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Abstract

In this paper, we study the existence of perfect matchings and Hamiltonian cycles in the
preferential attachment model. In this model, vertices are added to the graph one by one, and
each time a new vertex is created it establishes a connection with m random vertices selected
with probabilities proportional to their current degrees. (Constant m is the only parameter
of the model.) We prove that if m ≥ 1,253, then asymptotically almost surely there exists
a perfect matching. Moreover, we show that there exists a Hamiltonian cycle asymptotically
almost surely, provided that m ≥ 29,500. One difficulty in the analysis comes from the fact
that vertices establish connections only with vertices that are “older” (i.e. are created earlier
in the process). However, the main obstacle arises from the fact that edges in the preferential
attachment model are not generated independently. In view of that, we also consider a simpler
setting—sometimes called uniform attachment—in which vertices are added one by one and
each vertex connects to m older vertices selected uniformly at random and independently of all
other choices. We first investigate the existence of perfect matchings and Hamiltonian cycles in
the uniform attachment model, and then extend the argument to the preferential attachment
version.

1 Introduction

Two of the most natural questions concerning models of sparse random graph are whether or
not a random instance is Hamiltonian or has a perfect matching. The hamiltonicity threshold
for the basic models of random graphs G(n,m) and G(n, p) was established quite precisely by
Komlós and Szemerédi [24]. (See Bollobás [7], Ajtai, Komlós and Szemerédi [1] and Bollobás and
Frieze [8] for refinements.) Perfect matchings were first investigated (using Tutte’s theorem) by
Erdős and Rényi [18]. (A simpler argument using expansion properties was provided by Bollobás
and Frieze [8].)

The existence of perfect matchings and Hamiltonian cycles has also been investigated for other
relevant models of random graphs. For instance, Dı́az, Mitsche and Pérez-Giménez [14] obtained
the hamiltonicity threshold for the random geometric graph Gn,r, which is defined as follows: the
vertices of Gn,r are n points chosen independently and uniformly at random from the unit square,
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and any two vertices are joined by an edge if and only if they are within distance r from each
other in the square. The result in [14] was further strengthened by Balogh, Bollobás, Krivelevich,
Müller and Walters [2] and Müller, Pérez-Giménez and Wormald [29], who gave a more precise
characterization of the emergence of the first Hamiltonian cycle in the random geometric graph.
(The analogous result for perfect matchings follows from a more general statement in [29].)

Another well-studied sparse random graph is the random regular graph. Let Gn,d denote a graph
chosen uniformly at random from the set of d-regular graphs with vertex set [n]. Robinson and
Wormald [34] showed that asymptotically almost surely (a.a.s.) Gn,d is Hamiltonian for constant
d ≥ 3. (Here and in similar statements, an event occurs a.a.s. if it occurs with probability tending
to 1 as n tends to infinity.) Allowing d to grow with n presented some challenges, but they have now
been resolved (see Cooper, Frieze and Reed [13] and Krivelevich, Sudakov, Vu and Wormald [27]).

Yet another random graph model extensively studied from that perspective is the so-called
m-out graph. This time, each vertex v ∈ [n] independently chooses m random out-neighbours
to create the random digraph Dn

m−out. We then obtain Gnm−out by ignoring orientations. The
hamiltonicity of Gnm−out was first discussed by Fenner and Frieze [19]. They showed that Gn23−out
is a.a.s. Hamiltonian. This was improved to Gn10−out by Frieze [20] and to Gn5−out by Frieze and
 Luczak [22]. Cooper and Frieze [12] showed that Gn4−out is a.a.s. Hamiltonian, and the last drop
was squeezed by Bohman and Frieze who established that Gn3−out is a.a.s. Hamiltonian [6].

In this paper, we study the preferential attachment model, which, arguably, is the best-known
model for complex networks. The first consideration of this model goes back to 1925 when Yule used
it to explain the power-law distribution of the number of species per genus of flowering plants [36].
The application of the model to describe the growth of the World Wide Web was proposed by
Barabási and Albert in 1999 [3]. We will use the following precise definition of the model, as
considered by Bollobás and Riordan in [9] as well as Bollobás, Riordan, Spencer, and Tusnády [10].

Let G1
1 be the graph with one vertex, 1, and one loop. The random graph process (Gt1)t≥1 is

defined inductively as follows. Given Gt−11 , we form Gt1 by adding vertex t together with a single
edge between t and i, where i is selected randomly with the following probability distribution:

Pr(i = s) =

{
deg(s, t− 1)/(2t− 1) 1 ≤ s ≤ t− 1,

1/(2t− 1) s = t,

where deg(s, t− 1) denotes the degree of vertex s in Gt−11 (i.e. the degree of s “at time t− 1”, after
vertex t − 1 was added). In other words, we send an edge e from vertex t to a random vertex i,
where the probability that a vertex is chosen as i is proportional to its degree at the time, counting
e as already contributing one to the degree of t. In particular, each vertex may only be attached
to itself or to an “older” vertex (i.e. a vertex created earlier in the process).

For m ∈ N \ {1}, the process (Gtm)t≥1 is defined similarly with the only difference that m edges
are added to Gt−1m to form Gtm (one at a time), counting previous edges as already contributing
to the degree distribution. Equivalently, one can define the process (Gtm)t≥1 by considering the
process (Gt1)t≥1 on a sequence 1′, 2′, . . . of vertices; the graph Gtm is formed from Gtm1 by identifying
vertices 1′, 2′, . . . ,m′ to form 1, identifying vertices (m+ 1)′, (m+ 2)′, . . . , (2m)′ to form 2, and so
on. Although (Gtm)t≥1 is an infinite-time random process, we will restrict our attention to a finite
number of time steps and consider (Gtm)1≤t≤n or Gnm for large n. Note that in this model Gnm is in
general a multigraph, possibly with multiple edges between two vertices (if m ≥ 2) and self-loops.
For our purpose, as we are interested in Hamiltonian cycles and perfect matchings, loops can be
ignored and multiple edges between two nodes can be treated as a single edge.

Perhaps the most remarkable feature of the preferential attachment mechanism is that it pro-
vides a simple illustration of the rich-get-richer principle, by which vertices that acquire higher
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degree early in the process use this accumulated advantage to attract more edges during the pro-
cess. This results in a heavy-tailed degree sequence with some vertices of very high degree, which
do not typically occur in the previous models of random graphs described above. Indeed, it was
shown in [10] that, for any constant m ∈ N, a.a.s. the degree distribution of Gnm follows a power
law: the number of vertices with degree k falls off as (1 + o(1))ck−3n for some explicit constant
c = c(m) and large k ≤ n1/15.

For the purpose of this paper, the case m = 1 is easy to analyze, since Gn1 is a forest. Each node
sends an edge either to itself or to an earlier node, so the graph consists of components which are
trees, each with a loop attached. The expected number of components is then

∑n
t=1 1/(2t − 1) ∼

(1/2) log n and, since events are independent, we derive that a.a.s. there are (1/2 + o(1)) log n
components in Gn1 by Chernoff’s bound. In particular, Gn1 is a.a.s. disconnected and thus contains
no Hamiltonian cycle. A similar argument shows that a.a.s. many components of Gn1 have an odd
number of vertices, so Gn1 has no perfect matching. In view of this, we will restrict our attention
throughout the paper to the case m ≥ 2, for which it is known [9] that Gnm is a.a.s. connected.

We finally consider the uniform attachment graph Gnm−old on vertex set [n], which can be
thought of as an intermediate model between the m-out and preferential attachment models. In
this setting, vertex 1 has m directed loops. Each vertex v ∈ [n] \ {1} independently chooses
m random out-neighbours (with repetition) from [v − 1], to create the random digraph Dn

m−old.
We then obtain Gnm−old by ignoring orientations. (Note the sole purpose of having loops in the
definition is to ensure that the number of edges of Gnm−old is precisely mn, but loops and multiple
edges play no role in the existence of perfect matchings or Hamiltonian cycles and thus may be
ignored.) We may also regard this model as a random process (Gtm−old)1≤t≤n, in which at each
step a new vertex is created and attached only to older vertices (as in preferential attachment),
but the choice of these vertices is uniform (as in the m-out model). It turns out that the fact that
edges are always generated towards older vertices causes one of the main difficulties in our analysis,
which motivates a unified treatment for uniform and preferential attachment. In fact, we will often
examine the uniform attachment case first for simplicity, and then adapt the argument to the
non-uniform (rich-get-richer) distribution in preferential attachment. However, a more challenging
and technical problem we encountered in transferring the result to not-uniform model was the fact
that edges generated in the preferential attachment model are not generated independently. The
two-round exposure technique (explained in Subsection 2.3), used in the argument, has to be dealt
with care. The lemmas needed to overcome all difficulties might be interesting on their own rights,
and could be useful in future applications of this powerful technique.

In this paper, we prove that there exists a constant c ∈ N such that a.a.s. both Gnm and Gnm−old
have a Hamiltonian cycle, provided that m ≥ c. Of course, the existence of a Hamiltonian cycle
implies the existence of a perfect matching1. However, we treat both properties independently in
order to obtain smaller constants for the weaker property. Specifically, for perfect matchings we
get c = 159 for Gnm−old (Theorem 13) and c = 1,253 for Gnm (Corollary 14). For Hamiltonian cycles
we get c = 3,214 for Gnm−old (Theorem 16) and c = 29,500 for Gnm (Corollary 17). We tried to
tune parameters in the argument to get the corresponding c’s as small as possible but clearly, with
more effort, one may improve them further. However, it seems that with the existing argument it
is impossible to find the threshold c for any of the two properties and any of the two models. In
particular, is it true that Gn3 or Gn3−old are a.a.s. Hamiltonian? This remains an open problem for
now. On the other hand, all we managed to show is that a.a.s. Gn2 has no perfect matching (and so
also no Hamiltonian cycle) and that Gn2−old has no Hamiltonian cycle (see discussion in Section 4).

1In the sequel, a perfect matching will denote a matching of size bn/2c (thus allowing one unmatched vertex if n
is odd).
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2 Preliminaries

2.1 Basic definitions and notation

In order to state some of the intermediate results in the paper, it is convenient to extend the
definitions of Gnm−old and Gnm given in Section 1 to the case m = 0 by interpreting both Gn0−old
and Gn0 as the graph on vertex set [n] and no edges. Fix any constant m ∈ Z≥0. For any vertices
v, w ∈ [n] satisfying w < v, we say that w is older than v (or v is younger than w), since w is
created earlier than v in the process leading to Gnm−old or Gnm. We say that an edge e = vw stems
from v if w ≤ v (or equivalently e is one of the m edges that attach v to younger vertices or to v
itself at the step of the process when v is added to the graph).

