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Abstract. In this paper we focus on the problem of finding (small) subhypergraphs
in a (large) hypergraph. We use this problem to illustrate that reducing hypergraph
problems to graph problems by working with the 2-section is not always a reasonable
approach. We begin by defining a generalization of the binomial random graph model
to hypergraphs and formalizing several definitions of subhypergraph. The bulk of the
paper focusses on determining the expected existence of these types of subhypergraph
in random hypergraphs. We also touch on the problem of determining whether a
given subgraph appearing in the 2-section is likely to have been induced by a certain
subhypergraph in the hypergraph. To evaluate the model in relation to real-world
data, we compare model prediction to two datasets with respect to (1) the existence
of certain small subhypergraphs, and (2) a clustering coefficient.

1. Introduction

Myriad problems can be described in hypergraph terms, however, the theory and tools
are not sufficiently developed to allow most problems to be tackled directly within this
context. In particular, we lack even the most basic of hypergraph models. In this
paper we introduce a natural generalization of Erdős-Rényi (binomial) random graphs
to non-uniform random hypergraphs. While such a model cannot hope to capture many
features of real-world datasets, it allows us to explore several fundamental questions
regarding the existence of subhypergraphs and helps us to illustrate that the common
practice of reducing hypergraph problems to graph problems via the 2-section operation
is not reasonable in many cases.

Despite being formally defined in the 1960s (and various realizations studied long
before that) hypergraph theory is patchy and often not sufficiently general. The result is
a lack of machinery for investigating hypergraphs, leading researchers and practitioners
to create the 2-section graph of a hypergraph of interest and then rely upon well-
established graph theoretic tools for analysis. In taking the 2-section (that is, making
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each hyperedge a clique, see Section 2 for a formal definition) we lose some information
about edges of size greater than two. Sometimes losing this information does not affect
our ability to answer questions of interest, but in other cases it has a profound impact.

Let us further explore the fundamental issues with working on the 2-section graph
by considering a small example. Suppose we are given the coauthorship hypergraph
in which vertices correspond to researchers and each hyperedge consists of the set of
authors of a scientific paper. We wish to answer two questions regarding this dataset:
(1) What is the Erdős number of every researcher (zero for Erdős, one for coauthors of
Erdős, two for coauthors of coauthors of Erdős, etc.)? and (2) Given a subhypergraph
induced by only the seminal papers in a particular field, what is the minimum set of
authors who between them cover all the papers in the subhypergraph? The Erdős
number of an author is the minimum distance between the author’s vertex and Erdős’
vertex in the hypergraph and this distance is not changed by taking the 2-section.
However, in the case of finding a minimum set of vertices that are incident with every
hyperedge in the subhypergraph, the 2-section of the hypergraph loses the information
about the set of papers that a particular author covers. In fact, the 2-section does not
even retain how many papers were used to create the hypergraph! Fundamentally, if
the composition of the hyperedges of size greater than two is important in solving a
problem, then solving the problem in the 2-section will be difficult, if not impossible.

Besides the information loss, there is another potential downside to working with
the 2-section of a hypergraph; the 2-section can be much denser than the hypergraph
since a single hyperedge of size k implies

(
k
2

)
edges in the 2-section. Depending on the

dataset and algorithm being executed, the increased density of the 2-section can have
a significant detrimental effect on compute time.

In this paper we are interested in finding subhypergraphs in hypergraphs. We study
rigorously – via theorems with proofs – occurrences of a given hypergraph as a sub-
hypergraph of random hypergraphs generated by our model. One of the implications
of our work is that two hypergraphs H1 and H2 that induce the same subgraph in
the 2-section can have drastically different thresholds for appearance. This is concrete
evidence that the research community needs to develop more algorithms that deal with
hypergraphs directly.

To evaluate our model and, in particular, to illuminate features of real-world net-
works not captured by the model, we investigate two datasets: an email hypergraph
and a coauthorship hypergraph. Not surprisingly, we confirm that subhypergraphs that
are not distinguishable in the 2-section graph occur with different probabilities (as pre-
dicted by the model). However, also not surprisingly, we confirm that the distribution
of such subhypergraphs in the two networks is quite different from what the model
predicts. This is due in large part to the fact that the model predicts that edges occur
independently. In graph theory the interdependence of edges is measured by the no-
tion of clustering coefficient. There have been a number of proposals for generalizing
clustering coefficient to hypergraphs including [17], [5], [2], [14], and [20]. We calculate
the hypergraph clustering coefficient from [20] for our random hypergraph model and
the two real networks we are investigating. This positions us well for further model
development. An extended abstract of this paper appeared in [6].
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2. Definitions and Conventions

2.1. Random graphs and random hypergraphs. First, let us recall a classic ran-
dom graph model. A binomial random graph G ∈ G (n, p) is a random graph with

vertex set [n] := {1, 2, . . . , n} in which every pair {i, j} ∈
(

[n]
2

)
appears independently

as an edge with probability p. Note that p = p(n) may (and usually does) tend to zero
as n tends to infinity.

