,`
r ) = `|Qh| + s, where s = k − (h − 1)`. This formula was obtained

earlier by Cox and Stolee [12], expressed in different notation. They gave a separate argument for

the case ` = k (matchings), though this formula applies to both.

In the last section we discuss an off-line version of this problem for directed graphs and hyper-

graphs, related to results of Ben-Eliezer, Krivelevich, and Sudakov [5].

2 On-line scenario: The graph case (k = 2)

The game ends when Builder forces Painter to produce a monochromatic monotone tight path

with m edges. For clarity and because the numerical bounds are somewhat tighter in this case,

we first consider the case k = 2. For the monotone path, Rt(P
(2)
r ) = mt + 1. The trivial upper

bound is
(
Rt(P

(2)
r )

2

)
, but our upper bound is not much larger than Rt(P

(2)
r ). Like the result of [30],

it is motivated by the short proof due to Seidenberg [41] of the Erdős–Szekeres Theorem [20] on

monotone subsequences.

Theorem 2. For m = r − 1 with r ≥ 3, always mt−1/(3
√
t) ≤ R̃t(P

(2)
r ) ≤ tmt+1.

Proof. Let M = {0, 1, . . . ,m− 1}. Given a = (a1, . . . , at) ∈M t, let |a| =
∑
ai.

Upper bound (Builder strategy): Builder uses mt + 1 vertices, viewed as ordered from left to

right. At any time, all vertices are labeled with vectors in M t, where the ith coordinate of the label

for v is the number of edges in the longest monotone path in color i that ends at v. All labels are

initially the all-0 vector. Let Λ denote the “top” vector in M t; its components all equal m− 1.

Builder seeks to produce label Λ at one of the first mt vertices, after which playing the edge

from this vertex to the last (rightmost) vertex wins the game no matter what color Painter gives

it. If no two vertices among the first mt have the same label, then all labels occur, including Λ.

Otherwise, some vertices u and v have the same label, say with u before v. These vertices

cannot yet be adjacent, since their labels would then differ in the coordinate for the color of uv.

Builder plays uv. The label for v increases in the coordinate for the color Painter uses on uv.

On each round, the label for the second vertex of the edge played increases by 1 in some

coordinate. To avoid reaching Λ or reaching m in any coordinate, each label must increase fewer

than (m − 1)t times. By the pigeonhole principle, within mt[(m − 1)t − 1] + 1 rounds some label

reaches Λ, and the next play wins. Note that mt[(m− 1)t− 1] + 1 < tmt+1.

Lower bound (Painter strategy): Let B = {a ∈ M t : |a| = b(m− 1)t/2c}. Until Builder uses

more than |B| vertices, Painter can assign different labels from B to all vertices used. These labels
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remain unchanged throughout the game. Let a(v) denote the label assigned by Painter to v, with

a(v) = (a1(v), . . . , at(v)). When Builder plays an edge uv with u before v, Painter gives it a color

i such that ai(v) > ai(u). Such a coordinate exists, since a(u) 6= a(v) and |a(u)| = |a(v)|.
Choosing colors in this way maintains for each vertex w the property that every monotone path

in color i arriving at vertex w has at most ai(w) edges. This holds since along a monotone path

in color i the ith coordinate of the label strictly increases with each step. Since a(w) ∈ M t, no

monochromatic monotone path has m edges. Since using more than |B| vertices requires playing

more than |B|/2 edges, Painter can survive at least |B|/2 rounds without creating a monochromatic

monotone path with m edges.

The elements of M are the elements of Q2, and B is a middle level. Using Chebyshev’s Inequality

and the pigeonhole principle, Moshkovitz and Shapira [30] showed |B| ≥ 2
3m

t−1/
√
t.

Remark 3. It is well known by many arguments that B is a largest level in Q2. (For example, the

product of chains is a symmetric chain order, the convolution of symmetric log-concave sequences

is symmetric and log-concave, explicit injections map one level to the next toward the middle, etc.)

Since |M t| = mt and there are (m − 1)t + 1 levels, we thus have |B| > mt−1/t by the pigeonhole

principle alone.

Using the Chernoff bound instead of Chebyshev’s Inequality in the argument in [30], we can

improve the lower bound on |B| to 0.7815987mt−1/
√
t. The value of |B| was also studied by Alek-

seev [1]. A special case is that when m ∈ o(et/
√
t), the value of |B| is asymptotic to mt−1/

√
πt/6.

For the non-diagonal case, with mi being the forbidden length in color i, the argument yields∏
mi

2
∑
mi
≤ R̃t(P

(2)
r1 , . . . , P

(2)
rt ) ≤

∑
mi

∏
mi.

Here the pigeonhole argument for the size of the largest antichain in Q2 gives the lower bound on

|B|. Again Chebyshev’s Inequality can be used to improve it somewhat, but the resulting formula

is more complicated.

Our lower bound remains valid against a stronger Builder. Suppose Builder can present any

directed graph in seeking a monochromatic directed path, instead of only presenting edges directed

from lower to higher vertices. The strategy for Painter establishes the same lower bound, where

“an edge uv with u before v” becomes “an edge directed from u to v”. This works because the

labels for vertices are incomparable. We will return to the digraph problem in the last section.