Given a graph G = (V,E) and a set C ⊆ V , we will use N(C) to denote the neighbourhood of
C; that is,

N(C) = {w ∈ V \ C : vw ∈ E for some v ∈ C},

and we write N(v) = N({v}) for simplicity. All asymptotics throughout are as n → ∞ (we
emphasize that the notations o(·) and O(·) refer to functions of n, not necessarily positive, whose
growth is bounded). We also use the notations f � g for f = o(g) and f � g for g = o(f).
For simplicity, we will write f(n) ∼ g(n) if f(n)/g(n) → 1 as n → ∞ (that is, when f(n) =
(1 +o(1))g(n)). Since we aim for results that hold a.a.s. (see the definition in the previous section),
we will always assume that n is large enough. We often write, for example, Gnm when we mean a
graph drawn from the distribution Gnm. Given k ∈ Z≥0, we define k!! = k(k − 2)(k − 4) · · · 3 · 1 for
odd k and k!! = k(k − 2)(k − 4) · · · 4 · 2 for even k. For any x ∈ R+, we use log x to denote the
natural logarithm of x. Finally, [k] = {1, 2, . . . , k} for any k ∈ Z≥0 (with [0] = ∅).

2.2 Useful bounds

Most of the time, we will use the following version of Chernoff’s bound. Suppose that X ∈ Bin(n, p)
is a binomial random variable with expectation µ = np. If 0 < δ < 1, then

Pr[X < (1− δ)µ] ≤ exp

(
−δ

2µ

2

)
,

and if δ > 0,

Pr[X > (1 + δ)µ] ≤ exp

(
− δ2µ

2 + δ

)
.

However, at some point we will need the following, stronger, version: for any t ≥ 0, we have

Pr[X ≥ µ+ t] ≤ exp

(
−µϕ

(
t

µ

))
, (1)

and for any 0 ≤ t ≤ µ, we have

Pr[X ≤ µ− t] ≤ exp

(
−µϕ

(
−t
µ

))
, (2)

where
ϕ(x) = (1 + x) log(1 + x)− x. (3)

Moreover, let us mention that all of these bounds hold for the general case in which X is a sum
of Bernoulli(pi) indicator random variables with (possibly) different pi. These inequalities are well
known and can be found, for example, in [23].
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We will also use a standard martingale tool: the Hoeffding-Azuma inequality. As before, see
for example [23] for more details. Let X0, X1, . . . be a martingale. Suppose that there exist
c1, c2, . . . , cn > 0 such that |Xk −Xk−1| ≤ ck for each 1 ≤ k ≤ n. Then, for every x > 0,

Pr[Xn > EXn + x] ≤ exp

(
− x2

2
∑n

k=1 ck
2

)
. (4)

The Hoeffding-Azuma inequality can be generalized to include random variables close to mar-
tingales. One of our proofs, proof of Lemma 5, will use the supermartingale method of Pittel et
al. [33], as described in [35, Corollary 4.1]. Let X0, X2, . . . , Xn be a sequence of random variables.
Suppose that there exist c1, c2, . . . , cn > 0 and b1, b2, . . . , bn > 0 such that

|Xk −Xk−1| ≤ ck and E[Xk −Xk−1|Xk−1] ≤ bk

for each 1 ≤ k ≤ n. Then, for every x > 0,

Pr

[
For some t with 0 ≤ t ≤ n: Xt −X0 >

t∑
k=1

bk + x

]
≤ exp

(
− x2

2
∑n

k=1 ck
2

)
. (5)

Finally, we include the following auxiliary lemma that will simplify some calculations in Lemma 4.
(We use the convention that the empty product is equal to 1 and the empty sum is equal to 0.)

Lemma 1. Given any integers a = a(n) and b = b(n) such that 0 ≤ a ≤ b, define

ca,b =
b∏

i=a+1

(
2i− 1

2i

)
.

Then,
ca,b = eO(ε)

√
a/b,

where ε = 1/(a + 1), and the constants involved in the O() notation do not depend on a or b.
Moreover

b∑
i=a+1

ca,i
2 = eO(ε)a log(b/a).

Proof. The case a = b is trivial, so we may assume a < b. Then,

ca,b =

b∏
i=a+1

(
1− 1

2i

)
=

b∏
i=a+1

exp

(
− 1

2i
+O(i−2)

)
= exp

(
−

b∑
i=a+1

1

2i
+O(ε)

)

= exp

(
−1

2
log(b/a) +O(ε)

)
= eO(ε)

√
a/b,

where we used the fact that the harmonic sum satisfies
∑n

i=1 1/i = log n+γ+O(1/n). This proves
the first claim of the lemma. The following calculation yields the second claim:

b∑
i=a+1

ca,i
2 = eO(ε)a

b∑
i=a+1

1/i = eO(ε)a log(b/a).
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2.3 Two-round exposure

Fix constants m,m1,m2 ∈ Z≥0 such that m = m1 + m2, and recall the definitions in Section 2.1.
For each vertex v ∈ [n] of either model Gnm−old or Gnm, we colour blue the first m1 edges stemming
from v and colour red the m2 remaining ones. We denote the resulting edge-coloured versions of
Gnm−old and Gnm by Gnm1,m2−old and Gnm1,m2

, respectively. (Note that these edge colourings are not

proper in the usual graph-theoretical sense.) Let π1
(
Gnm1,m2−old

)
be the graph on vertex set [n]

whose edges are precisely the blue edges of Gnm1,m2−old, and symmetrically let π2
(
Gnm1,m2−old

)
be

the graph with the red edges of Gnm1,m2−old. Moreover, let π
(
Gnm1,m2−old

)
be the union of graphs

π1
(
Gnm1,m2−old

)
and π2

(
Gnm1,m2−old

)
— or simply Gnm1,m2−old — after removing the colours from

the edges. By construction, π
(
Gnm1,m2−old

)
is distributed as Gnm−old. Finally, graphs π1

(
Gnm1,m2

)
,

π2
(
Gnm1,m2

)
and π

(
Gnm1,m2

)
are defined analogously by replacing Gnm1,m2−old by Gnm1,m2

.

Observe that, for each σ ∈ {1, 2}, πσ
(
Gnm1,m2−old

)
has the same distribution as Gnmσ−old

(so we can identify πσ
(
Gnm1,m2−old

)
and Gnmσ−old), and moreover the graphs π1

(
Gnm1,m2−old

)
and

π2
(
Gnm1,m2−old

)
are independent of each other. In other words, the union of two independent uni-

form attachment graphs Gnm1−old and Gnm2−old is distributed as Gnm−old with m = m1 + m2. This
allows us to build Gnm−old by first exposing the edges of Gnm1−old (blue edges) and then adding the
edges of Gnm2−old (red edges). This technique is know as the two-round exposure method, and will
be repeatedly used in Section 3 to build a perfect matching and a Hamiltonian cycle in Gnm−old.

Unfortunately, the analogous property does not hold for the preferential attachment model
(unless2 m1 or m2 equals 0). That is, if m1,m2 > 0, then Gnm−old is not distributed as the union
of independent Gnm1−old and Gnm2−old. This is due to the fact that, when a new edge stemming
from a vertex v is created, the choice of the second endpoint depends on all the edges (both
blue and red) previously added during the process. We want to use a version of the two-round
exposure technique, and build the preferential attachment graph Gnm as the union of π1

(
Gnm1,m2

)
and π2

(
Gnm1,m2

)
. However (again if m1,m2 > 0), for each σ ∈ {1, 2}, the graph πσ

(
Gnm1,m2

)
is not

distributed as Gnmσ , and moreover π1
(
Gnm1,m2

)
and π2

(
Gnm1,m2

)
are not independent of each other.

In spite of all these obstacles, our argument will analyze π1
(
Gnm1,m2

)
and π2

(
Gnm1,m2

)
separately,

in a similar fashion as we deal with Gnm1−old and Gnm2−old for the uniform attachment model. This

time though, we will need to use properties of π1
(
Gnm1,m2

)
that hold a.a.s. conditional on a given

π2
(
Gnm1,m2

)
and vice-versa.

2.4 Relationship between Gn
m and Gn

m−old

In this section, we will analyze some basic features of Gnm−old and πσ
(
Gnm1,m2

)
, where σ ∈ {1, 2}

and m,m1,m2 are fixed nonnegative integers such that m = m1 + m2. As already mentioned, if
m2 = 0 then π1

(
Gnm1,m2

)
is simply the preferential attachment model Gnm. Hence, various lemmas

stated below for Gnm1,m2
also apply to Gnm.

Given any vertex v ∈ [n] and any set W ⊆ [v − 1] of vertices older than v, the probability in
Gnm−old that there is no edge between v and W is precisely(

1− |W |
v − 1

)m
. (6)

Moreover, the corresponding event is independent from all edges added during the construction
of Gnm−old stemming from vertices different from v. This is a crucial fact in our argument, which

2If m2 = 0 then π2

(
Gnm1,m2

)
has no edges, so π1

(
Gnm1,m2

)
= Gnm = Gnm1

, and vice-versa.
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unfortunately does not extend to the preferential attachment model Gnm, since the attachments of
vertex v are not independent from “the future” (i.e. they are not independent from the edges that
stem from vertices younger than v, which are added later in the process). Fortunately, we can obtain
a weaker statement that will suffice for our purposes, and may be useful for other applications.

Lemma 2. Fix any constants m,m1,m2 ∈ Z≥0 with m = m1 +m2, and let σ ∈ {1, 2}. Given any
vertex v ∈ [n] and any set W ⊆ [v − 1], let E be any event of Gnm1,m2

that does not involve any
edges stemming from v in πσ

(
Gnm1,m2

)
. Then, conditional upon E, the probability that πσ

(
Gnm1,m2

)
has no edges between v and W is at most(

1− |W |
v + n

)mσ
≤
(

1− |W |
2n

)mσ
.

Proof. The statement is trivially true if mσ = 0, so we assume that mσ ≥ 1.
Let e1, . . . , emσ be the mσ edges that stem from v in πσ(Gnm1,m2

). Recall that these edges are
blue if σ = 1, and red if σ = 2. For each i ∈ [mσ] and each u ∈ [v], let Bi,u be the event that ei
is attached to vertex u, and let Bi =

⋃
u∈W Bi,u be the event that ei is attached to some vertex in

W . Also, let E′i be any event that involves only edges (blue or red) of Gnm1,m2
that are different

from ei.

Claim 1. Fix i ∈ [mσ]. The probability of Bi conditional upon E′i is at least |W |/(v + n).

The lemma follows immediately by repeatedly applying Claim 1 to each Bi (i ∈ [mσ]) with

E′i = E ∩B1 ∩B2 ∩ · · · ∩Bi−1.

We proceed to prove Claim 1. Since i ∈ [mσ] is fixed, we will omit for simplicity the subindex i
from the notation. (In particular, we will denote Bi,u by simply Bu, not to be confused with the
Bi defined above.) The colours of the edges play no role in this claim, so we may ignore them
and regard Gnm1,m2

simply as Gnm with m = m1 + m2. Also, we can assume that event E′ fully
determines all mn − 1 edges of the process

(
Gtm
)
1≤t≤n other than e. (Indeed, any other situation

can be trivially reduced to this one by using the law of total probabilities.) Moreover, we may
assume that E′ not only determines edges that are introduced during the process but also an order
in which they were added.

