Community Detection Algorithm Using
Hypergraph Modularity

Bogumil Kaminski!, Pawel Pralat?, and Francois Théberge®

! Warsaw School of Economics, Warsaw, Poland,
e-mail: bkamins@sgh.waw.pl,
2 Ryerson University, Toronto, ON, Canada,
e-mail: pralat@ryerson.ca,
3 The Tutte Institute for Mathematics and Computing, Ottawa, ON, Canada,
e-mail: theberge@ieee.org

Abstract. We propose a community detection algorithm for hyper-
graphs. The main feature of this algorithm is that it can be adjusted
to various scenarios depending on how often vertices in one community
share hyperedges with vertices from other community.

Keywords: community detection, hypergraphs, modularity

1 DMotivation and Our Contribution

An important property of complex networks is their community structure, that
is, the organization of vertices in clusters, with many edges joining vertices of
the same cluster and comparatively few edges joining vertices of different clus-
ters. In social networks, communities may represent groups by interest (practical
application include collaborative tagging), in citation networks they correspond
to related papers, and in the web communities are formed by pages on related
topics. Being able to identify communities in a network could help us to exploit
this network more effectively. Clusters in citation graphs may help to find sim-
ilar scientific papers, discovering social network users with similar interests is
important for targeted advertisement, etc.

Many networks that are currently modelled as graphs would be more ac-
curately modelled as hypergraphs. This includes the collaboration network in
which nodes correspond to researchers and hyperedges correspond to papers
that consist of nodes associated with researchers that co-authorship a given pa-
per. Unfortunately, the theory and tools are not sufficiently developed to allow
most problems, including clustering, to be tackled directly within this context.
Indeed, researchers and practitioners often create the 2-section graph of a hyper-
graph of interest (that is, replace each hyperedge with a clique). After moving
to the 2-section graph, one clearly loses some information about hyperedges of
size greater than two and so there is a common believe that one can do better
by using the knowledge of the original hypergraph.

There are some recent attempts to deal with hypergraphs in the context of
clustering. For example, Kumar et al. [6,7] still reduce the problem to graphs

2 Kaminski, Pratat, and Théberge

but use the original hypergraphs to iteratively adjust weights to encourage some
hyperedges to be included in some cluster but discourage other ones (this process
can be viewed as separating signal from noise). Moreover, in [4] a number of
extensions of the classic null model for graphs are proposed that can potentially
be used by true hypergraph algorithms. Unfortunately, there are many ways
such extensions can be done depending on how often vertices in one community
share hyperedges with vertices from other communities. This is something that
varies between networks at hand and usually depends on the hyperedge sizes.
Indeed, hyperedges associated with papers written by mathematicians might be
more homogeneous and smaller in comparison with those written by medical
doctors who tend to work in large and multidisciplinary teams. Moreover, in
general, papers with a large number of co-authors tend to be less homogeneous.
A good algorithm should be able to automatically decide which extension should
be used.

In this paper, we propose a framework that is able to adjust to various
scenarios mentioned above. We do it by generalizing and unifying all exten-
sions of the graph modularity function to hypergraphs, and putting them into
one framework in which the contribution from different “slices” is controlled
by hyper-parameters that can be tuned for a given scenario (Section 2). We
propose two prototype algorithms that show the potential of the framework,
the so-called proof-of-concept (Section 3). In order to test the performance of
algorithms in various scenarios, we introduce a synthetic random hypergraph
model (Section 4) that may be of independent interest. We experiment with
our prototypes as well as the two main competitors in this space, namely, the
Lowvain and Kumar et al. algorithms (Section 5). The experiments show that,
after tuning hyper-parameters appropriately, the proposed prototypes work very
well. Independently, we provide an evidence that such tuning can be done in an
unsupervised way. Of course, more work and experiments need to be done before
we are able to announce a scalable and properly tuned algorithm but at the end
of this paper we reveal a bit more details to that effect (Section 6). Spoiler alert:
the reader who wants to be surprised should avoid that section.