3 On-line scenario: The hypergraph case

For the k-uniform monotone tight path, the flavor of the arguments extends that of the graph case,

but the details are more delicate. As described in the introduction, let Q1 be the poset consisting

of t disjoint chains of m− 1 elements each. The ith chain is associated with color i. For j > 1, the

poset Qj consists of the down-sets in Qj−1, ordered by inclusion. The arguments are the same for

the non-diagonal case, with the ith chain in Q1 consisting of mi−1 elements, where mi = ri−k+1.

We will first study the upper bound. Let G denote the current hypergraph of edges played by

Builder and colored by Painter. In the strategy for Builder used to prove the upper bound, Builder
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will confine play to a fixed vertex set [n], where [n] = {1, . . . , n}, under the usual order on N. Given

a set Y ⊆ [n], let Y + be the set obtained from Y by deleting the first vertex, and let Y − be the

set obtained from Y by deleting the last vertex. Let
(
[n]
j

)
denote the family of j-element subsets

of [n]. We recursively define functions gk, . . . , g1 such that gj :
(
[n]
j

)
→ Qk−j+1, except that gk is

defined only on the k-sets that are actual edges of G. We also recursively define a notion of one

j-set “following” another. Both definitions depend on G and pertain to the strategy that Builder

will use to pick the next edge as long as G has no monochromatic P
(k)
r .

Definition 4. For Y ∈ E(G), if Y has color i and the longest monochromatic tight path with last

edge Y has p edges, then let gk(Y ) be element p on the ith chain in Q1. For Y ∈
(
[n]
j

)
with j < k,

let
←−
Y = {Z ∈

(
[n]
j+1

)
: Z+ = Y }; call the elements of

←−
Y the precursors of Y . Given that gj+1 has

been defined, for Y ∈
(
[n]
j

)
define gj(Y ) as follows:

gj(Y ) is the downset in Qk−j generated by {gj+1(Z) : Z ∈
←−
Y }.

Being a downset in Qk−j , by definition gj(Y ) ∈ Qk−j+1.

Definition 5. Given Y1, Y2 ∈
([n]
k

)
, say that Y2 follows Y1 if Y1, Y2 ∈ E(G) and Y +

1 = Y −2 . For

Y1, Y2 ∈
(
[n]
j

)
with j < k, say that Y2 follows Y1 if

(A) Y +
1 = Y −2 and

(B) for each maximal element w of gj(Y1), the (j + 1)-set Y1 ∪ Y2
follows some precursor Z1 of Y1 such that gj+1(Z1) = w.

Note that (B) in Definition 5 holds trivially when gj(Y1) is empty. Since a precursor Z2 of Y2

following a precursor Z1 of Y1 requires Z−2 = Z+
1 = Y1, the set Y1 ∪ Y2 is the only precursor of Y2

that can follow a precursor of Y1. When Y2 follows Y1, the set Y1 ∪Y2 is a set Z such that Z− = Y2

and Z+ = Y2.

Our strategy for Builder is based on a crucial property of gj we prove next. We think of gj as

assigning a label in Qk−j+1 to a j-set Y .

Lemma 6. If Y2 follows Y1 in
(
[n]
j

)
, then gj(Y1) � gj(Y2) in Qk−j+1.

Proof. The proof is by induction on k − j. For j = k, if Y2 follows Y1 in E(G), then either Y1 and

Y2 have the same color, in which case gk(Y2) > gk(Y1) in Q1, or they have different colors, in which

case gk(Y1) and gk(Y2) are incomparable in Q1. In either case, gk(Y1) � gk(Y2).

For j < k, suppose that the claim holds for j + 1. Given that Y2 follows Y1 in
(
[n]
j

)
, let

Z = Y1 ∪ Y2 ∈
(
[n]
j+1

)
. If Y1 has no precursors, then gj(Y1) is empty; the claim is then trivially true,

since Z is a precursor of Y2 and thus gj(Y2) is nonempty. Otherwise, let w be a maximal element

of gj(Y1). Since Y2 follows Y1, by definition Z follows some Z1 ∈
←−
Y 1 with gj+1(Z1) = w. By the

hypothesis for j+1, we have w = gj+1(Z1) � gj+1(Z) for all such Z1. Since this holds for all w that

are maximal in gj(Y1), the label gj+1(Z) does not lie in the downset generated by the precursors

of Y1 (which by definition is gj(Y1)). However, since Z ∈
←−
Y 2, the label gj+1(Z) does lie in gj(Y2).

Hence as downsets in Qk−j , the family gj(Y2) is not contained in the family gj(Y1), which means

gj(Y1) � gj(Y2) as elements of Qk−j+1.
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The inductive definition of “follows” facilitates Lemma 6. To simplify the presentation of

Builder’s strategy, we provide a more explicit description of what “Y2 follows Y1” guarantees.

Definition 7. For a j-set Y with j < k or an edge Y ∈ E(G), we form a tree U(Y ). The nodes of

the tree are elements of the posets Qk−j+1, . . . , Q1. The root of U(Y ) is the label gj(Y ) ∈ Qk−j+1.