For each u ∈ [n] \ {v}, let du be the degree of u in Gnm − e conditional upon E′ (each self-loop
of u contributes with 2 to this degree). Define dv analogously but adding an extra 1 to account for
the contribution of the first endpoint of e. It is easy to observe from the definition of the process(
Gtm
)
1≤t≤n that, given any u ∈ [v − 1],

Pr(Bu ∩ E′) =
du
∏
w∈[n] fw

(2mn− 1)!!
, (7)

where each factor fw depends only on E′. For instance, if vertex w ∈ [n] has no self-loops in Gnm−e
given E′ then fw = (dw − 1)!/(m − 1)!. Similar expressions for fw can be easily computed in the
case that w has some self-loops (the value of fw depends on which edges stemming from w create
a loop). The case u = v is slightly different, but we have

Pr(Bv ∩ E′) ≤
dv
∏
w∈[n] fw

(2mn− 1)!!
. (8)

In view of (7) and (8), for every u ∈ [v − 1],

Pr(Bu | E′) =
Pr(Bu ∩ E′)∑

w∈[v]Pr(Bw ∩ E′)
≥ du∑

w∈[v] dw
≥ du

2mv +m(n− v)
=

du
m(v + n)

.
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Therefore, summing over u ∈W ,

Pr(B | E′) ≥
∑
u∈W

du
m(v + n)

≥ m|W |
m(v + n)

=
|W |
v + n

,

as required. This yields Claim 1 and finishes the proof of the lemma.

Note that the bound in the statement of Lemma 2 could be much worse than (6), especially
if v is much smaller than n. However, in those cases in which event E does not depend upon the
“future” of vertex v (i.e. does not depend on edges stemming from younger vertices in the process),
we can derive a much better bound which resembles that of (6).

Lemma 3. Fix any constants m,m1,m2 ∈ Z≥0 with m = m1 +m2 and let σ ∈ {1, 2}. Given any
vertex v ∈ [n] and any set W ⊆ [v − 1], let E be any event that involves only edges that stem from
vertices in [v − 1] (i.e. older than v) in the process leading to Gnm1,m2

. Then, conditional upon E,
the probability that πσ

(
Gnm1,m2

)
has no edges between v and W ⊆ [v − 1] is at most(

1− |W |
2v

)mσ
.

Proof. Suppose that all (blue and red) edges of Gnm1,m2
stemming from vertices in [v − 1] have

already been exposed. Additionally, suppose that some edges (or perhaps none) stemming from v
have been exposed as well. We add a new edge e stemming from v. At that time, the total degree
of W (i.e. the sum of the degrees of all its vertices) is at least m|W |, and the the total degree of
the graph (counting e as already contributing one to the degree of v) is at most 2mv. Therefore,
the conditional probability that e does not join v to a vertex in W is at most

1− m|W |
2mv

= 1− |W |
2v

.

The lemma follows immediately by considering the mσ edges stemming from v in πσ
(
Gnm1,m2

)
.

In view of this, some of the proofs for Gnm−old in the paper that use (6) can be easily adapted
to πσ

(
Gnm1,m2

)
(and thus to Gnm) by adjusting constants. Most of the time, Lemma 2 or Lemma 3

will be enough to do it. However, at some point, we will need an upper bound on the probability in
πσ
(
Gnm1,m2

)
that all the neighbours of v fall inside of W . In order to do that we will use Lemma 6

below but, before we can state it, we need the following lemma that bounds the total degree of a
set W at the time vertex v is created in the process leading to Gnm.

Lemma 4. Let A > 0 be a sufficiently large constant. Fix any constant m ∈ Z≥0, and let ω = ω(n)
be any function tending to infinity as n→∞. The following property holds a.a.s. for Gnm. For any
1 ≤ k ≤ t ≤ n and any set W ⊆ [t] of size k,

∑
w∈W

deg(w, t) ≤

{(
1 +A/(mk + 1)

) (
2m
√
kt+

√
8mkt log(et/k)

)
if t ≥ ω,

2mω otherwise.

Proof. The statement is trivially true if m = 0 since Gn0 has no edges, so assume that m ≥ 1.
Moreover, the case k = t (which corresponds to W = [t]) follows immediately from the case
W = [t− 1] (at the only expense of replacing A by a slightly larger absolute constant), so we will
ignore it.
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Fix k and t such that 1 ≤ k < t ≤ n, and assume t ≥ ω → ∞ as n → ∞. We will need to
understand the behaviour of the following random variable:

Yt(k) =

k∑
j=1

deg(j, t).

(In other words, Yt(k) is the sum of the degrees of the k oldest vertices (at time t).) In view of
the identification between the models Gnm and Gmn1 , it will be useful to investigate the following
collection of random variables: for mk ≤ s ≤ mn, let

Xs =
mk∑
j′=1

degGmn1
(j′, s).

Clearly, Yt(k) = Xmt and Xmk = 2mk. Moreover, for mk < s ≤ mn,

Xs =

{
Xs−1 + 1 with probability Xs−1

2s−1 ,

Xs−1 otherwise.

The conditional expectation is given by

E
(
Xs|Xs−1

)
= (Xs−1 + 1)

Xs−1
2s− 1

+Xs−1

(
1− Xs−1

2s− 1

)
=

2s

2s− 1
Xs−1.

Define X̂mk = Xmk = 2mk and

X̂s =

(
s∏

i=mk+1

2i− 1

2i

)
Xs for mk < s ≤ mn,

or equivalently X̂s = cmk,sXs with cmk,s defined as in Lemmma 1. We have that E
(
X̂s|X̂s−1

)
=

X̂s−1, and thus X̂mk, . . . , X̂mn is a martingale with EX̂s = 2mk. Moreover, the difference between
consecutive terms is

|X̂s − X̂s−1| = cmk,s

∣∣∣∣Xs −
(

1 +
1

2s− 1

)
Xs−1

∣∣∣∣ = cmk,s

∣∣∣∣Xs −Xs−1 −
Xs−1
2s− 1

∣∣∣∣ ≤ cmk,s,
since Xs − Xs−1 ∈ {0, 1} and 0 < Xs−1

2s−1 ≤
mk+s−1
2s−1 < 1. Also, in view of Lemma 1, there exist

absolute constants A1, A2 > 0 such that

cmk,mt ≥ e−A1/(mk+1)
√
k/t and

√√√√2

mt∑
i=mk+1

cmk,i2 ≤ eA2/(mk+1)
√

2mk log(t/k). (9)

Assume that constant A in the statement is sufficiently large so that 1 + A/x ≥ e(A1+A2)/x for all
x ≥ 1 (in particular, A = eA1+A2 − 1 works), and define

D :=
(
1 +A/(mk + 1)

) (
2m
√
kt+

√
8mkt log(et/k)

)
≥ e(A1+A2)/(mk+1)

(
2m
√
kt+

√
8mkt log(et/k)

)
. (10)
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We wish to bound the probability that Yt(k) > D. Observe that this event implies that

X̂mt − 2mk√
2
∑mt

i=mk+1 cmk,i
2

=
cmk,mtYt(k)− 2mk√

2
∑mt

i=mk+1 cmk,i
2
>

cmk,mtD − 2mk√
2
∑mt

i=mk+1 cmk,i
2
≥

≥
eA2/(mk+1)

(
2mk +

√
8mk log(et/k)

)
− 2mk

eA2/(mk+1)
√

2mk log(t/k)
>

>
2
√
k log(et/k)√
log(t/k)

> 2
√

log
(
(et/k)k

)
≥

√√√√log

((
t

k

)4
)
≥

√
log

(
t3
(
t

k

))
,

where we used (9), (10) and the facts that 1 ≤ k < t and t ≤
(
t
k

)
≤ (et/k)k. Hence, applying

Hoeffding-Azuma inequality (4) to the martingale X̂mk, . . . , X̂mn we get that

Pr (Yt(k) > D) ≤ Pr

 X̂mt − 2mk√
2
∑mt

i=mk+1 cmk,i
2
>

√
log

(
t3
(
t

k

)) ≤ e− log(t3(tk)) = 1

/
t3
(
t

k

)
.

Observe that for any set of vertices W of size k, each random variable
∑

j′∈W degGt1(j′, s) is stochas-
tically dominated by Xs (for mk ≤ s ≤ mn). Therefore,

Pr

(∑
w∈W

deg(w, t) > D

)
≤ Pr (Yt(k) > D) ≤ 1

/
t3
(
t

k

)
.

Since there are at most
(
t
k

)
sets W ⊆ [t] of size k to consider, the desired property fails for a given

t with probability at most
∑t−1

k=1 t
−3 ≤ t−2. Hence, a.a.s. it does not fail for any ω ≤ t ≤ n. As

Yω(ω) = 2mω, the desired bound trivially holds (deterministically) for t ≤ ω, and the proof is
finished.

We will also need a stronger result for sets of a certain type.

Lemma 5. Fix any constant c ∈ (0, 1) and m ∈ Z≥0. The following property holds a.a.s. for Gnm.
For any cn ≤ t ≤ n,

Yt :=
∑
w∈[cn]

deg(w, t) ∼ 2mn
√
ct/n.

Proof. In view of the identification between the models Gnm (on the vertex set 1, 2, . . . , n) and Gmn1

(on the vertex set 1′, 2′, . . . ,mn′), it will be useful to investigate the following random variable
instead of Yt: for mbcnc ≤ s ≤ mn, let

Xs =
∑

j∈[cmn]

degGmn1
(j′, s).

Clearly, Yt = Xtm. It follows that Xmbcnc = Ybcnc = 2mbcnc. Moreover, for mbcnc < s ≤ mn,

Xs =

{
Xs−1 + 1 with probability Xs−1

2s−1 ,

Xs−1 otherwise.

The conditional expectation is given by

E (Xs|Xs−1) = (Xs−1 + 1) · Xs−1
2s− 1

+Xs−1

(
1− Xs−1

2s− 1

)
= Xs−1

(
1 +

1

2s− 1

)
.

10



Taking expectation again, we derive that

EXs = EXs−1

(
1 +

1

2s− 1

)
.

Hence, it follows that

E(Yt) = E(Xtm) = 2mbcnc
tm∏

s=mbcnc+1

(
1 +

1

2s− 1

)
∼ 2cmn

(
tm

cmn

)1/2

= 2mn
√
ct/n.

In order to transformXs into something close to a martingale (to be able to apply the generalized
Azuma-Hoeffding inequality (5)), we set for mbcnc ≤ s ≤ mn

Zs = Xs − 2mbcnc −
s∑

k=mbcnc+1

√
cmn/k

(note that Zmbcnc = 0) and use the following stopping time

T = min
{
s > mbcnc : Xs ≥ 2

√
scmn+ s2/3 or s = mn

}
.