2 Modularity Functions

We start this section by recalling the classic definition of modularity function
for graphs (Section 2.1). In order to deal with hypergraphs, one may reduce
the problem to graphs by considering the corresponding 2-section graph (Sec-
tion 2.2). Alternatively, one may generalize the modularity function to hyper-
graphs (Section 2.3) and then perform algorithms directly on hypergraphs. Such
approach should presumably give better results as it preserves more information
on the original network in comparison to the corresponding 2-section graphs. In
this paper, we generalize the hypergraph modularity function even further that
allows us to value various contributions to the modularity function differently
(Section 2.4).

Community Detection Algorithm Using Hypergraph Modularity 3

2.1 Modularity Function for Graphs

Before we define the modularity function, let us introduce some necessary no-
tation and terminology. Let G = (V, E) be a graph where V = {vy,va,...,0,}
is the set of vertices and FE is the set of edges. The edges are multisets of V' of
cardinality 2 (that is, with loops allowed). Throughout the paper, we will use
n = |V| for the number of vertices of G. For a given vertex v € V, degq(v) is the
degree of v in G (with a loop at v contributing 2 to the degree of v). For A C V,
let the volume of A be volg(A) = 3 .4 degg(v); in particular, the volume of
the graphs is volg(V) = >_ oy degg(v) = 2|E|.

The definition of modularity for graphs was first introduced by Newman and
Girvan in [11]. Despite some known issues with this function such as the “reso-
lution limit” reported in [3], many popular algorithms for partitioning vertices
of large graphs use it [2,8,10] and perform very well. The modularity function
favours partitions of the vertex set of a graph G in which a large proportion of
the edges fall entirely within the parts (often called clusters), but benchmarks
it against the expected number of edges one would see in those parts in the
corresponding Chung-Lu random graph model which generates graphs with the
expected degree sequence following exactly the degree sequence in G.

Formally, for a graph G = (V, E) and a given partition A = {A;, Ao, ..., Ax}
of V', the modularity function is defined as follows:

eq(A; volg(A; 2
vy (Y

A €A A;€EA

where eq(4;) = |[{{vj,vx} € E : vj,vr, € A;}| is the number of edges in the
subgraph of G induced by set A;. The first term in (1), >_ 4 ca ec(4i)/|E],
is called the edge contribution and it computes the fraction of edges that fall
within one of the parts. The second one, Y 4 5 (volg(A4;)/vola(V))?, is called
the degree tar and it computes the expected fraction of edges that do the same
in the corresponding random graph (the null model). The modularity measures
the deviation between the two.

It is easy to see that ¢g(A) < 1. Also, if A = {V}, then ¢g(A) = 0,
and if A = {{v1},{v2},...,{vn}}, then gg(A) = — > (deg(v)/volg(V))? < 0.
The maximum modularity ¢*(G) is defined as the maximum of gg(A) over all
possible partitions A of V; that is, ¢*(G) = maxa gg(A). In order to maximize
gc(A) one wants to find a partition with large edge contribution subject to small
degree tax. If ¢*(G) approaches 1 (which is the trivial upper bound), we observe
a strong community structure; conversely, if ¢*(G) is close to zero (which is the
trivial lower bound), there is no community structure. The definition in (1) can
be generalized to weighted edges by replacing edge counts with sums of edge
weights.

2.2 Using Graph Modularity for Hypergraphs

Given a hypergraph H = (V,E), it is common to transform its hyperedges
into complete graphs (cliques), the process know as forming the 2-section of

4 Kaminski, Pratat, and Théberge

H, graph Hy on the same vertex set as H. For each hyperedge e € E with

le] > 2 and weight w(e), (‘;l) edges are formed, each of them with weight of
w(e)/(|e] — 1). While there are other natural choices for the weights (such as the
original weighting scheme w(e)/ (‘;l) that preserves the total weight), this choice
ensures that the degree distribution of the created graph matches the one of the
original hypergraph H [6,7]. Moreover, let us also mention that it also nicely
translates a natural random walk on H into a random walk on the corresponding
Hpy) [13]. As hyperedges in H usually overlap, this process creates a multigraph.
In order for Hy to be a simple graph, if the same pair of vertices appear in
multiple hyperedges, the edge weights are simply added together.