In this paper, we are concerned with a more general combinatorial object: hyper-
graphs. A hypergraph H is an ordered pair H = (V,E), where V is a finite set (the vertex
set) and E is a family of subsets of V (the hyperedge set). A hypergraph H = (V,E) is
r-uniform if all hyperedges of H are of size r. For a given r ∈ N, a random r-uniform
hypergraph H ∈ Hr(n, p) has n labelled vertices from a vertex set V = [n], with every
subset e ⊆ V of size |e| = r chosen to be a hyperedge of H randomly and independently
with probability p. For r = 2, this model reduces to the model G (n, p).

The binomial random graph model is well known and thoroughly studied (e.g. [4,
12, 11]). Random hypergraphs are much less well understood and most of the existing
papers deal with uniform hypergraphs (e.g. Hamilton cycles (both tight ones and loose
ones) were recently studied in [8, 9, 10], perfect matchings were investigated in [13] and
additional examples can be found in a recent book on random graphs [11]).

In this paper, we study a natural generalization of the r-uniform random hypergraph
model which produces non-uniform hypergraphs. Let p = (pr)r≥1 be any sequence
of numbers such that 0 ≤ pr = pr(n) ≤ 1 for each r ≥ 1. A random hypergraph
H ∈ H (n,p) has n labelled vertices from a vertex set V = [n], with every subset
e ⊆ V of size |e| = r chosen to be a hyperedge of H randomly and independently with
probability pr. In other words, H (n,p) =

⋃
r≥1 Hr(n, pr) is a union of independent

uniform hypergraphs.
Let us mention that there are several other natural generalizations that might be

worth exploring, depending on the specific application in mind. One possible general-
ization would be to allow hyperedges to contain repeated vertices (multiset-hyperedge
hypergraphs). Another would be to allow the hyperedges to be chosen with possi-
ble repetition, resulting in parallel hyperedges. We do not address these alternative
formulations in this paper.

We require a few other definitions to aid our discussions. A vertex of a hypergraph is
isolated if it is contained in no edge. In particular, a vertex of degree one that belongs
only to an edge of size one is not isolated. The 2-section of a hypergraph H, denoted
[H]2, is the graph on the same vertex set as H and an edge {u, v} if (and only if) u
and v are contained in some edge of H. In other words, the 2-section is obtained by
making each hyperedge of H a clique in [H]2. The complete hypergraph on n vertices
is the hypergraph with all 2n − 1 possible nonempty edges.

2.2. Notation. All asymptotics throughout are as n goes to∞. We emphasize that the
notations o(·) and O(·) refer to functions of n, not necessarily positive, whose growth
is bounded. We also use the notation f � g for f = o(g) and f � g for g = o(f). We
say that an event in a probability space parametrized by n holds asymptotically almost
surely (or a.a.s.) if the probability that it holds tends to 1 as n → ∞. Since we aim
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for results that hold a.a.s., we will always assume that n is large enough. We will often
abuse notation by writing G (n, p) or H (n,p) to refer to a graph or hypergraph drawn
from the distributions G (n, p) and H (n,p), respectively. For simplicity, we will write
f(n) ∼ g(n) if f(n)/g(n)→ 1 as n→∞ (that is, when f(n) = (1+o(1))g(n)). Finally,
we use log n to denote natural logarithms.

2.3. Subhypergraphs. In this paper, we are concerned with occurrences of a given
substructure in hypergraphs. As there are at least two natural generalizations of “sub-
graph” to hypergraphs, we cannot simply call these substructures “subhypergraphs”.

A hypergraph H ′ = (V ′, E ′) is a strong subhypergraph (called hypersubgraph by Bah-
manian and Sajna [1] and partial hypergraph by Duchet [7]) of H = (V,E) if V ′ ⊆ V and
E ′ ⊆ E; that is, each hyperedge of H ′ is also an hyperedge of H. We write H ′ ⊆s H
when H ′ is a strong subhypergraph of H. For H = (V,E) and V ′ ⊆ V , the strong
subhypergraph of H induced by V ′, denoted Hs[V

′], has vertex set V ′ and hyperedge set
E ′ = {e ∈ E : e ⊆ V ′}.