Indeed, we have for mbcnc < s ≤ mn

E (Zs − Zs−1 | Zs−1) =
Xs−1
2s− 1

−
√
cmn/s ≤ (1/2 + o(1))s−1/3 < 0.51s−1/3,

provided s ≤ T , and |Zs − Zs−1| ≤ 1 as s > cmn. Let s ∧ T denote min{s, T}. We apply the
generalized Azuma-Hoeffding inequality (5) to the sequence (Zs∧T : mbcnc ≤ s ≤ mn), with cs = 1,
bs = 0.51s−1/3 and x = 0.1s2/3, to conclude that a.a.s. for all s such that mbcnc ≤ s ≤ mn

Zs∧T − Zmbcmc = Zs∧T ≤
∑
k≤s

bk + x ≤ 0.77s2/3 + 0.1s2/3 ≤ 0.9s2/3.

To complete the proof we need to show that a.a.s., T = mn. The events asserted by the equation
hold a.a.s. up until time T , as shown above. Thus, in particular, a.a.s.

XT = ZT + 2mbcnc+
s∑

k=mbcnc+1

√
cmn/k

≤ 0.9s2/3 + 2mcn+
√
cmn

∫ s

mcn
1/
√
k dk +O(1)

< 2
√
scmn+ s2/3,

which implies that T = mn a.a.s. In particular, it follows that a.a.s.,for any cn ≤ t ≤ n, Yt =
Xmt < 2mn

√
ct/n + o(n). The lower bound can be obtained by applying the same argument

symmetrically to (−Zs∧T : mbcnc ≤ s ≤ mn), and so the proof is finished.

Finally, we provide the last tool we need in order to extend the arguments in the paper from
Gnm−old to πσ

(
Gnm1,m2

)
(and thus to Gnm if m1 or m2 equals 0).
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Lemma 6. Let C > 0 be a sufficiently large constant. Fix any constants m,m1,m2 ∈ Z≥0 with
m = m1 +m2 ≥ 1 and let σ ∈ {1, 2}. Let ω = ω(n) be any function tending to infinity as n→∞,
and suppose that the a.a.s. events in Lemma 4 hold in Gnm = π

(
Gnm1,m2

)
. Then, for any ω ≤ j ≤ n,

R ⊆ [n] \ [j] and ∅ 6= Q ⊆ [n], the conditional probability that every vertex v ∈ R has all neighbours
in Q with respect to graph πσ

(
Gnm1,m2

)
is at most((

1 + C
|Q| + o(1)

)(
2
√
|Q|
j +

√
8|Q|
mj log

(
e
(

1 + j
|Q|

))))mσ |R|
.

Proof. Put |R| = r and |Q| = q ≥ 1. Since the lemma is trivial for mσr = 0, we will assume that
mσ ≥ 1 and r ≥ 1. For t,m, x ≥ 1, define

ft,m(x) = 2m
√
xt+

√
8mxt log (e (1 + t/x)) .

We will use the following observation that we will be proved at the very end.

Claim 2. Given any constant A > 0, there exists A′ > 0 sufficiently large such that for every
t,m ≥ 1 and every 1 ≤ x ≤ y, (1 +A/x)ft,m(x) ≤ (1 +A′/y)ft,m(y).

Let H denote the a.a.s. event in the statement of Lemma 4, and let A > 0 be the constant in
that same lemma. For each t ∈ [n], define Wt = Q ∩ [t], so in particular we have |Wt| ≤ q. In view
of Claim 2, event H implies that, for every t ∈ N such that j ≤ t ≤ n and Wt 6= ∅,∑

w∈Wt

deg(w, t) ≤
(

1 +
A

m|Wt|+ 1

)(
2m
√
|Wt|t+

√
8m|Wt|t log (et/|Wt|)

)
≤
(

1 +
A

|Wt|

)
ft,m(|Wt|)

≤
(

1 +
A′

q

)
ft,m(q).

(The last conclusion of the equation above is also true if Wt = ∅, so we can ignore the restriction
we had on Wt. Moreover, let us mention that |Wt| ≤ t but it is not always true that q ≤ t.
This technical reason prevented us from defining function ft,m(x) as follows: ft,m(x) = 2m

√
xt +√

8mxt log (et/x) .) For each t ∈ [n] such that t ≥ j + 1, let Ht be the event in Gnm = π
(
Gnm1,m2

)
that, for every j ≤ s ≤ t− 1, we have∑

w∈Ws

deg(w, s) ≤
(

1 +
A′

q

)
fs,m(q).

By construction, Hj+1 ⊇ Hj+2 ⊇ · · ·Hn ⊇ H. For each t ∈ [n], let Et be the event that every
edge of πσ

(
Gnm1,m2

)
stemming from vertex t attaches this vertex to some vertex in Q. Our goal

is to bound Pr
(⋂

t∈REt ∩H
)
. By labelling the r vertices in R as t1 < t2 < · · · < tr and since

Hj+1 ⊇ Hj+2 ⊇ · · ·Hn ⊇ H, we conclude that

Pr

(⋂
t∈R

Et ∩H

)
≤ Pr

(
r⋂
i=1

(
Eti ∩Hti+1

))
≤

r∏
i=1

Pr
(
Eti

∣∣ Ĥti

)
, (11)

where Ĥti := Hti ∩
⋂i−1
k=1Etk . Observe that event Ĥti implies that∑

w∈Q∩[ti−1]

deg(w, ti − 1) ≤
(

1 +
A′

q

)
fti−1,m(q),
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and (crucially!) only exposes information concerning edges created before time ti, so the probability
of Eti conditional upon Ĥti is at most
(

1 + A′

q

)
fti−1,m(q) + 2m

m(ti − 1)

mσ

≤
((

1 + A′

q

)(
2
√

q
ti−1 +

√
8q

m(ti−1) log
(
e
(

1 + ti−1
q

)))
+ 2

ti−1

)mσ
≤
((

1 + A′

q

)(
2
√

q
j +

√
8q
mj log

(
e
(

1 + j
q

)))
+ 2

j

)mσ
, (12)

where we used that ti − 1 ≥ j (since ti ∈ R) and the fact that log(e(1+x))√
x

is decreasing with respect

to x in (0,+∞) (which follows from elementary analysis). Hence, setting C = A′ + 1, we obtain

Pr
(
Eti

∣∣ Ĥti

)
≤
((

1 + C
q

)(
2
√

q
j +

√
8q
mj log

(
e
(

1 + j
q

))))mσ
, (13)

where the case q ≤ j follows immediately from (12) (since 2/j ≤ 1
q2
√
q/j), and the case q ≥ j is

trivially true (since the right-hand side of (13) is greater than 1). Combining (11) and (13) together
and using the fact that H holds a.a.s., we conclude that

Pr

(⋂
t∈R

Et

∣∣∣ H) = (1 + o(1))Pr

(⋂
t∈R

Et ∩H

)

≤
((

1 + C
q + o(1)

)(
2
√

q
j +

√
8q
mj log

(
e
(

1 + j
q

))))mσr
,

which yields the statement of the lemma under the assumption that Claim 2 is valid.
Finally, we proceed to prove Claim 2. We will only sketch the main steps in the argument

and leave the details to the reader. We may increase A if needed and assume it is a sufficiently
large constant (independent of t and m). Take A′ = A5. For each t,m, x ≥ 1, define gt,m(x) =
(1 +A/x)ft,m(x). Elementary (but rather tedious) computations show that

d

dx
ft,m(x) ≥ 0 for all x ≥ 1 and

d

dx
gt,m(x) ≥ 0 for all x ≥ 7A ≥

√
m/2+1+3 t

t+x√
m/2+1− t

t+x

A.

Fix any t,m ≥ 1 and any 1 ≤ x ≤ y. If x ≥ 7A, then trivially

gt,m(x) ≤ gt,m(y) ≤ (1 +A′/y)ft,m(y),

as desired. Also, if y ≤ A4,

gt,m(x) ≤ (1 +A)ft,m(x) ≤ (1 +A)ft,m(y) ≤ (1 +A5/y)ft,m(y).

Otherwise, suppose x ≤ 7A and y ≥ A4. Then, assuming that A is a large enough constant, we get

gt,m(x) ≤ (1 +A)ft,m(x) ≤ (1 +A)ft,m(7A) ≤ (1 +A)
√

7A
(

2m
√
t+
√

8mt log(et)
)
≤ ft,m(A4),

where the last step follows from simple computations by considering separately the cases t ≤ A5

and t ≥ A5. Hence,
gt,m(x) ≤ ft,m(A4) ≤ ft,m(y) ≤ (1 +A′/y)ft,m(y),

the proof of the claim is completed, and so the proof is finished.
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3 Upper bound

3.1 Expansion properties

Let us start with investigating some properties of Gnm−old and Gnm that will turn out to be important
in determining the existence of perfect matchings and Hamiltonian cycles. All the results of this
section are stated for Gnm−old and π1

(
Gn2m,m′

)
where m ∈ N and m′ ∈ Z≥0, so they also apply to

Gn2m (which can be obtained from π1
(
Gn2m,m′

)
by setting m′ = 0). First we will need the following

technical lemma.

Lemma 7. Fix any constants 0 < x, y, d, α < 1, m ∈ N, and m′ ∈ Z≥0 satisfying

(1− d)ϕ(−x)m− d > 0 and α <

(
0.99y

e

)1/((1−d)ϕ(−x)m−d)
,

where ϕ is defined in (3). Then, the following holds a.a.s. for Gnm−old and for π1(G
n
2m,m′). For any

integer k with 1 ≤ k ≤ αn and j = bk(n/k)dc, there are at most yk vertices in [j] with fewer than
(1− x)m log(n/j) neighbours in [n] \ [j].

Proof. Let us start with showing the desired property for Gnm−old. Pick a constant A < ϕ(−x) but
sufficiently close to ϕ(−x) so that the following properties are satisfied:

(1− d)Am− d > 0 and α <

(
0.99y

e

)1/((1−d)Am−d)
. (14)

Let us concentrate on any k in the range of consideration; that is, 1 ≤ k ≤ αn. Let Xv be the
number of neighbours in [n] \ [j] of a given vertex v ∈ [j]. By (6) (and the claim below), Xv is a
sum of independent Bernoulli random variables with parameter

1−
(

1− 1

t− 1

)m
∼ m

t

for t ∈ [n] \ [j] (note that j � 1). Hence, we get that

E[Xv] ∼
n∑

t=j+1

m

t
∼ m log(n/j).