2.3 Modularity Function for Hypergraphs

For the hypergraph H = (V,E), each hyperedge e € E is a multiset of V
of any cardinality d € N. Multisets in the context of hypergraphs are natural
generalization of loops in the context of graphs. Even though H does not always
contain multisets, it is convenient to allow them as they may appear in the
random hypergraph that will be used to “benchmark” the edge contribution
component of the modularity function. It will be convenient to partition the edge
set E into {E1, Ea, ...}, where E4 consists of hyperedges of size d. As a result,
hypergraph H can be expressed as the disjoint union of d-uniform hypergraphs
H =JH,, where H; = (V, E4). As for graphs, degy(v) is the degree of vertex
v, that is, the number of hyperedges v is a part of (taking into account the fact
that hyperedges are multisets). Finally, the volume of a vertex subset A C V' is
volg (A) = c 4 degy(v).

For edges of size greater than 2, several definitions can be used to quantify
the edge contribution for a given partition A of the vertex set. As a result,
the choice of hypergraph modularity function is not unique. It depends on how
strongly one believes that a hyperedge is an indicator that some of its vertices
fall into one community. The fraction of vertices of a given hyperedge that be-
long to one community is called its homogeneity (provided it is more than 50%).
In one extreme case, all vertices of a hyperedge have to belong to one of the
parts in order to contribute to the modularity function; this is the strict variant
assuming that only homogeneous hyperedges provide information about under-
lying community structure. In the other natural extreme variant, the majority
one, one assumes that edges are not necessarily homogeneous and so a hyperedge
contributes to one of the parts if more than 50% of its vertices belong to it; in this
case being over 50% is the only information that is considered relevant for com-
munity detection. All variants in between guarantee that hyperedges contribute
to at most one part. Alternatively, a hyperedge could contribute to the part that
corresponds to the largest fraction of vertices. However, this might not uniquely
determine the part and it is more natural to classify such edges as “noise” that
should not contribute to any part anyway. Once the variant is fixed, one needs to
benchmark the corresponding edge contribution using the degree tax computed
for the generalization of the Chung-Lu model to hypergraphs proposed in [4].

Community Detection Algorithm Using Hypergraph Modularity 5

The framework introduced in [4] is more flexible but, for simplicity, let us
concentrate only on the two extreme cases. For d € N and p € [0, 1], let Bin(d, p)
denotes the binomial random variable with parameters d and p. The majority-
based modularity function for hypergraphs is defined as

eM(A; E . volg (A; d
- T3 S 5)). o

A,EA a>2 A,EA

and the strict-based modularity as

qE(A):AieA ;'Ed' > (%)d
T T (m(a))

A,EA a>2 A,EA

In (2), e}(A;) counts the number of hyperedges where the majority of vertices
belong to part A; while in (3), e%(A4;) counts the number of edges where all
vertices are in part A;. The goal is the same as for graphs. We search for a par-
tition A that yields modularity as close as possible to the maximum modularity
q* (H) which is defined as the maximum over all possible partitions of the vertex
set. We can define weighted versions of the above functions (with weights on
hyperedges) the same way as we did for graphs. Finally, note that if H consists
only of hyperedges of size 2 (that is, H is a graph), then both (2) and (3) reduce
to (1).

2.4 Unification and Generalization

In this section, we unify the definitions of modularity functions and put them
into one common framework. This general framework is more flexible and can
be tuned and applied to hypergraphs with hyperedges of different homogeneity.

In order to achieve our goal, we “dissect” the modularity function so that
each “slice” can be considered independently. For each hyperedge size d, we will
independently deal with contribution to the modularity function coming from
hyperedges of size d with precisely ¢ members from one of the parts, where
¢ > d/2. For example, for d = 7 we get 4 slices corresponding to various values
of ¢, namely, ¢ € {4,5,6,7}.

Let us first note that (2) can be rewritten as follows:

d c
YY Y (H<A> 1Ed P<B(dIH<A>):>)
A;€Ad>2c=|d/2]+1 |E| |E| VOIH(V)

where eif(Ai) is the number of hyperedges of size d that have exactly ¢ members
in A;. So ¢}(A) can be viewed as:

=> Z qifl(A),

d>2c=|d/2]+

6 Kaminski, Pratat, and Théberge
where

£ (A) = ‘%' (eilf(Ai) _|E4|-P (Bin (d, ‘\’:;11((1;4;‘))) — c)) .