Any node z in U(Y ) that is an element of Qi for i > 1 is also a downset in Qi−1; the children of

z in U(Y ) are the maximal elements of this downset in Qi−1. The process iterates until we reach

elements of Q1 as the leaves of U(Y ). To avoid confusion, we will refer to the vertices of the tree

U(Y ) as nodes and reserve the term “vertex” for the elements of V (G).

An instance of U(Y ) for a j-set Y associates vertex sets to the nodes. Associated to the root

of U(Y ), which is gj(Y ) ∈ Qk−j+1, is the set Y . To a non-root node w ∈ Qi whose parent in

U(Y ) is z ∈ Qi+1 and has associated (k − i)-set Z, we associate a precursor Z ′ of Z such that

gk−i+1(Z
′) = w; note that Z ′ is a (k− i+1)-set. Iteratively, we choose associated sets moving away

from the root. Since the leaves are in Q1, their associated sets are k-sets: that is, edges.

We must confirm that the selection of labels is well-defined, so that every such tree U(Y ) has

at least one instance of the form described. When w is a child in U(Y ) of the node z ∈ Qi+1 with

associated (k − i)-set Z, we have already chosen Z so that gk−i(Z) = z. By definition, z is the

downset in Qi generated by {gk−i+1(Z
′) : Z ′ ∈

←−
Z }, and w is a maximal element in that downset.

Thus w must be the image under gk−i+1 of some precursor of Z.

Lemma 8. A j-set Y2 follows a j-set Y1 if and only if Y +
1 = Y −2 and there is an instance of U(Y1)

such that for every node, deleting the first element of the associated set W and replacing it with the

last element y of Y2 yields a set Z following W . In particular, for every edge W associated with a

leaf, replacing the first vertex of W with y yields an edge in G.

Proof. First suppose that Y2 follows Y1. The tree U(Y1) is fixed, but the instance we construct

depends on Y2. We construct the needed instance of U(Y1) by finding sets to associate with nodes

along each path from the root. The set Y1 is associated with the root node.

Given that Y2 follows Y1, let Z1 = Y1∪Y2. Note that Z1 arises from Y1 by adding the last vertex

y from Y2. By the definition of Y2 following Y1, the set Z1 is required to be a (j + 1)-set that, for

each child w1 of the root of U(Y1), follows some precursor W1 of Y1 that has label w1. This selects

W1 as a (j + 1)-set to associate with w1 in the instance of U(Y1) we are building.

At the next level, descending from a child w1, we have Z1 following W1. We let Z2 = W1 ∪ Z1.

For each child w2 of w1, we apply the same argument to obtain the (j + 2)-set W2 to associate

with w2. Repeating this argument along any path from the root to a leaf of U(Y1), we obtain

successively larger sets Z1, . . . , Zk−j that respectively follow sets W1, . . . ,Wk−j associated with the

nodes along the path. Each Zi is obtained by deleting the smallest element of Wi and adding y.

Finally, Zk−j is an edge following an edge Wk−j associated with the leaf at the end of the path.

We obtain such an edge Zk−j for each leaf. (It is just the edge Y2 following Y1 when j = k.)

The converse is the specialization of the assumed condition on U(Y1) to the root node.
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Remark 9. For Y ∈
(
[n]
j

)
, if no precursor of Y has a defined label, then the downset generated

by
←−
Y is empty, and gj(Y ) is the bottom element of Qk−j+1. This occurs for any (k − 1)-set whose

precursors all are not edges of G and for any j-set with first vertex 1 (it has no precursors).

Each of Q2, . . . , Qk has one element of rank 0, which is the empty downset in the previous poset.

Also each of Q3, . . . , Qk has one element of rank 1, which is the downset of size 1 consisting of the

bottom element of the previous poset. Inductively, ranks 0 through j − 2 of Qj form a single chain

with one element of each rank. For 0 ≤ i ≤ j − 2, let Vi
j be the element of rank i in Qj .

With vertex set [n] before any edges have been played, all k-sets have undefined labels. Hence

the label of each (k− 1)-set at the start is V0
2. A j-set with least element 1 has no precursor, so its

label is V0
k−j+1. For j < k − 1, a j-set Y with least element 2 has one precursor, which has label

V0
k−j , so initially gj(Y ) = V1

k−j+1. Inductively, for j < k, a j-set Y with least element i has initial

label Vi−1
k−j+1 if i ≤ k − j and label Vk−j−1

k−j+1 if i > k − j. In particular, for the crucial case j = 1,

the initial label of the vertex i is Vi−1
k for i ≤ k − 1 and Vk−2

k for i > k − 1.

Our upper bound for general k is also valid for k = 2, but in that case Theorem 2 provides

a stronger bound. For k = 3 our bound is a bit weaker than for larger k, which introduces some

complication in the inductive proof. The combinatorial bound obtained first is valid for all k,m, t,

but the bound in terms of |Qk| alone requires tm (or equivalently |Q1|) to be sufficiently large.

Theorem 10. For k,m, t ∈ N with t,m ≥ 2 and r = k +m− 1.

R̃t(P
(k)
r ) ≤ |Qk| · |Qk−1|

k−1∏
i=1

ai,

where ai is the size of the largest antichain in Qi. Moreover, for any sufficiently small positive

constant ε,

|Q3|·|Q2|a2a1 ≤ |Q3|(lg |Q3|)2+
1

t−1
+ε and |Qk|·|Qk−1|

k−1∏
i=1

ai ≤ |Qk|(lg |Qk|)2+ε (for k ≥ 4)

when tm is sufficiently large compared to ε−1.