By the generalization of the Chernoff bound (2) we get that the probability of v having less than
(1− x)m log(n/j) neighbours in [n] \ [j] is at most

exp
(
− (1 + o(1))m log(n/j)ϕ(−x)

)
< (j/n)Am

(for n sufficiently large), since A < ϕ(−x). We will call such a vertex bad. Using the fact that
the events that two or more vertices are bad are negatively correlated, the probability of having at
least yk bad vertices in [j] is at most

(
j

dyke

)
(j/n)Amdyke ≤

(
ej(j/n)Am

dyke

)dyke
≤

(
e

y

(
k

n

)(1−d)Am−d
)yk

=: ak.
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Note that, if k + 1 ≤ εn for a small constant ε > 0,

ak+1

ak
=

(
k + 1

k

)yk((1−d)Am−d)( e
y

(
k + 1

n

)(1−d)Am−d
)y

≤ exp (y((1− d)Am− d))

(
e

y

)y
εy((1−d)Am−d)

=

(
e

y

)y
exp (y((1− d)Am− d)(1 + log ε)) < 0.99, (15)

by the first inequality in (14) and provided that ε is sufficiently small. Hence,
∑bεnc

k=1 ak = O(a1) =
o(1). On the other hand,

bαnc∑
k=bεnc+1

ak ≤
bαnc∑

k=bεnc+1

(
e

y
α(1−d)Am−d

)yk
≤

bαnc∑
k=bεnc+1

0.99yk = O(0.99εyn) = o(1),

by the second inequality in (14). It follows that the probability that the desired property does not
hold for some k is o(1). The desired property holds for Gnm−old.

Adjusting the proof for π1(G
n
2m,m′) is straightforward, by using Lemma 3 (with σ = 1, m1 = 2m

and m2 = m′) instead of (6) that we used above. The only difference is that now Xv is stochastically
lower bounded by a sum of independent Bernoulli random variables with parameter

1−
(

1− 1

2t

)2m

∼ m

t

for t ∈ [n] \ [j]. It follows that E[Xv] ≥ (1 + o(1))m log(n/j), and the rest of the proof continues as
before.

Next, we will use Lemma 7 to derive an expansion property of Gnm−old and π1(G
n
2m,m′) that

will play a key role in the argument. We will show that for all sets of vertices K of moderate size,
N(K) is large. (Recall the definition of N(K) from Section 2.1.)

Lemma 8. Let ` ∈ {1, 2}. Fix any constants 0 < x, y, z, d, α < 1 and m ∈ N satisfying

y < z < 1− `+ 1

dm
, (16)

(1− d)ϕ(−x)m− d > 0, (17)

and

α <



(
0.99y

e

) 1
(1−d)ϕ(−x)m−d

(18a)

exp

(
− `+ 1− z

(1− x)(1− d)(z − y)

)
(18b)

1

`+ 1
− 1

d(1− z)m
(18c)

exp

(
−(1− z)m log(`+ 1) + `+ 1− ` log `

d(1− z)m− `− 1

)
. (18d)
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Then, the following holds a.a.s. for Gnm−old. Every set of vertices K with 1 ≤ |K| ≤ αn satisfies
|N(K)| ≥ `|K|.

Moreover, suppose that we can replace (18c) and (18d) by the following stronger conditions

α <


1

`+ 1
− 8/3

d(1− z)m
(18′c)

exp

(
−

(1− z)m log
(
(2 + w)2(`+ 1)

)
+ `+ 1− ` log `)

d(1− z)m− (`+ 1)

)
. (18′d)

where

w =

√
8

m
log

(
e

(
1 +

1

(`+ 1)αd

))
. (19)

Then, the previous a.a.s. statement is also a.a.s. valid for π1(G
n
2m,m′) (for any m′ ∈ Z≥0).

Note that conditions (16–19) can be trivially satisfied by taking any arbitrary x, y, z, d ∈ (0, 1)
and w > 0 such that y < z, and then choosing m ∈ N sufficiently large and α > 0 sufficiently small.
We leave the result with such flexibility as our goal will be to tune everything to get the constant
m as small as possible.

Moreover, let us note that we assumed that ` ∈ {1, 2} as this is what will be used in our specific
application of this lemma. However, it is straightforward to verify that the lemma holds for any
real number ` > 0 (by placing floors and ceilings in the appropriate places of the argument).

Proof. Let us start with showing the desired property for Gnm−old. A set K of vertices of size k

is of type 1 if it contains at least zk vertices in [j], where j = bk(n/k)dc. Otherwise, K is of
type 2. First, we will focus on sets of type 1. Observe that the constants x, y, d, α,m satisfy the
requirements of Lemma 7 (by assumptions (17) and (18a)). Since our aim is to obtain a statement
that holds a.a.s., we may assume that the conclusion of Lemma 7 holds, and proceed to prove the
desired statement (deterministically) for any given set of type 1. Let K be a fixed set of type 1 of
size 1 ≤ k ≤ αn. It follows that at least (z − y)k vertices in K ∩ [j] have at least

(1− x)m log(n/j) ≥ (1− x)(1− d)m log(1/α) >
`+ 1− z
z − y

m

neighbours in [n] \ [j] (by assumption (18b)). Denote this set of at least (z − y)k vertices by K0,
and let K ′0 be the set of neighbours of K0 in [n] \ [j]. Looking at the degrees of the bipartite graph
induced by the parts K0 and K ′0, we conclude that |K ′0| ≥ `+1−z

z−y |K0| ≥ (` + 1 − z)k. Therefore,

|N(K)| ≥ |K ′0 \K| ≥ |K ′0| − |K \ [j]| ≥ (` + 1 − z)k − (1 − z)k = `k, as desired. This proves the
claim for all sets of type 1.

Now, consider a set K of size 1 ≤ k ≤ αn of type 2 (hence, K must contain at least (1 − z)k
vertices in [n] \ [j]). Observe that if |N(K)| < `k, then there must exist a set S = S(K) of size
`k − 1 with S ∩K = ∅ such that all vertices in K \ [j] have all of their neighbours in K ∪ S. An
important observation is that, when a vertex in K \ [j] generated m edges to older vertices, all
vertices in [j] were available for possible destinations. Hence, the probability that one such vertex
has all the neighbours in K ∪ S is at most(

(`+ 1)k − 1

j

)m
≤
(

(`+ 1)k − 1

k(n/k)d − 1

)m
≤
(

(`+ 1)(k/n)d
)m

. (20)
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As a result, the expected number of sets K of type 2 and size k with |N(K)| < `k is at most

bk :=

(
n

k

)(
n− k
`k

)(
(`+ 1)(k/n)d

)(1−z)km
(21)

≤
( en

``/(`+1)k

)(`+1)k (
(`+ 1)(k/n)d

)(1−z)km
=

((
e`+1

``

)
(`+ 1)(1−z)m (k/n)(1−z)dm−`−1

)k
=: b′k.

Note that (16) implies that the exponent of k/n in the expression above is positive. Hence, pro-
ceeding analogously as in (15), we can show that there exists a small enough constant ε > 0 such
that b′k+1/b

′
k < 0.99 whenever k + 1 ≤ εn. This implies that

b′k ≤ b′1(0.99)k−1 for 1 ≤ k ≤ εn, (22)

and so
∑bεnc

k=1 b
′
k = O(b′1) = o(1). It follows that a.a.s. no set of type 2 and size at most εn fails to

have the desired property. To deal with larger sets, it is more convenient to estimate bk directly
instead of b′k. For εn ≤ k ≤ αn, we use Stirling’s formula (s! ∼

√
2πs(s/e)s, as s→∞) and obtain

bk =
Θ(1/n)

(
(`+ 1)(k/n)d

)(1−z)mk
(k/n)k(`k/n)`k(1− (`+ 1)k/n)n−(`+1)k

= en(f(k/n)+o(1)),

where

f(ρ) = (1− z)mρ log
(

(`+ 1)ρd
)
− ρ log ρ− `ρ log(`ρ)− (1− (`+ 1)ρ) log(1− (`+ 1)ρ). (23)

(Note that in the above estimate of bk we implicitly used the fact that n > (`+ 1)k, which follows
from (18c).) The second derivative of f is

f ′′(ρ) =
md(1− z)(1− (`+ 1)ρ)− (`+ 1)

ρ(1− (`+ 1)ρ)
, (24)

which is strictly positive for ρ ∈ (0, α] (by (18c)), so f is convex in that interval. Therefore,

bk ≤ eo(n) max
{
bbεnc, bbαnc

}
= (1 + o(1))n max

{
bbεnc, bbαnc

}
for all εn ≤ k ≤ αn.

From (22), we get that bbεnc ≤ b′1(0.99)εn−2 = o((0.99)εn). Next, we proceed to bound bbαnc =

en(f(α)+o(1)). Observe that 0 < α < 1/(` + 1) by (18c) and, for every α in that range, elementary
analysis shows that

−(1− (`+ 1)α) log(1− (`+ 1)α) < (`+ 1)α. (25)

Hence,

f(α) < (1− z)mα log
(

(`+ 1)αd
)
− α logα− `α log(`α) + (`+ 1)α < 0,

where the first inequality holds by (25) and the second one by (18d). Putting everything together,
for each εn ≤ k ≤ αn,

bk ≤
(
0.99 + o(1)

)εn
+
(
ef(α) + o(1)

)n
= o(1/n).

It follows that
∑bαnc

k=bεnc bk = o(1), and so a.a.s. all sets of type 2 of size at most αn satisfy the
desired property, and the proof is finished for Gnm−old.
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Adjusting the proof for π1(G
n
2m,m′) is more complicated than in the previous lemma. As

Lemma 7 can be applied to π1(G
n
2m,m′), the proof for type 1 sets is not affected. For type 2

sets, we need to use Lemmas 4 and 6 in order to obtain an analogue of (21). Let H be the a.a.s.
event in the statement of Lemma 4 (replacing m by 2m + m′) with ω := logbndc → ∞. As usual,
as we aim for a statement that holds a.a.s., we may assume that event H holds. Consider any
set K of size 1 ≤ k ≤ αn of type 2 and any set S of size `k − 1 such that S ∩ K = ∅. Put as
before j = bk(n/k)dc, so j ≥ bndc → ∞, as n → ∞ (and also log j ≥ ω). Setting R = K \ [j] and
Q = K ∪ S in Lemma 6 (with σ = 1, m1 = 2m and m2 = m′), we conclude that, conditional upon
H, the probability p that every vertex in K \ [j] has all neighbours in K ∪ S with respect to graph
π1(G

n
2m,m′) satisfies

p ≤

((
1 +

C

|Q|
+ o(1)

)(
2

√
|Q|
j

+

√
8|Q|
mj

log

(
e

(
1 +

j

|Q|

))))2m|R|

≤

((
1 +

C

k
+ o(1)

)
2
√

(`+ 1)(k/n)d

(
1 +

√
2

m
log

(
e

(
1 +

(n/k)d

`+ 1

))))2m|R|

, (26)

where we used that |Q|/j ≤ (`+1)k−1
k(n/k)d−1 ≤ (`+ 1)(k/n)d and the fact that log(e(1+t))√

t
is decreasing in

t ∈ (0,+∞) (as observed below (12)). Since |R| ≥ (1− z)k, replacing |R| by (1− z)k in (26) gives
a valid bound (even in the case that the base of the power in the right-hand side of (26) is greater
than 1, since p is a probability). Hence, we conclude that

p ≤

(1 +
C

k
+ o(1)

)2

4(`+ 1)(k/n)d

(
1 +

√
2

m
log

(
e

(
1 +

(n/k)d

`+ 1

)))2
(1−z)km

(27)

≤
(
C ′(k/n)d log2(n/k)

)(1−z)km
, (28)

for some constant C ′ > 0 that may depend on C, ` and α. The role of p (and its bounds (27)

and (28)) will be very similar to that of
(
(`+ 1)(k/n)d

)(1−z)km
in the computations that we did

for the Gnm−old model (see (20) and (21)). Indeed, for the π1(G
n
2m,m′) model, the expected number

(conditional upon H) of sets K of type 2 and size k with |N(K)| < `k is at most

bk :=

(
n

k

)(
n− k
`k

)
p (29)

≤
((

e`+1

``

)
C ′(k/n)(1−z)dm−`−1 log2m(1−z)(n/k)

)k
=: b′k.