A€A

Similarly, (3) can be viewed as:

a3 (A) =) il (A).
d>2

Hence, in the majority-based modularity function ¢}, each slice is weighted
equally whereas for the strict-based definition g, only the slices with ¢ = d are
considered.

In order to unify the definitions, our new modularity function is controlled
by hyper-parameters weq € [0,1] (d > 2, [d/2] +1 < ¢ < d). For a fixed set of
hyper-parameters, we simply define

d
)= Y wea g(A). (4)

d>2 c=|d/2]+1

This definition gives us more flexibility and allows as to value some slices more
than others. In our experiments, we restricted ourselves to the following family
of hyper-parameters that gave us enough flexibility but is controlled only by 3
variables. (In fact, we will argue later on that one of them, namely ppax, can
be set to one.) Let o € [0,00), and prmin, Pmax € (0.5, 1] such that pmin < Pmax-
Then,

We g = {(C/d)a if [dpmin] < ¢ < [dpmax]-)

0 otherwise.

Parameters pmin and pmax are related to the assumption on the minimal
and, respectively, maximal “pureness” of hyperedges and depends on the level
of homogeneity of the network. In particular, pyna.x may be bounded away from
one if one expects that “totally pure” (that is, occurring in a single community)
hyperedges are unlikely to be observed in practice. Finally, parameter o governs
the smooth transition between the relative informativeness between contributing
hyperedges of different levels of “pureness”.

As a result, after adjusting the hyper-parameters accordingly, (4) can be
used for the two extreme cases (majority-based and strict-based) and anything
in between. Moreover, (4) may well approximate the graph modularity for the
corresponding 2-section graph H[y). Indeed, if ¢ vertices of a hyperedge e of size
d and weight w(e) fall into one part of the partition A, then the contribution
to the graph modularity is w(e)(5)/(le| — 1) (in the variant where the degrees
are preserved) or w(e)(5)/(15) = w(e)(c/le])? (if the total weight is preserved).
Hence, the hyper-parameters can be adjusted to reflect that. The only differ-
ence is that (4) does not allow to include contributions from parts that contain
at most d/2 vertices which still contributes to the graph modularity of Hpy.
However, most of the contribution comes from large values of ¢ and so the two
corresponding measures are close in practice.

Community Detection Algorithm Using Hypergraph Modularity 7

3 Algorithms

In this paper, we experiment with four clustering algorithms that can handle
networks represented as hypergraphs. The last two of them are two prototypes
of our hybrid and flexible framework under development. More advanced version
will be presented in the forthcoming papers but some spoilers are provided in
Section 6.

3.1 Louvain — Graph-Based Algorithm

As discussed in Section 2.2, in order to find communities in a hypergraph H,
one may reduce the problem to graphs by considering its 2-section (weighted)
graph Hjs and then try to find a partition that maximizes the graph modularity
function (1) for Hjy. One of the mostly used unsupervised algorithms for de-
tecting communities in graphs is the Louvain algorithm [1]. It is a hierarchical
clustering algorithm that tries to optimize the modularity function (modularity
optimization phase), merge communities into single vertices (community aggre-
gation phases), and then it recursively executes the modularity clustering on the
condensed graphs until no increase in modularity is possible.

All clustering algorithms are heuristic in nature and only aim to find “good
enough” partition without the hope of finding the best one. In particular, in
order to be able to search different parts of the solution space, Louvain is a
randomized algorithm that orders all vertices randomly before the modularity
optimization phase takes place. Unfortunately, it means that the algorithm is not
stable and outcomes of it may vary significantly between independent runs. In
order to solve this issue, the ensemble clustering algorithm for graphs (ECG) [12]
can be used instead. This algorithm, known to have good stability, is based on
the Louvain algorithm and the concept of consensus clustering.

3.2 Kumar et al. — Refinement of Graph-Based Algorithm

The following refinement of Kumar et al. [6,7] generally gives better results
than the original Louvain algorithm on several synthetic and real-world exam-
ples. However, this algorithm is not truly hypergraph-based but should rather
be viewed as a refinement of a graph-based approach guided by the original hy-
pergraph. In this algorithm, one first builds a degree-preserving weighted graph
G based on the original hypergraph H. Then, the Louvain algorithm is applied
to G that tries to maximize the graph modularity function (1). After that, hy-
pergraph H is revisited and hyperedges are carefully re-weighted based on their
measure of homogeneity between the obtained parts. These steps are repeated
until convergence.