Proof. We give a strategy for Builder. Let n = |Qk|+1. Builder plays k-sets from the fixed ordered

vertex set [n], numbered from left to right. After each round the label functions gk, . . . , g1 are

defined as in Definition 4 for the hypergraph played so far. Let Λj be the unique top element in

Qj , for 2 ≤ j ≤ k. Builder seeks a vertex z in [n]− {n} with g1(z) = Λk. Since Λk is the downset

in Qk−1 that is all of Qk−1, this vertex z has a precursor {y, z} with label Λk−1. Iterating, some

(k−1)-set Y ending at z has label Λ2. Since Λ2 = (m−1, . . . ,m−1), in each color some precursor

of Y is the last edge in a path of m− 1 edges. Builder then plays the edge Y ∪ {n} to win.

Builder plays to force Painter to produce such a vertex z. Before any edges are played, the

labels are as described in Remark 9. The labels of the first k − 1 vertices never change (always

g1({i}) = Vi−1
k for i ≤ k − 1), since no edge can be played ending at one of those vertices. All

vertices from k − 1 to n initially have the same label Vk−2
k with rank k − 2 in Qk.
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Playing an edge in the game creates a label for that edge. The label of an existing edge stays

the same or moves upward on its chain, by the definition of gk. For a j-set Y with j < k, by

induction on k − j, the label gj(Y ) stays the same or moves upward in Qk−j+1, because the label

is defined to be the downset generated by the labels of the precursors. The precursors remain the

same (except that precursors can be added when j = k − 1). By the induction hypothesis, the

labels of the precursors stay the same or move up. Hence the downset they generate stays the same

or becomes larger, which means that gj(Y ) stays the same or moves up.

After the first k− 2 vertices and before the last, there are |Qk| − k+ 2 vertices, and their labels

are initially (and hence always) above the bottom k−2 elements of Qk. If Λk is not the label of any

of them, then their labels are confined to a set of |Qk| − k+ 1 elements in |Qk|. By the pigeonhole

principle, two of these vertices have the same label. We claim that in this situation Builder can

make a vertex label go up in Qk.

Builder picks two vertices x and y having the same label, with x before y. Since x and y have

the same label, Lemma 6 guarantees that y does not follow x. Builder plays edges to make y follow

x. Since labels that change can only move up, Lemma 6 implies that playing edges to make y follow

x causes the label of y to increase in Qk.

In order to make y follow x, Builder uses an instance of U({x}). For each leaf in U({x}), the

associated edge Z ends with x. By Lemma 8, y follows x if Z+ ∪ {y} is an edge for each such Z.

Builder plays all such k-sets that are not already edges.

The number of edges played by Builder to make y follow x is at most the number of leaves

in U({x}). Since the children in U({x}) of each label in Qj form an antichain in Qj−1 (because

they are the maximal elements of a downset in Qj−1), the number of leaves is bounded by
∏k−1

i=1 ai,

where ai is the maximum size of an antichain in Qi.

As long as no monotone tight path with m edges is created, the labels of the |Qk| − k + 1

vertices we are considering can rise at most |Qk−1| − k times without reaching Λk, since Λk is the

full downset of size |Qk−1| in Qk−1, and each of these labels initially is the unique downset of size

k − 1. Hence

1 + [(|Qk| − k + 1)(|Qk−1| − k) + 1]

k−1∏
i=1

ai

moves suffice for Builder to finish the game. Thus R̃t(P
(k)
r ) ≤ |Qk| · |Qk−1|

∏k−1
i=1 ai.

The remainder of the proof, obtaining an upper bound on R̃t(P
(k)
r ) in terms of |Qk| alone, is

purely numerical. Let ε be a sufficiently small positive constant. We seek

|Q2|a2a1 ≤ (lg |Q3|)2+
1

t−1
+ε and |Qk−1|

k−1∏
i=1

ai ≤ (lg |Qk|)2+ε (for k ≥ 4). (1)

We will find positive constants t0 and m0 in terms of ε such that (1) holds when tm ≥ t0m0. Note

that we are not trying to optimize these bounds.

Let qi = |Qi|. The rank of an element of Qi is its size as a downset in Qi−1; hence Qi has

|Qi−1|+1 ranks. Since the minimal and maximal elements are unique, Qi has a decomposition into

the fewest chains such that no chain meets all ranks. Dilworth’s Theorem [15] and the pigeonhole
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principle then yield ai ≥ qi/qi−1, and hence ai ≤ qi ≤ aiqi−1. Since the subsets of a largest antichain

in Qi generate distinct downsets, qi+1 ≥ 2ai , so ai ≤ lg qi+1. To bound qk−1
∏k−1

i=1 ai in terms of qk,

we need qi to grow rapidly with i. Already we have lg qi+1 ≥ qi/qi−1 for i ≥ 2, but we need better.

Consider first k = 3. The computation we use to prove the first part of (1) is

q2a2a1 = tmta2 ≤ a2
(
mt−1

2
√
t

)t/(t−1)+ε

≤ (lg q3)
2+ 1

t−1
+ε.