Our goal is to show that
∑bαnc

k=1 bk = o(1). This, combined with the fact that H is a.a.s. true, will
yield the desired result for π1(G

n
2m,m′), and finish the proof of the lemma. The argument to bound

bk (or b′k) is analogous to the one we used for Gnm−old, so we will only sketch the main differences.
By inspecting the ratios b′k+1/b

′
k, we can easily check that (22) remains valid in the present context

for 1 ≤ k ≤ εn provided that ε > 0 is a sufficiently small constant given C ′, m, `, z and d. Therefore∑bεnc
k=1 b

′
k = O(b′1) = o(1) as before. To analyze the case εn ≤ k ≤ αn, we plug the bound obtained

in (27) into the definition of bk in (29). Applying Stirling’s formula to the resulting bound and
performing elementary manipulations, we conclude that

bk ≤ en(f̂(k/n)+o(1)),
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where f̂(ρ) = f(ρ) + g(ρ) with f(ρ) defined in (23) and

g(ρ) := 2(1− z)mρ log

(
2 +

√
8

m
log

(
e

(
1 +

1

(`+ 1)ρd

)))
.

The function f̂ will play the same role as f did in the argument for the Gnm−old model. In order

to adapt the previous proof to the current model and show that
∑bαnc

k=bεnc bk = o(1), we only need

to check that f̂(α) < 0 and (f̂)′′(ρ) > 0 for all ρ ∈ (0, α]. We proceed to verify these two claims.
Firstly, from (19), we get that

g(α) = (1− z)mα log(2 + w)2.

Combining this and (25) yields

f̂(α) < (1− z)mα log
(

(2 + w)2(`+ 1)αd
)
− α logα− `α log(`α) + (`+ 1)α < 0,

where the second inequality follows directly from (18′d). Secondly, we differentiate g twice and
obtain

g′′(ρ) = −
2md(1− z)

√
8/m

ρ (1 + (`+ 1)ρd) (2 + λ)

(
1 +

d
√

8/m

(1 + (`+ 1)ρd) (2 + λ)
− d(`+ 1)ρd

1 + (`+ 1)ρd

)
,

where

λ = λ(ρ) =

√
8

m
log

(
e

(
1 +

1

(`+ 1)ρd

))
.

Note that, for all ρ ∈ (0, α],√
8/m

(1 + (`+ 1)ρd) (2 + λ)
=

1

(1 + (`+ 1)ρd)
(√

m/2 + log
(
e
(

1 + 1
(`+1)ρd

))) ≤ 1/4,

since m ≥ 1 and (1 + t)
(√

1/2 + log (e (1 + 1/t))
)
≥ 4.12 > 4 for all t ∈ (0,∞) (by elementary

analysis). Therefore,

g′′(ρ) ≥ −
2md(1− z)

√
8/m

ρ (1 + (`+ 1)ρd) (2 + λ)

(
1 +

√
8/m

(1 + (`+ 1)ρd) (2 + λ)

)

≥ −2md(1− z)
ρ

(1/4)(1 + 1/4)

≥ −(5/8)
md(1− z)

ρ
.

Combining this bound with (24), we conclude that

(f̂)′′(ρ) = f ′′(ρ) + g′′(ρ) ≥ (3/8)md(1− z)(1− (`+ 1)ρ)− (`+ 1)

ρ(1− (`+ 1)ρ)
,

which is positive for all ρ ∈ (0, α] by (18′c). This finishes the proof of the lemma for the π1(G
n
2m,m′)

model.
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Finally, we include some properties of large sets of vertices, whose size is not covered in the
previous expansion lemma. We will show that (a.a.s. in Gnm−old or π1(G

n
2m,m′)) large sets of vertices

must induce some edges and disjoint pairs of large sets must have some edges across. These
properties will guarantee the existence of a long path and a large matching that will be extended
later to a Hamilton cycle and a perfect matching, respectively.

Lemma 9. For any constant m ≥ 12, let β = β(m) ∈ (0, 1/2) be such that

2β log β + (1− 2β) log(1− 2β) + β2m/4 = 0,

and for any constant m ≥ 1, let γ = γ(m) ∈ (0, 1) be such that

γ log γ + (1− γ) log(1− γ) + γ2m/2 = 0.

Fix m,m′ ∈ Z≥0. Then, the following two properties hold a.a.s. for Gnm−old and for π1(G
n
2m,m′).

(i) If m ≥ 12, then there is no pair of disjoint sets of vertices A,B, both of size at least βn, with
no edges between A and B. As a result, the length of a longest path is at least n − 2dβne ∼
(1− 2β)n.

(ii) If m ≥ 1, then no set C of size at least γn forms an independent set. As a result, the size of
a maximum matching is at least (1− γ)n/2.

Before we prove the lemma, let us make a few observations. First, the lower bound of 12 on
m is needed for β = β(m) to be well defined. Second, note that the function f(x) = −2x log x −
(1 − 2x) log(1 − 2x) is maximized at f(1/3) = log 3. Hence, β ≤

√
4 log 3/m and, in particular,

β tends to zero as m → ∞. In fact, one can show that β ∼ 8 logm/m as m → ∞. Similarly, we
get that γ ≤

√
2 log 2/m, and γ ∼ 2 logm/m as m → ∞. Finally, let us mention that the second

part of part (i) uses simple ideas that proved to be extremely useful in many current applications
(see, for example, [16, 17, 15, 26, 31]). Such techniques were used for the first time in [4, 5] (see
the recent book [25] that covers several tools including this one, or another recent book on random
graphs [21, Chapter 6.3]).

Proof. Let us start with the Gnm−old model and part (i). Consider any pair of disjoint sets A and
B, both of size dβne. Let U be the set of (|A| + |B|)/2 = dβne oldest vertices in A ∪ B and let
U ′ = (A∪B) \U contain the youngest half. Without loss of generality, A contains at least dβn/2e
vertices in U and B contains at least dβn/2e vertices in U ′. Therefore, the probability that there
are no edges between A ∩ U and B ∩ U ′ is at most

(1− dβn/2e/n)mdβn/2e ≤ (1− β/2)mβn/2 ≤ exp(−β2mn/4) (30)

by (6). Hence, using Stirling’s formula (s! ∼
√

2πs(s/e)s, as s→∞), the expected number of pairs
of sets A,B that do not have the desired property is at most(

n

dβne

)(
(n− dβne
dβne

)
exp(−β2mn/4) = o

(
β−2βn(1− 2β)−(1−2β)n exp(−β2mn/4)

)
= o(1),

by the definition of β. The first claim of part (i) follows by Markov’s inequality.
The second claim of part (i) follows from the first claim (deterministically). For a contradiction,

suppose that the first claim holds and there is no path of length h = n − 2dβne (or equivalently
all paths contain at most h vertices). We perform the following algorithm and construct a path P .
Let v1 be an arbitrary vertex. Initially, let P = (v1), U = V \ {v1}, and W = ∅. Then, if there
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is an edge from v1 to U (say from v1 to v2 ∈ U), we extend the path to P = (v1, v2) and remove
v2 from U . We continue extending the path P this way for as long as possible. Since there is no
path of length h ≤ n− 1, we must reach the point of the process in which P cannot be extended,
that is, there is a path from v1 to vk (k ≤ h) and there is no edge from vk to U . This time, vk is
moved to W and we try to continue extending the path from vk−1, reaching another critical point
in which another vertex will be moved to W , etc. If P is reduced to a single vertex v1 and no edge
to U is found, we move v1 to W and simply re-start the process from another vertex from U , again
arbitrarily chosen. An obvious but important observation is that during this algorithm there is
never an edge between U and W . Moreover, in each step of the process, the size of U decreases by
1 or the size of W increases by 1. Finally, the number of vertices of the path P is always at most
h = n− 2dβne by assumption. Hence, at some point of the process both U and W must have size
at least dβne. But this contradicts the first claim of part (i) and so this part is finished.

Now, let us move to part (ii). Consider any set C of size k = dγne. Again using (6), the
probability C forms an independent set is at most

k−1∏
i=1

(
1− i

n

)m
≤ exp

(
−m
n

k−1∑
i=1

i

)
= exp

(
−mk(k − 1)

2n

)
= O

(
exp

(
−γ2mn/2

))
. (31)

The expected number of sets that do not have the desired property is of order at most(
n

dγne

)
exp

(
−γ2mn/2

)
= o

(
γ−γn(1− γ)−(1−γ)n exp(−γ2mn/2)

)
= o(1),

by the definition of γ, and the first claim of part (ii) is proved.
The second claim of part (ii) is now a trivial (deterministic) implication. Indeed, if there is no

matching of size at least (1−γ)n/2, then any maximum (or even maximal) matching leaves at least
γn vertices that are not matched that form an independent set. This would contradict the first
claim and so the proof of the theorem for Gnm−old is finished. Adjusting the proof for π1(G

n
2m,m′)

is trivial, and only requires using Lemma 3 (with σ = 1, m1 = 2m and m2 = m′) instead of (6) in
order to obtain the analogues of (30) and (31).

Tuning the constants in the previous lemmas requires some patience but is straightforward.
(Maple or some other software might be helpful.) For example, we get the following set of constants
for the Gnm−old model:

Lemma 10.

(a) The following constants satisfy conditions (16–18) in Lemma 8: m = 120, ` = 1, α = 0.0538,
x = 0.22791, y = 0.020063, z = 0.851649 and d = 0.387967. Moreover, for m = 120 we have
γ = γ(m) ≤ 0.06238 in Lemma 9.

(b) The following constants also satisfy conditions (16–18) in Lemma 8: m = 2,900, ` = 2,
α = 0.032003, x = 0.048929, y = 0.003625, z = 0.965269 and d = 0.353628. Moreover, for
m = 2,900 we have β = β(m) ≤ 0.014414 in Lemma 9.