3.3 LS and HA — Our Prototypes

All successful algorithms based on graph modularity optimization (including
Louvain, ECG, and Kumar et al. mentioned above) start the same way. Ver-
tices are initially put into their own clusters, and a basic move is to consider

8 Kaminski, Pratat, and Théberge

changing the cluster of a vertex to one of its neighbours’ if it increases the mod-
ularity function. Unfortunately, trying to apply this strategy to hypergraphs is
challenging. Indeed, if one starts from all vertices in their own community, then
changing the cluster of only one vertex will likely have no positive effect on the
modularity function unless edges of small size are present. For example, it takes
several moves for a hyperedge of size d > 4 to have the majority of its vertices
to fall into the same community.

In order to solve this problem, we propose to use the graph modularity func-
tion g (A) defined in (1) to “lift the process from the ground” but then switch
to the hypergraph counterpart qr(A) defined in (4). There are many ways to
achieve it and one of them is mentioned in Section 6. For experiments provided
in this paper, we consider two prototypes: the first one (HA) switches to hyper-
graphs as soon as possible whereas the second one (LS) stays with graphs for
much longer. The first algorithm, that we call HA (for hybrid algorithm), works
as follows:

1. Form small, tight clumps by running ECG using ¢c(A) on the degree-
preserving graph G built from H. Prune edges below the threshold value
of 70% (number of votes), and keep connected components as initial clumps.

2. Merge clumps (in a random order) if gy (A) improves. Repeat until no more
improvement is possible.

3. Move one vertex at a time (in a random order) to a neighbouring cluster if
it improves g . Repeat until convergence.

The second algorithm, that we call LS (for last step) runs Kumar at al. and only
does the last step (step 3.) above.

Finally, recall that the hypergraph modularity function gz (A) is controlled
by hyper-parameters w. 4 but we restrict ourselves to a family of such parameters
guided by parameters «, pmin, and pmax; see (5). Hence, we will refer to the above
algorithms as H A(a, pmin, Pmax) and, respectively, LS (&, pmin, Pmax)-

4 Synthetic Random Hypergraph Model

In order to test various algorithms in a controlled, synthetic environment, we pro-
pose a simple model of a random hypergraph with communities. Such synthetic
networks with an engineered ground truth are commonly used to evaluate the
performance of clustering algorithms. There are many graph models of complex
networks, including the well-known and widely used LFR, benchmark graph [9]
and our own ABCD [5]. On the other hand, very little has been done with hy-
pergraphs. As we aim for a simple model and the degree distribution should not
affect our exploratory experiments, we propose a model that is inspired by the
classical stochastic block model. Designing more realistic model and performing
experiments on it is left for future research.

A random hypergraph H consists of K communities; the kth community has
ng members so the total number of vertices in H is equal to n = Z,If:l Ng.
For 2 < d < M, mg is the number of hyperedges of size d; in particular, M

Community Detection Algorithm Using Hypergraph Modularity 9

is the size of a largest hyperedge and m =)~ ,.,mg is the total number of
hyperedges. Hyperedges are partitioned into community and noise hyperedges.
The expected proportion of noise edges is u € [0, 1], the parameter that controls
the level of noise. Each community hyperedge will be assigned to one community.
The expected fraction of hyperedges that are assigned to the kth community is
Pk; in particular, Zszl pr = 1. Community hyperedges that are assigned to the
kth community will have majority members from that community. On the other
hand, noise hyperedges will be “sprinkled” across the whole hypergraph.

The hyperedges of ‘H are generated as follows. For each edge size d, we in-
dependently generate mgy edges of size d. For each edge e of size d, we first
decide if e is a community hyperedge or a noise. It is a noise with probability
w; otherwise, it is a community hyperedge. If e turns out to be a noise, then
we simply choose its d vertices uniformly at random from the set of all sets
of vertices of size d, regardless to which community they belong to. On the
other hand, if e is a community edge, then we assign it to community k& with
probability px. Then, we fix the homogeneity value 7. of hyperedge e that is
the integer-valued random variable taken uniformly at random from the homo-
geneity set {[Tmind], [Tmind] +1, ..., [Tmaxd] }. The homogeneity set depends on
parameters Ty, and Tyax of the model that satisfy 0.5 < Tiin < Tmax < 1, and
is assumed to be the same for all edges. Finally, members of e are determined
as follows: 7. vertices are selected uniformly at random from the kth commu-
nity, and the remaining vertices are selected uniformly at random from vertices
outside of this community.