The first step follows from a1 = t and q2 = mt. For the rightmost inequality, we noted a2 ≤ lg q3

above, and Theorem 1 gives mt−1/2
√
t ≤ lg q3.

The middle inequality reduces to t(2
√
t)t/(t−1)+ε ≤ mε(t−1). When m ≥ 41+2/ε, this holds for

t ≥ 2. When (t− 1)/ lg 4t ≥ .5 + 2/ε, from t,m ≥ 2 we obtain

t(2
√
t)t/(t−1)+ε ≤ t(2

√
t)2+ε ≤ (4t)2+ε/2 = 2ε(2/ε+1/2) lg 4t ≤ 2ε(t−1) ≤ mε(t−1)

Hence if we let m0 = 41+2/ε and let t0 be the solution to (t−1)/ lg 4t = .5+2/ε, then the inequality

will hold whenever tm ≥ t0m0, since that yields t ≥ t0 or m ≥ m0 when t,m ≥ 2.

In order to prove the inequality of (1) for k ≥ 4, it suffices to prove

k−1∏
i=1

qi ≤ (lg qk)1+ε/2, (2)

because ai ≤ qi implies qk−1
∏k−1

i=1 ai < (
∏k−1

i=1 qi)
2. In the induction step, we use 1 + ε/2 < 4 to

weaken the induction hypothesis, proving that
∏k−2

i=1 qi ≤ (lg qk−1)
4 implies (2). As a base step to

start the induction, we prove the weaker statement for k = 3. The computation for this is

q2q1 = tmt+1 ≤ (mt−1/t)4 = (q2/q1)
4 ≤ a42 ≤ (lg q3)

4,

in which the only step needing further explanation is tmt+1 ≤ (mt−1/t)4, which simplifies to

(mt)5 ≤ m3t. This holds when t = 2 and m ≥ 32, or when t ≥ 3 and m ≥ 4. It does not hold when

t = m = 3, but the desired inequality tmt+1 ≤ (q2/q1)
4 does hold then. In any case, we obtain the

desired inequality when tm ≥ 64.

For the induction step, we first use qi ≤ aiqi−1, the induction hypothesis, and the fact that qk−1

(which exceeds t(m− 1)) is sufficiently large to compute

k−1∏
i=1

qi ≤ ak−1qk−2
k−2∏
i=1

qi < ak−1

(
k−2∏
i=1

qi

)2

≤ lg qk(lg qk−1)
8 ≤ qε/3k−1 lg qk.

Now let β =
∏k−1

i=1 qi. We weaken β ≤ qε/3k−1 lg qk to β ≤ βε/3 lg qk. Rearranging to a bound on β now

yields β ≤ (lg qk)1/(1−ε/3) ≤ (lg qk)1+ε/2, which completes the proof of (2) and the theorem.

The argument for the lower bound, presented next, is easier.

Theorem 11. With r > k and m = r − k + 1, we have R̃t(P
(k)
r ) ≥ |Qk|/(k lg |Qk|).
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Proof. With Q1, . . . , Qk defined as before, we give a strategy for Painter. Let A be a maximum-

sized antichain in Qk. We have noted that |A| ≥ |Qk|/ lg |Qk|. When Builder uses new vertices,

Painter gives them distinct unused elements of A as labels. Since each edge played has k vertices,

Painter can make such assignments for at least |A|/k edges.

Using these labels, Painter assigns labels to all j-sets in the set of vertices that have been used

by Builder, for 1 ≤ j ≤ k; these labels remain unchanged thereafter. The label fj(Y ) assigned to

a j-set Y is in Qk−j+1. Thus the label of a k-set is in Q1, and which chain it is on specifies the

color to be used on the set if Builder plays it as an edge. Through the first |A|/k rounds, this will

enable Painter to avoid making a monochromatic monotone copy of P
(k)
r .

The property needed for the labels is that if Y1 and Y2 are j-sets such that Y +
1 = Y −2 (or

equivalently that Y1 = Y − and Y2 = Y + for some (j + 1)-set Y ), then fj(Y1) � fj(Y2). For j = 1,

the labels of vertices are chosen as incomparable elements in Qk, so this holds by construction no

matter what order Builder uses to introduce vertices.

For 1 ≤ j ≤ k − 1, we define fj+1 from fj (Builder defined gj from gj+1 in the proof of the

upper bound). Given a (j + 1)-set Y , consider Y − and Y +. Since (Y −)+ = (Y +)−, we are given

fj defined so that fj(Y
−) � fj(Y

+). Hence some element of fj(Y
+) is not in fj(Y

−) (as downsets

in Qk−j). Painter chooses any such element as the label fj+1(Y ).

Now consider (j + 1)-sets Y1 and Y2 with Y +
1 = Y −2 . Both fj(Y

+
2 ) and fj(Y

−
2 ) are downsets

in Qk−j , and Painter chose fj+1(Y2) ∈ fj(Y
+
2 ) − fj(Y

−
2 ). Hence the element fj+1(Y2) is not

below anything in the downset fj(Y
−
2 ), including fj+1(Y1) ∈ fj(Y

+
1 ) = fj(Y

−
2 ). This means

fj+1(Y1) � fj+1(Y2), as needed for the process to continue.