Similarly, for π1(G
n
2m,m′), we get:

Lemma 11.
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(c) The following constants satisfy conditions (16–19) in Lemma 8: m = 500, ` = 1, α =
0.016801, x = 0.149159, y = 0.008856, z = 0.905885 and d = 0.649188. Moreover, for
m = 500 we have γ = γ(m) ≤ 0.019675 in Lemma 9.

(d) The following constants also satisfy conditions (16–19) in Lemma 8: m = 14,000, ` = 2,
α = 0.008874, x = 0.026228, y = 0.001272, z = 0.980855 and d = 0.551906. Moreover, for
m = 14,000 we have β = β(m) ≤ 0.003760 in Lemma 9.

3.2 Perfect matchings

In this subsection, we deal with perfect matchings. Let us start with the following deterministic
result that can be found, for example, in [21, Lemma 6.3]. Let G = (V,E) be any graph. Let
A = A(G) ⊆ V be the set of vertices that are isolated by some maximum matching. For v ∈ A, let

B(v) = {w ∈ V \ {v} : there exists a maximum matching that isolates both v and w}.

Observe that B(v) ⊆ A, and moreover w ∈ B(v) implies that v ∈ B(w). The set B(v) is very im-
portant for understanding whether a few additional random edges, with v as one of their endpoints,
have a chance to increase the size of a maximum matching. Indeed, clearly, the size increases by
one if an edge between v and some vertex in B(v) is added to the graph. Moreover, the following
lemma holds. (We provide the proof for completeness.)

Lemma 12 ([21]). Let G be a graph without a perfect matching. If v ∈ A(G) and B(v) 6= ∅, then

|N(B(v))| < |B(v)|.

Note that the condition B(v) 6= ∅ in the lemma has the sole purpose of excluding the case that
G has odd order n and a maximum matching of size (n − 1)/2. Since our definition of perfect
matching in this paper includes this situation, then the aforementioned condition is redundant.

Proof. Fix v ∈ V and suppose that M is a maximum matching that isolates v. Let

S0(v,M) = {u 6= v : M isolates u}.

If u ∈ S0(v,M) and e = {x, y} ∈ M and f = {u, x} ∈ E then flipping e, f replaces M by
M ′ = M + f − e. Here e is flipped-out. Note that y ∈ S0(v,M ′). Now fix a maximum matching M
that isolates v and let

B(v,M) =
⋃
M ′

S0(v,M
′),

where we take the union over M ′ obtained from M by a sequence of flips.
Suppose that x ∈ NG(B(v,M)) and that f = {u, x} ∈ E where u ∈ B(v,M). Now there exists

y such that e = {x, y} ∈ M , else x ∈ S0(M) ⊆ B(v,M). We claim that y ∈ B(v,M) and this will
prove the lemma. Since then, every neighbour of B(v,M) is the neighbour via an edge of M .

Suppose that y /∈ B(v,M). Let M ′ be a maximum matching that (i) isolates u and (ii) is
obtainable from M by a sequence of flips. Now e ∈M ′ because if e has been flipped out then either
x or y is placed in B(v,M). But then we can do another flip with M ′, e and the edge f = {u, x},
placing y ∈ B(v,M), contradiction.

Now, we are ready to prove the main result for perfect matchings. Recall that we say that a
graph on n vertices has a perfect matching if it has a matching of size bn/2c.
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Theorem 13. Let m ≥ 159. Then a.a.s. Gnm−old has a perfect matching.

Proof. We are going to use the two-round exposure technique, as discussed in Section 2.3. Recall
that the graph Gnm−old can be seen as a union of two independent graphs: Gnm1−old and Gnm2−old as
long as m = m1+m2. In our situation, m1 = 120 and m2 = m−m1 ≥ 39. It follows from Lemma 8,
Lemma 9(ii) and Lemma 10(a) that the properties stated there hold a.a.s. for Gnm1−old with ` = 1,
α = 0.0538 and γ = γ(m1) ≤ 0.06238. In particular, as we aim for an a.a.s. statement, we may
expose the edges of Gnm1−old first and assume that every set of vertices K ⊆ [n] with 1 ≤ |K| ≤ αn
satisfies |N(K)| ≥ |K|, and that Gnm1−old has a matching that isolates at most γn vertices. It is an
immediate but crucial observation that these two assumptions will still hold if we add extra edges
to Gnm1−old.

Now, we will repeatedly expose some edges of Gnm2−old (in some specific order) and add them
to Gnm1−old. At each stage of the process, let G denote the current graph, consisting of Gnm1−old
together with the exposed edges from Gnm2−old. We will argue that, if G does not have a perfect
matching, then there is a good chance that exposing more edges of Gnm2−old increases the size of a
maximum matching by 1. Consider A = A(G) and suppose that G has no perfect matching. As all
small sets expand well in G ⊇ Gnm1−old, it follows from Lemma 12 that |B(v)| ≥ αn for any v ∈ A
(note that B(v) 6= ∅, as no perfect matching is found yet). Therefore, recalling that A ⊇ B(v), we
conclude that |A| ≥ αn.

Suppose that we are at the first stage of the process (that is, when G = Gnm1−old), and let
us focus on the youngest vertex v in A. We expose all edges of Gnm2−old from v to older vertices
and add them to G. Note that if we find some edge between v and B(v), then we increase the
size of a maximum matching by one. As all vertices in B(v) are older than v, the probability
of increasing the size of a maximum matching is at least 1 − (1− α)m2 (see (6)). We update G
(including all exposed edges from Gnm2−old) and also the set A = A(G), and continue the process
moving to another vertex v, the youngest vertex in A that is not exposed yet with respect to
Gnm2−old. As before |B(v)| ≥ αn but, perhaps, one vertex from B(v) (the one that is already
exposed) is younger than v. Hence, the probability of increasing the size of a maximum matching
is at least 1 − (1− (αn− 1)/n)m2 . In general, as long as we expose edges from t vertices and a
perfect matching is not found, the probability of extending a maximum matching after exposing
another vertex is at least 1− (1− (αn− t)/n)m2 .

It remains to estimate the probability that the process exposes edges of bαnc vertices and no
perfect matching is found. If this happens, then the random variable X that counts the number
of times the process extends some maximum matching is smaller than γn/2. Note that X is
stochastically bounded from below by a random variable Y that is a sum of independent Bernoulli
random variables with parameter 1 − (1− (αn− t)/n)m2 , for t ∈ {0, 1, . . . , bαnc − 1}. Using the
Euler–Maclaurin formula and the change of variable x = t/n, we can approximate EY by an integral
and obtain

E[Y ]

n
∼

∫ α

0

(
1− (1− (α− x))m2

)
dx

=

[
x− (1− α+ x)m2+1

m2 + 1

]α
0

= α− 1

m2 + 1
+

(1− α)m2+1

m2 + 1
>
γ

2
. (32)

It follows from the generalized Chernoff bound that a.a.s. the process does not fail and a perfect
matching is found.

Adjusting the result to Gnm is straightforward, given all the tools that we developed in Sec-
tion 2.4.
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Corollary 14. Let m ≥ 1, 253. Then a.a.s. Gnm has a perfect matching.

Proof. The argument is analogous to that of Theorem 13, so we will only sketch the differences. Let
m1 = 500, and m2 = m−2m1 ≥ 253. It follows from Lemma 8, Lemma 9(ii) and Lemma 11(c) that
the properties stated there hold a.a.s. for π1

(
Gn2m1,m2

)
with ` = 1, α = 0.016801 and γ = γ(m1) ≤

0.019675. In particular, π1
(
Gn2m1,m2

)
has the desired properties as we claimed before for Gn120−old

in the proof of Theorem 13. The second part of the argument has to be adjusted slightly, using
Lemma 2 instead of (6). This time, X is stochastically bounded from below by a random variable Y
that is a sum of independent Bernoulli random variables with parameter 1−(1− (αn− t)/(2n))m2 ,
t ∈ {0, 1, . . . , bαnc − 1}. Now

E[Y ]

n
∼

∫ α

0

(
1− (1− (α− x)/2)m2

)
dx =

[
x− 2(1− α/2 + x/2)m2+1

m2 + 1

]α
0

= α− 2

m2 + 1
+

2(1− α/2)m2+1

m2 + 1
>
γ

2
, (33)

and the rest of the proof continues unaltered.

3.3 Hamiltonian cycles

In this subsection, we deal with Hamiltonian cycles. The argument is very similar to the one we used
for perfect matchings so we skip some details. As before, we start with a deterministic result that
can be found, for example, in [21, Corollary 6.7]. This approach was an important breakthrough in
finding Hamiltonian cycles in random graphs and came with the result of Pósa [32]. Let G = (V,E)
be any graph. Suppose that P = (a, . . . , x, y, y′, . . . , b′, b) is a path and bx is an edge where x 6= b
is either a or an interior vertex of P . Then, the path P ′ = (a, . . . , x, b, b′, . . . , y′, y) is said to be
obtained from P by a rotation with vertex a fixed. Now, for a given path P with a as one of its
endpoints, let END(P, a) be the set of vertices v such that there exists a path from a to v that is
obtained from P by a sequence of rotations with vertex a fixed. Then the following lemma holds.
(And again we include the proof for completeness.)

Lemma 15 ([21]). Let G = (V,E) be a graph, P be any longest path of G, and a one of its
endpoints. Then,

|N(END(P, a))| < 2|END(P, a)|.

Proof. We claim that if v ∈ V (P ) \ END(P, a) and v is adjacent to some vertex w in END(P, a),
then there is w′ ∈ END(P, a) such that vw′ ∈ E(P ). Indeed, consider the path Pw witnessing
w ∈ END(P, a). Consider x with vx ∈ E(P ); if vx /∈ E(Pw), then one of the rotations yielding Pw
from P deleted the edge vx and hence x ∈ END(P, a), so w′ = x satisfies the claim. Otherwise
NP (v) = NPw(v), and performing a rotation with the edge vw in Pw shows that one of the vertices
of NPw(v) is in END(P, a).

Now since P is a longest path, NG(END(P, a)) ⊆ V (P ). Our claim implies that furthermore
NG(END(P, a)) ⊆ NP (END(P, a)). Each vertex of END(P, a) has at most two neighbours along P ,
but also the endpoint of P (other than a) has only one; hence |NP (END(P, a))| < 2|END(P, a)|.