As mentioned above, the proposed model is aimed to be simple but it tries
to capture the fact that many real-world networks represented as hypergraphs
exhibit various levels of homogeneity or the lack of thereof. Moreover, some
networks are noisy with some fraction of hyperedges consisting of vertices from
different communities. Such behaviour can be controlled by parameters 7yin,
Tmax, and p. It gives us a tool to test the performance of our algorithms for
various scenarios. A good algorithm should be able to adjust to any scenario in
an unsupervised way.

5 Experiments

For our experiments we use the synthetic random hypergraph model intro-
duced in Section 4. It contains 5 communities, each consisting of 40 vertices:
(n1,ne,...,n5) = (40,40,...,40). The distribution of hyperedge sizes is as
follows: (m,ma,...,m11) = (30,30, 30,30, 30, 30, 30, 20, 20, 20). The expected
fraction of edges that belong to a given cluster is equal to 0.2: (p1,pa,...,p5) =
(0.2,0.2,...,0.2). The lower bound for the homogeneity interval is fixed to be
Tmin = 0.65. We performed experiments on four hypergraphs with the remain-
ing two parameters fixed to: a) (i, Tmax) = (0,0.65), b) (¢, Tmax) = (0,0.8),
¢) (4, Tmax) = (0,1), d) (@, Tmax) = (0.1,0.80). All of them lead to the same
conclusion so we present figures only for hypergraph # that is obtained with
parameters d); the remaining ones can be found in the appendix.

10 Kaminski, Pratat, and Théberge

We test the two known algorithms, Louvain and Kumar et al., as well as
our two prototypes, LS and HA. For each prototype, we test three different sets
of hyper-parameters. In the first variant, we include contribution to the hyper-
graph modularity function that comes from all slices, that is, we fix ppin =
0.5 = 0.5 + € (for some very small ¢ > 0 so that all “slices” of the mod-
ularity function are included) and pmax = 1. For simplicity, we fix a = 1.
For convenient notation, let LS = LS(1,0.57,1) and HA = HA(1,0.5%,1).
For the second variant, we use the knowledge about the hypergraph (ground
truth) and concentrate only on slices that are above the lower bound for the
homogeneity set, that is, we fix ppmin = Tmin = 0.65 but keep pna.x = 1. Let
LS+ = LS(1,0.65,1) and HA+ = HA(1,0.65,1). Finally, we use the complete
knowledge about the generative process of our synthetic hypergraph and fix
Pmin = Tmin = 0.65 and pmax = Tmax = 0.80. The corresponding algorithms are
denoted by LS++ = LS(1,0.65,0.85) and HA++ = HA(1,0.65,0, 85).

In the first experiment, we run each algorithm on H and measure its perfor-
mance using the Adjusted Mutual Information (AMI). AMI is the information
theory measure that allows us to quantify the similarity between two partitions
of the same set of nodes, the partition returned by the algorithm and the ground
truth. Since all algorithms involved are randomized, we run them 100 times and
present a box-plot of the corresponding AMIs in Figure 1(a). We see that LS
and HA give comparable results as the original Louvain and Kumar et al. is
consistently better. On the other hand, when our prototypes are provided with
a knowledge about the homogeneity of H, they perform very well, better than
Kumar et al. There is a less difference between + and ++ variants of the two
prototypes. This is a good and desired feature as “pure” hyperedges should not
generally be penalized unless there is some known external hard constraint that
prevents hyperedges to be homogeneous. On the other hand, if large hyperedges
are non-homogeneous, then the quality of + and ++ should be similar as these
“slices” barely contribute to the modularity function anyway. Note that this
observation does not apply to small hyperedges; in the extreme situation when
dealing with graphs with hyperedges of size 2, any choice of ppax > Pmin leads
to exactly the same results.