We have now defined labels for all sets of at most k vertices among those used by Builder. The

labels of k-sets lie in Q1 and hence are colors with heights. When Builder plays a k-set, the color

used by Painter is the color in its label. When edges Y1 and Y2 are consecutive in a monotone

tight path in color i, so Y +
1 = Y −2 , the property fk(Y1) � fk(Y2) implies that the height of the

label in Q1 strictly increases. Since the chains in Q1 have only m− 1 elements, no monochromatic

monotone copy of P
(k)
r occurs.

We restrict vertex labels to an antichain in Qk because Builder has the power to introduce new

vertices between old vertices, and when vertex x is to the left of vertex y Painter needs to find an

element in the label of y that is not in the label of x. If the vertices were known in advance, then

the vertex Ramsey result Rt(P
(k)
r ) = |Qk|+ 1 would already allow Painter to survive |Qk|/k edges

in the on-line game. On the other hand, our arguments also yield this result.

Corollary 12 (Moshkovitz and Shapira [30]). Rt(P
(k)
r ) = |Qk|+ 1.

Proof. When all vertices are known in advance, or when Builder is constrained to add vertices only

at the high (i.e., right) end (as in the game studied by Fox et al. [22]), Painter can use all of Qk

as vertex labels, assigning them according to a linear extension, level by level. The initialization

f1({x}) � f1({y}) for any vertices x and y with x before y then holds. The rest of the proof is

exactly the same, yielding a lower bound of |Qk|/k for their game and requiring more than |Qk|
vertices to be played to force a monochromatic copy of P

(k)
r .
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Since the off-line situation is weaker for Builder, we must work harder for the upper bound. All

the edges of
([n]
k

)
will be played, with n = |Qk| + 1. Painter knows that. If there is a t-coloring

that avoids P
(k)
r , then Painter can prepare to play that coloring, no matter in what order we add

the edges. We can allow the labels to be defined as in the on-line game as we add edges.

Initially, the labels are as at the start of the on-line game, as described in Remark 9. We

imagine playing all the edges on the first |Qk| vertices first. If Λk appears as a label on a vertex,

then as observed in the proof of Theorem 10 there is an edge using the last vertex that when added

forces P
(k)
r . If Λk does not appear, then among the first |Qk| vertices there are vertices x and y

(with y later than x) having the same labels. Lemma 6 as edges are processed maintains that two

vertices cannot have the same label when one follows the other. Lemma 8 guarantees that when all

the edges are processed, all the edges that need to be played to make y follow x have been played.

Hence such x and y cannot exist, and Λk must occur as a label on a vertex.

Generalizing these results to `-loose k-uniform monotone paths is straightforward. The off-line

value Rt(P
k,`
r ) was obtained by Cox and Stolee [12]; they related the value for `-loose paths to the

value for tight paths. Translating their result into our notation, they proved

R(P k,`
r1 , . . . , P

k,`
rt ) = `R(P (h)

r1 , . . . , P (h)
rt ) + k − `h,

specifying h to be the unique integer at least 2 such that h−2
h−1 <

k−`
k ≤

h−1
h . Their inequalities for

h reduce to h− 1 < k/` ≤ h, which says simply h = dk/`e. With this translation, it becomes clear

that our extension of the on-line result from tight paths to `-loose paths yields their extension of the

Moshkovitz–Shapira result in the same way that our result for tight paths yields the Moshkovitz–

Shapira result (Corollary 12).

In generalizing our results to `-loose paths, the key point is that edges whose last vertices differ

by less than ` cannot belong to a common `-loose k-uniform monotone path. Again we discuss only

the situation where all ri are equal. Note that explicit bounds on |Qh| · |Qh−1|
∏h−1

i=1 ai in terms of

|Qh| and |Qh−1| are given in Theorem 10 for h ≥ 3, while |Q2| · |Q1|a1 = t2mt+1 when h = 2.

Theorem 13. Given k, `,m, t ∈ N with t,m ≥ 2 and ` ∈ [k], let r = k+`(m−1). Also let h = dk/`e
and s = k−(h−1)`. With Qj defined in terms of k, r, t as in the introduction, Rt(P

k,`
r ) = `|Qh|+s.

Moreover, if ` < k then |Qh|/k lg |Qh| ≤ R̃t(P
k,`
r ) ≤ |Qh| · |Qh−1|

∏h−1
i=1 ai, where ai denotes the size

of a largest antichain in Qi, while if ` = k then |Q1|/k lg |Q1| ≤ R̃t(P
k,`
r ) ≤ |Q1|+ 1.

Proof. (Sketch) The value ` is the shift; in an `-loose k-uniform monotone path, it is the number

of vertices at the beginning of an edge that are not included in the next edge.

Let Y − and Y + be obtained from a set Y with |Y | > ` by deleting the last ` and the first `

elements, respectively. Note that s is the unique member of [`] congruent to k modulo `. Given j

with 1 ≤ j ≤ h, let j′ = k − (h− j)`; the values of j′ are {i ∈ [k] : i ≡ k mod `}.