Suppose that G is connected but has no Hamiltonian cycle. Let A = A(G) ⊆ V be the set of
vertices that are endpoints of some longest path. (In particular, the length of a longest path could
be n = |V |.) For v ∈ A, let

B(v) = {w ∈ V \ {v} : w ∈ END(P, v) for some longest path P of G having v as an endpoint}.
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This time, the set B(v) is important for understanding whether a few additional random edges,
with v as one of their endpoints, have a chance to increase the length of a longest path (if there
is no Hamiltonian path) or create a Hamiltonian cycle (if there is a Hamiltonian path). Indeed,
if there is a Hamiltonian path, then adding an edge between v and some vertex in B(v) creates
a Hamiltonian cycle. Otherwise, some longest path of length k < |V | creates a cycle of length k.
Since G is connected, there is at least one edge joining a vertex from the cycle with some vertex
outside and so a longer path can be created.

Now, we are ready to prove the main result for Hamiltonian cycles. Since the proof is very
similar to the one of Theorem 13, we simply sketch it.

Theorem 16. Let m ≥ 3,214. Then a.a.s. Gnm−old has a Hamiltonian cycle.

Proof. Again, we are going to use the two-round exposure: Gnm−old = Gnm1−old ∪ G
n
m2−old, with

m1 = 2,900 and m2 = m −m1 ≥ 314. It follows from Lemma 8, Lemma 9(i) and Lemma 10(b)
that the properties stated there hold a.a.s. for Gnm1−old with ` = 2, α = 0.032003 and β = β(m1) ≤
0.014414. In particular, we may expose Gnm1−old and assume that every set of vertices K ⊆ [n] with
1 ≤ |K| ≤ αn satisfies |N(K)| ≥ 2|K|, and that Gnm1−old has a path of length at least n − 2dβne.
Moreover, we assume that Gnm1−old is connected by [9].

As in the proof of Theorem 13, we will sequentially pick vertices and expose the edges of Gnm2−old
that connect them to older vertices. During this process, we try to extend the length of a longest
path and, once a Hamiltonian path is created, to close the desired cycle. Each time, if the current
graph does not have a Hamiltonian cycle yet, we update the set A and all B(v)’s. As all small sets
expand well, it follows from Lemma 15 that |B(v)| ≥ αn for every v ∈ A, and so also |A| ≥ αn. At
each step, we choose the youngest vertex v in A that has not been picked yet, and expose the m2

edges of Gnm2−old that go from v to older vertices. As before, as long as we have only exposed edges
from t vertices and a Hamiltonian cycle has not been found, the probability of improving our current
situation in the next step is at least 1−(1− (αn− t)/n)m2 . From an analogous computation to the
one leading to (32), the expected number of successful steps in the process is at least (1 + o(1))cn,
where

c := α− 1

m2 + 1
+

(1− α)m2+1

m2 + 1
> 2β.

Since it only takes 2dβne ∼ 2βn (or less) successful steps to discover a Hamiltonian cycle, we use
the generalized Chernoff bound as before to conclude that a.a.s. a Hamiltonian cycle is found during
the process.

Finally, we will extend the result to Gnm for the last time, by adjusting the proof of Theorem 16
in the same spirit as Corollary 14 was obtained from Theorem 13. We omit details, and just state
the main differences from the previous arguments.

Corollary 17. Let m ≥ 29,500. Then a.a.s. Gnm has a Hamiltonian cycle.

Proof. Let m1 = 14,000, and m2 = m− 2m1 ≥ 1,500. Take ` = 2 and α = 0.008874, and note that
β = β(m1) ≤ 0.003760. Then, by Lemma 8, Lemma 9 and Lemma 11(d), π1

(
Gn2m1,m2

)
has the same

desired properties as we claimed for Gn2,900−old in the proof of Theorem 16. After adjusting (33)
and verifying that

α− 2

m2 + 1
+

2(1− α/2)m2+1

m2 + 1
> 2β,

the proof is finished.
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4 Lower bound

In [11], a simplified model for crawling complex networks such as the web graph was proposed,
which is a variation of the robot vacuum edge-cleaning process introduced earlier by Messinger
and Nowakowski [28]. In particular, it was shown that a.a.s. the preferential attachment model
Gn2 has the following property: the optimal robot crawler needs substantially more than n steps
to visit all the vertices of the graph (see Theorem 10 in [11] and the discussion preceding it).
This immediately implies (in a strong sense) that Gn2 is not Hamiltonian a.a.s. Moreover, these
observations, combined with an additional argument presented below, show a stronger property,
namely, that Gn2 has no perfect matching a.a.s.

Here we briefly recall the main ingredients of the argument in [11] without reference to the
robot crawling process. Fix some constant c ∈ (0, 1) and consider Gn2 . We say that a vertex t is
old if t ≤ cn (and young otherwise). Moreover, a vertex is called lonely if it is never chosen as the
recipient of an edge stemming from another vertex added later on in the process. (In particular, a
lonely vertex must have degree 2.) Let An be the number of vertices in Gn2 that are young, lonely,
with two old neighbours; let Bn be the number of vertices that are young, lonely, with exactly one
old neighbour; let Cn be the number of vertices that are old and lonely; and finally, let Dn count
the number of vertices that are old but not lonely. Pick any young vertex t > cn. It follows from
Lemma 5 that the probability that exactly i edges stemming from t are attached to old vertices is
asymptotic to (

2

i

)√
cn/t

i
(1−

√
cn/t)2−i.

Moreover, the probability that t is lonely is equal to

n∏
i=t+1

(
1− 2

4i
+O

(
i−2
))2

= exp

(
−

n∑
i=t+1

i−1 +O(t−1)

)
∼ t/n,

and this is still valid conditional on any event that involves only edges stemming from vertices in
[t]. In particular, the probability that t is lonely and has exactly one old neighbour is asymptotic
to 2

√
cn/t(1−

√
cn/t)t/n, and thus

EBn ∼ n
∫ 1

c
2
√
c/x(1−

√
c/x)x dx = n

(
4
√
c

3
− 2c+

2c2

3

)
.

A similar calculation gives that E
(
Bn(Bn − 1)

)
∼ (EBn)2 (since, for each pair of different young

vertices t1 and t2, the events {t1 contributes to Bn} and {t2 contributes to Bn} are asymptotically
independent). This implies that VarBn = o

(
(EBn)2

)
, and hence by Chebyshev inequality we get

that a.a.s. Bn ∼ EBn. Proceeding analogously for An, Cn and Dn, we conclude that a.a.s.:

An ∼ n
∫ 1

c
(
√
c/x)2x dx = n(c− c2),

Bn ∼ n
∫ 1

c
2
√
c/x(1−

√
c/x)x dx = n

(
4
√
c

3
− 2c+

2c2

3

)
,

Cn ∼ n
∫ c

0
x dx = n

c2

2
,

Dn ∼ n
(
c− c2

2

)
.
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Consider the graph H (on n−Dn vertices) obtained by deleting the old but not lonely vertices.
The Cn old and lonely vertices as well as the An young and lonely vertices with two old neighbours
are isolated in H, and the Bn young and lonely vertices with one old neighbour have degree 1 in
H. Since

Bn
2n

+
An
n

+
Cn
n
∼ 1

2

(
4
√
c

3
− 2c+

2c2

3

)
+ c− c2 +

c2

2
> c− c2

2
∼ Dn

n

for any choice of c ∈ (0, 1), the graph a.a.s. does not have a Hamiltonian cycle. In fact, this argument
almost shows that a.a.s. there is no perfect matching. Indeed, the number of odd components in H
is at least the number of isolated vertices in H, which in turn is a.a.s. equal to An+Cn ∼ (c−c2/2)n,
and so it coincides with an asymptotic value of Dn, the number of vertices removed from Gn2 to get
H. Hence, it almost violates Tutte’s condition for existence of a perfect matching.

In order to show that the necessary (and sufficient) Tutte’s condition does not hold for, say,
c = 1/4, we are going to show that a.a.s. there are Ω(n) components of size 3 in H (and so there are
more odd components than vertices removed). As the constant hidden in the Ω() notation does not
affect the argument, we are not going to optimize it here. Let us partition the vertex set V = [n]
into 4 subsets V1 = [bn/4c], V2 = [bn/2c] \ [bn/4c], V3 = [b3n/4c] \ [bn/2c], and V4 = [n] \ [b3n/4c].
(In particular, V1 is the set of old vertices.) We say that a triple (v2, v3, v4) forms a cherry if
v2 ∈ V2, v3 ∈ V3 are the two older neighbours of a lonely vertex v4 ∈ V4, and v4 is the only younger
neighbour of each of v2 and v3. Moreover, we say that a cherry (v2, v3, v4) is sweet if v2 and v3 both
have two neighbours in V1 (these neighbours are older than them; the third, common and younger,
neighbour is v4, of course). Let Sn denote the number of sweet cherries.

We proceed to bound from below the probability that a given tuple (v2, v3, v4) forms a sweet
cherry. First note that the probability that v2 has two neighbours in V1 is at least (1 + o(1))(1/2)2.
Conditional upon that, the probability that no vertex i (v2 < i < v3) is adjacent to v2 is at

least
∏v3−1
i=v2+1

(
1− 2

4(i−1)

)2
. Conditional upon these two events, the probability that v3 has two

neighbours in V1 is at least (1 +o(1))(1/3)2. Conditional on all the previous events, the probability

that no vertex i (v3 < i < v4) is adjacent to v2 or v3 is at least
∏v4−1
i=v3+1

(
1− 4

4(i−1)

)2
. Conditional

on all the above, the probability that v4 is adjacent to both v2 and v3 is (2 + o(1))
(

2
4n

)2
. Finally,

conditional upon all the previous events, the probability that no vertex i (v4 < i ≤ n) is adjacent

to v2 or v3 is at least
∏n
i=v4+1

(
1− 6

4(i−1)

)2
. Putting everything together, the probability that

(v2, v3, v4) is a sweet cherry is at least

(1 + o(1)) 2

(
1

6

)2( 1

2n

)2 n∏
i=v2+1

(
1− 3

2(i− 1)

)2

= Ω(1)

(
1

n

)2 (v2
n

)3
= Ω

(
1/n2

)
.

Since the number of possible tuples (v2, v3, v4) is Θ(n3), we conclude that ESn = Ω(n). More-
over, given two different tuples (v2, v3, v4) and (v′2, v

′
3, v
′
4), easy calculations show that the events

{(v2, v3, v4) is a sweet cherry} and {(v′2, v′3, v′4) is a sweet cherry} are asymptotically independent
for v2 6= v′2, v3 6= v′3 and v4 6= v′4 or disjoint otherwise. Then, we can argue as we did before for Bn
to conclude that VarSn = o

(
(ESn)2

)
and a.a.s. Sn ∼ ESn. As a result, there are a.a.s. Ω(n) sweet

cherries (inducing components of size 3 in H) and so Gn2 a.a.s. has no perfect matching.
Unfortunately, we do not know how to show that a.a.s. Gn2−old has no perfect matching (perhaps

it does have one, as some experiments for small values of n might suggest). On the other hand,
showing that a.a.s. it has no Hamiltonian cycle is easy: a.a.s. there are three lonely vertices that
have a common neighbour.
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John Wiley and Sons, 53–59.
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