The previous experiment shows that knowing some global statistics (namely,
how homogeneous the network is) significantly increases the performance of our
prototypes. However, typically such information is not available and the algo-
rithm has to learn such global statistics in an unsupervised way. In our second
experiment, we test if this is possible. We take a partition returned by Kumar
et al. and investigate all hyperedges of H. For each hyperedge e we check if at
least 7 > 0.5 fraction of its vertices belong to some community. We compare it
with the corresponding homogeneity value based on the ground truth. The two
distributions are presented in in Figure 1(c) and are almost indistinguishable.
This suggests that learning the right value of pp;, should be possible in practice.

Finally, we tested the performance of our prototypes for various choices of
parameter «. + and ++ variants turn out to be not too sensitive whereas LS
and HA increase their performance as « increases—Figure 1(b). It is perhaps

Community Detection Algorithm Using Hypergraph Modularity 11

1.00 4

0.95

21 b
:f gt

oo T

I
LT "
I o

0.86 — s
--- LS+
0844 — e LS++

%
!

AMI

0.651 ©

T T T T T : T T - - - - - - - - .
Louv. Kumar LS LS+ LS++ HA HA+ HA++ 06 07 08 09 1.0 1.1 12 13 14
alpha

(a) AMI (b) AMI as a function of «

—e— Kumar
—e— GroundTruth

o o o o
o Y @ ©

P(homegeneity > T)
s o
P

o
w

o
N

0.5 0.6 0.7 0.8 0.9
T

(c) True/experimental homogeneity

Fig. 1: Experiments on hypergraph H: p = 0.1, 7nin = 0.65, Tnax = 0.8.

not too surprising as increasing « puts more weight to more homogeneous hy-
peredges which has similar effect to tuning parameter ppi,. More comprehensive
experiments are to be performed.

6 Conclusions and Future Directions

In this paper, we propose two prototype algorithms and do some simple experi-
ments that show their potential (of course, we experimented much more and most
experiments are encouraging). Clearly more work needs to be done. For example,
we showed that our prototypes work very well but only once proper tuning of
the hyper-parameters is done. Initial experiments show that such tuning can be
done in an unsupervised way but details need to be fixed. One important thing
that we keep in mind is a potential risk of a solution to be overfitted.

We proposed two ways to solve a problem with initial phase of any algorithm
based on the hypergraph modularity function, our two prototypes. Another op-
tion is to embed vertices of the 2-section graph in a geometric space such that
nearby vertices are more likely to share an edge than those far from each other.
Then, for example, the classical k-means algorithm with some large value of k
may be used to find the initial partition and then one can switch to the hyper-
graph based algorithms optimizing the hypergraph modularity function.

12 Kaminski, Pratat, and Théberge

Hyperedge re-weighting scheme proposed by Kumar et al. seems to work very
well. This is an independent component that can be easily incorporated within
our framework. We aim for a flexible framework that can mimic Louvain, ECG,
Kumar et al., and anything in between, but is additionally enhanced by the
opportunities provided by the hypergraph modularity function.

The algorithm has to be scalable so that we may run it on large hypergraphs.
The updates of the hypergraph modularity function can be done fast but it
requires a proper design/usage of dedicated data structures and algorithms. We
currently implement such a code in the Julia language.

Finally, on top of experimenting on large synthetic hypergraphs we plan to
perform experiments on real-world networks represented as hypergraphs.

References

1. V.D. Blondel, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of commu-
nities in large networks. Journal of Statistical Mechanics: Theory and Experiment.
2008; 10: P10008.

2. Clauset A, Newman MEJ, Moore C. Finding community structure in very large
networks. Phys. Rev. E. 2004; 70: 066111.

3. Fortunato S, Barthelemy M. Resolution limit in community detection. Proc. Natl.
Acad. Sci. USA. 2007: 104: 36-41.

4. Kaminski B, Poulin V, Pralat P, Szufel P, Théberge F. Clustering via Hypergraph
Modularity. PLoS ONE 14(11): e0224307

5. Kaminiski B, Pratat P, Théberge F, Artificial Benchmark for Community De-
tection (ABCD) — Fast Random Graph Model with Community Structure,
arXiv:2002.00843.