Lower Bound (Painter strategy): Painter will assign labels to subsets of the vertices whose

size is congruent to k modulo `. In particular, the label fj(Y ) will be in Qh−j+1 for each j′-set Y of

vertices. As noted earlier, in Qh there is an antichain of size at least |Qh|/|Qh−1|. Painter initially

fixes a largest antichain A in Qh and uses distinct elements of A to name the vertices as they are
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introduced by Builder. The smallest sets given labels by Painter have size s. For each s-set Y , let

f1(Y ) be the element of A that Painter used to name its rightmost vertex.

For 1 ≤ j ≤ h, again we need fj(Y1) 6≥ fj(Y2) for j′-sets Y1 and Y2 such that there exists Y with

Y1 = Y − and Y2 = Y +. Note that such a set Y may be introduced after later moves by Builder’s

introduction of new vertices. However, if Y1 and Y2 have the same highest vertex, then this can

never occur, and Painter can have the same label on Y1 and Y2.

For 1 ≤ j ≤ h − 1, define fj+1 from fj by letting fj+1(Y ) be any element of fj(Y
+) not in

fj(Y
−). The inductive proof of the needed property fj(Y1) 6≥ fj(Y2) is the same as in Theorem 11.

The Painter strategy is as defined there: the resulting labels of k-sets under fk lie in Q1, and the

color used by Painter on an edge played by Builder is the color of the chain containing its label.

Since heights must strictly increase along `-loose k-uniform paths, no monochromatic copy of P k,`
r

occurs. Painter can survive any ah/k edges, where ah = |A|.
In a restricted version of the game where Builder must add vertices in order from low to high,

or where the vertices are specified in advance, Painter can use all elements of Qh as vertex names

(in the order of a linear extension of Qh). Furthermore, Painter can then use the same name on `

consecutive vertices, since edges whose highest vertices differ by less than ` cannot belong to the

same copy of P k,`
r , and no vertices will be inserted between two already having names. In addition,

the first s − 1 vertices receive no names from Qh, since the smallest sets needing labels have size

s. Again the process proceeds: s-sets receive as label the element of Qh assigned to their highest

vertex. Note that if |maxY2 − maxY1| < `, then Y1 and Y2 can never be extended leftward to

edges in the same copy of P k,`
r . In this way, Painter can survive `|Qh| + s − 1 vertices. Hence

Rt(P
k,`
r ) ≥ `|Qh|+ s, as in [12].

Upper Bound (Builder strategy): Builder uses `|Qh|+s vertices, assigning labels to sets whose

size is congruent to k modulo `, down to size s. Actually, Builder assigns labels only to sets whose

last s vertices are consecutive, called basic sets; Builder also plays only basic edges. Henceforth

consider only basic sets. Note that there are `|Qh|+ 1 basic sets of size s.

Builder assigns a label in Q1 to edges and a label in Qh−j+1 to the sets of size j′ for h > j ≥ 1

(note that j′ = j when ` = 1). For an edge Y with color i in G, the label gh(Y ) is the element of

height p on the ith chain in Q1, where p is the number of edges in the longest `-loose k-uniform

monotone path with last edge Y in the current colored hypergraph. For h > j ≥ 1, the precursors

of a j′-set Y are the (j′+ `)-sets obtained by adding ` elements to Y that are smaller than the least

element of Y ; that is, the precursors are the sets Z such that Z+ = Y .

With these generalizations of earlier definitions, the definitions of gj for 1 ≤ j < h and the

relation of “follows” are the same as in Definitions 4 and 5. In particular, note that if Y2 follows Y1,

then the rightmost element of Y2 must be at least ` positions to the right of the rightmost element

of Y1. The statement and proof of Lemma 6 are the same, except that gk and Qk−j+1 generalize

to gh and Qh−j+1, and
(
[n]
j

)
becomes

([n]
j′

)
. In Definition 7 and Lemma 8 we generalize j-set and

(j + 1)-set to basic j′-set and basic (j′ + `)-set, and again k generalizes to h in various subscripts.

Now Remark 9 and Theorem 10 also generalize naturally to yield R̃t(P
k,`
r ) ≤ |Qh|·|Qh−1|

∏h−1
i=1 ai

for ` < k (or equivalently h ≥ 2). Note that the labels V0
h, . . . ,V

h−2
h of the chain at the bottom of
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Qh are assigned to the first (h− 1)` basic sets of size s, where each label is used on s-sets starting

at ` consecutive values. For 0 ≤ i ≤ (h− 1)`− 1, the set [i+ 1, i+ s] ∈
(
[n]
s

)
is assigned label V

bi/`c
h .

These labels never change, since no edge can be played ending at one of these sets.

In particular, the s-set [(h − 2)` + 1, (h − 2)` + s] and all subsequent s-sets initially have the

label Vh−2
h . Since they never go down, they always avoid the bottom h − 2 labels in Qh and the

top label Λh, as long as none of them becomes Λh. Among these, Builder considers restricted basic

s-sets, having the form [i` + 1, i` + s] with h − 2 ≤ i ≤ |Qh| − 1. There are |Qh| − h + 2 such

sets, and their labels are confined to a set of |Qh| − h+ 1 labels in Qh. Therefore, when Builder is

ready to move the pigeonhole principle guarantees that some label in Qh is assigned to at least two

restricted basic s-sets. This guarantees the existence of two basic s-sets X and Y with the same

label whose rightmost vertices differ by at least `. By the generalization of Lemma 6, Y does not

follow X. Builder can then play edges as guaranteed by the generalization of Lemma 8 to make

Y follow X, which as in Theorem 10 makes the label of Y go up. A label can increase at most

|Qh−1| − h times before reaching Λh.