6. Kumar T, Vaidyanathan S, Ananthapadmanabhan H, Parthasarathy S, Ravin-
dran B. A New Measure of Modularity in Hypergraphs: Theoretical Insights and
Implications for Effective Clustering. In International Conference on Complex Net-
works and Their Applications. Complex Networks 2019, pp. 286-297. Springer,
Cham, 2019.

7. Kumar T, Vaidyanathan S, Ananthapadmanabhan H, Parthasarathy S, Ravin-
dran B. Hypergraph clustering by iteratively reweighted modularity maximization.
Applied Network Science 5, (2020).

8. Lancichinetti A, Fortunato S. Limits of modularity maximization in community
detection. Phys. Rev. E. 2011; 84: 066122.

9. Lancichinetti A, Fortunato S, Radicchi F. Benchmark graphs for testing community
detection algorithms. Physical Review E, 78, 2008.

10. Newman MEJ. Fast algorithm for detecting community structure in networks.
Phys. Rev. E. 2004; 69: 066133.

11. Newman MEJ, Girvan M. Finding and evaluating community structure in net-
works. Phys. Rev. E. 2004; 69: 026-113.

12. Poulin V., Théberge F. (2019) Ensemble Clustering for Graphs. In: Aiello L., Cher-
ifi C., Cherifi H., Lambiotte R., Li6 P., Rocha L. (eds) Complex Networks and Their
Applications VII. COMPLEX NETWORKS 2018. Studies in Computational In-
telligence, vol 812. Springer, Cham.

13. Théberge F. Summer School on Data Science Tools and Techniques in Modelling
Complex Networks. https://github.com/ftheberge/ComplexNetworks2019/

Community Detection Algorithm Using Hypergraph Modularity 13

7 Appendix

AMI

AMI

1.00 4

0.95

0.90

0.85 1

0.80

0.75 1

0.70 1

0.65

0.60 q

Louv. Kumar LS

LS+ LS++ HA HA+ HA++

(a) =0, Tmax = 0.65

s

L1] O[]

o 0 oob——

]
é

1.00 1

0.95

0.90

AMI

0.85

0.80

0.751

1.00 1

0.95

0.90

0.85

AMI

0.80 1

0.75

0.70

0.65

.
I

7

[e]

I

—{H

o ®®

—1]
{1

Louv. Kumar LS

LS+ LS++ HA HA+ HA++

(b) =10, Tmax = 0.8

11
Iy

o]

T
I

o]

1O
I

&4

o

o

o
o
T T T T T T
Louv. Kumar LS LS+/LS++ HA HA+/HA++

(¢) p=0, Tmax =1

T T T
Louv. Kumar LS

T T T T T
LS+ LS++ HA HA+ HA++

(d) gt = 0.1, Tmax = 0.8

Fig.2: AMI: Experiments on 4 hypergraphs with 7,;, = 0.65.

14 Kaminski, Pratat, and Théberge

0.96 1 0.96 1 o e
0.94 4 0.94
0.92 4 0.92
s J S 0.90
Z 0.90 2
0.88 0.88 1
0.86 1 0.86
0.84 0.84
T T T T T T T T T T T T T T T T T T
06 07 08 09 10 11 12 13 14 06 07 08 09 10 11 12 13 14
alpha alpha
(a) LS (b) HA
Fig.3: a: p = 0.1, Tpax = 0.8
1.0 —8— Kumar 1.0 —8— Kumar
—e— GroundTruth 094 —e— GroundTruth
C o
» 08 A 038
2 z
E 2074
2o 2
9] @ 0.6
o o
@ @
€ 04 £ 057
) S
< £ 0.44
a a
0.2 034
T T T T T 02+ T y T T
0.5 06 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
T T
(a) £ =0, Tmax = 0.65 (b) =0, Tmax = 0.8
10 —8— Kumar 0.9 —8— Kumar
—e— GroundTruth —e— GroundTruth
09 T 0.8
A A o7
Zos F
9] @ 0.6
o7 @
2 2051
é 0.6 E 0.4+
< =
[& 03
0.2
o5 06 07 08 09 05 0’6 07 o8 0o
T T

(€) p=0, Tmax = 1 (d) £ =0.1, Tmax = 0.8

Fig.4: True/experimental homogeneity: Experiments on 4 hypergraphs with
Tmin — 065