Hence Builder can play to force an s-set Z with label Λh whose highest element is at most

`(|Qh| − 1) + s. As in Theorem 10, some (k − `)-set Y ending with Z will then have label (m −
1, . . . ,m − 1), the top element of Q2. Since n = `|Qh| + s, there remain ` vertices beyond Z. By

playing the k-set consisting of Y and the last ` vertices, Builder wins.

Since in fact the label of the leftmost restricted basic s-set never changes, the number of edges

played is at most

1 + [(|Qh| − h+ 1)(|Qh−1| − h) + 1]

h−1∏
i=1

ai,

which for h ≥ 2 is at most |Qh| · |Qh−1|
∏h−1

i=1 ai. Note, however, that since Builder used only

`|Qh| + s vertices, we have Rt(P
k,`
r ) = `|Qh| + s. In the case h = 1 (that is, ` = s = k), Builder

simply plays the basic edges (intervals) [ik + 1, (i + 1)k] for 0 ≤ i ≤ |Q1|. Since [i′k + 1, (i′ + 1)k]

follows [ik + 1, (i + 1)k] whenever i < i′, Painter is forced to use distinct colors on the edges and

loses. This gives the desired upper bounds on Rt(P
k,`
r ) and R̃t(P

k,`
r ) for ` = k.

4 Directed Graphs

The ordered Ramsey problem can be described using directed graphs and hypergraphs. An ori-

entation of an edge is a permutation of its vertices. An ordered hypergraph can be viewed as a

directed hypergraph in which the orientation of each edge is the permutation inherited from the

vertex ordering. In particular, an ordered tight path is a directed hypergraph in which the edges are

the k-sets of consecutive vertices, oriented in increasing order in each edge. In a general k-uniform

directed hypergraph, k-sets may appear up to k! times, once with each orientation.

When Builder has the power to play edges of a general directed hypergraph in seeking to force a

monochromatic directed tight path, Painter can follow a strategy like that above, using an antichain

in Qk for vertex labels. All oriented j-tuples must be labeled, for 1 ≤ j ≤ k, so the lower bound

will be |Qk|/(k lg |Qk|).
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Let us consider this problem in the off-line setting for k = 2. Hence we are seeking the size

Ramsey number of the directed path Pm+1 in the model where arbitrary host digraphs are allowed.

The trivial upper bound is again
(
mt+1

2

)
, achieved by playing increasing edges for all pairs on

Rt(Pm+1) vertices in the ordered setting. For the off-line model, Builder is weaker, and we obtain

a better lower bound than for the on-line game.

Theorem 14. In the setting of directed graphs, R̂t(Pm+1) ≥
(|B|+1

2

)
, where B is the family of

elements in {0, . . . ,m− 1}t with sum b(m− 1)t/2c. As noted in Theorem 2, |B| ≥ 2
3m

t−1/
√
t.

Proof. A graph with fewer than
(|B|+1

2

)
edges is (|B|−1)-degenerate and hence |B|-colorable. Hence

we may suppose that the underlying undirected graph of the host digraph is |B|-colorable. Painter

specifies a proper vertex coloring whose colors correspond to the elements of B. Each vertex v has

a label a(v) ∈ B, and adjacent vertices always have distinct labels. As in Theorem 2, Painter can

choose for each (directed) edge uv a color i such that ai(v) > ai(u). Again at every vertex w the

length of any path in color i reaching w is at most ai(w), since the ith coordinate strictly increases

along paths whose edges have color i.

The off-line size Ramsey problem for paths in digraphs (with t = 2) was also studied by Ben-

Eliezer, Krivelevich, and Sudakov [5]. They considered a model where Builder can present only

oriented graphs (no 2-cycles) and a model where Builder can present any digraph, yielding size

Ramsey numbers Sori and Sdir respectively. Note that Sdir ≤ Sori when the parameters are equal.

For the general digraph model, which we considered above, the arguments of [5] yield the

following bounds: (
m+ 1

3t− 3

)2t−2
≤ Sdir ≤ 4(m+ 1)2t−2.

Since they focus on constant t, they state the result as Sdir = Θ(m2t−2). Since |B| ≥ 2
3m

t−1/
√
t,

our lower bound strengthens theirs.

Their lower bound for Sori is higher than their upper bound for Sdir (Bucic, Letzter, and

Sudakov [7] improved their upper bound on Sori). They prove

C1(t)
(m+ 1)2t−2(log(m+ 1))

1
t−1

(log log(m+ 1))
t+1
t−1

≤ Sori ≤ C2(m+ 1)2t−2(log(m+ 1))2

where C2 is an absolute constant, but C1(t) depends on t. They require

C1(t) <
C1/(t−1)

8(2t− 2)t−1(16(t− 1)2)t

for some absolute constant C. Therefore, their lower bound is at most

1

(2t)3t
(m+ 1)2t−2(log(m+ 1))

1
t−1

(log log(m+ 1))
t+1
t−1

,

which remains smaller than ours when t grows faster than
√

log logm.
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