A hypergraph H ′ is a weak subhypergraph of H (called subhypergraph by Bahmanian
and Sajna) if V ′ ⊆ V and E ′ ⊆ {e ∩ V ′ : e ∈ E}; that is, each hyperedge of H ′

can be extended to one of H by adding vertices of V \ V ′ to it. For V ′ ⊆ V , the
weak subhypergraph induced by V ′, denoted Hw[V ′], has vertex set V ′ and hyperedge
set E ′ = {e ∩ V ′ : e ∈ E}. Note that an induced weak subhypergraph might contain
repeated edges and/or the empty edge. To simplify our analysis, we tacitly replace E ′

by E ′ \ {∅} and assume that weak subhypergraphs do not have multiple hyperedges
(that is, E ′ is a set, not a multiset).

Note that when G is a (2-uniform) graph, strong subhypergraphs are the usual notion
of subgraph, and weak subhypergraphs are subgraphs together with possible hyperedges
of size one. Each strong subhypergraph is also a weak subhypergraph but the reverse
is not true.

Given hypergraphs H1 and H2, a weak (resp. strong) copy of H1 in H2 is a weak
(resp. strong) subhypergraph of H2 isomorphic to H1. Most of this paper is concerned
with determining the existence of strong or weak copies of a fixed H in H (n,p). In a
mild abuse of terminology, we will often say that a hypergraph contains H as a weak
(strong) subhypergraph when we actually mean that the hypergraph contains a weak
(strong) copy of H. The precise meaning will always be clear from the context.

H1 H2

Figure 1. The hypergraph H1 appears as a weak subhypergraph of H2

(induced by the dashed vertex subset), but not as a strong subhypergraph.
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Since it should not cause confusion in this paper, we will often drop the affix “hy-
per”: we refer to hyperedges as just edges and strong/weak subhypergraphs as just
strong/weak subgraphs. However, we will not drop the affix from “hypergraph.”

3. Small subgraphs in H (n,p).

We are interested in answering questions about the existence of subgraphs in H (n,p).
This question was addressed for G (n, p) by Bollobás in [3]. To state his result we require
two definitions. Let G be a graph. Denote by d(G) = |E(G)|/|V (G)| the density of G,
and by

m(G) = max{d(G′) : G′ ⊆ G}
the maximum subgraph density of G.

Theorem 3.1 (Bollobás [3]). For an arbitrary fixed graph G with at least one vertex,

lim
n→∞

P
(
G ⊆ G (n, p)

)
=

{
0 if npm(G) → 0

1 if npm(G) →∞.

In other words, if npm(G) → 0, then a.a.s. G (n, p) does not contain G as a subgraph. If
npm(G) →∞, then a.a.s. G (n, p) contains G as a subgraph. The function p∗ = n−1/m(G)

(or any other function of the same asymptotic order) is called a threshold probability
for the property that G (n, p) contains G as a subgraph.

Before we move to our result for random hypergraphs, let us mention why the max-
imum subgraph density of G, rather than simply the density of G, plays a role here.
Consider the graphs G and G′ depicted on Figure 2. Note that G′ ⊂ G.

G′ G

Figure 2. Maximum subgraph density vs. density: G has density 6/5,
whilst its maximum subgraph density is 5/4 (> 6/5). G′ ⊂ G has density
5/4.

Take any function p = p(n) such that n−5/6 � p� n−4/5, say p(n) = n−9/11. Then

E[Xn(G)] = Θ(n5p6)→∞
E[Xn(G′)] = Θ(n4p5)→ 0,

where Xn(G) and Xn(G′) are random variables representing the number of copies of G
and G′ in G (n, p). Since E[Xn(G)]→∞, one might expect many copies of G; however,
using the first moment method we get that a.a.s. there is no copy of G′ in G (n, p), and
therefore a.a.s. there is no copy of G either.

We now generalize Theorem 3.1 to hypergraphs. In order to state our result, we need
a few more definitions. Let H = (V,E) be a hypergraph. Denote the number of vertices
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in H by v(H) = |V | and denote the number of edges by e(H) = |E|. For any r ≥ 1,
we will use er(H) = |{e ∈ E : |e| = r}| to denote the number of edges of size r in H.
Finally, define

µs(H) = nv(H)
∏
r≥1

per(H)
r . (1)

We are now ready to state our result on the appearance of strong subgraphs of H (n,p).
We adopt the convention that 00 = 1 and assume all our hypergraphs have nonempty
vertex set.

Theorem 3.2. Let H be an arbitrary fixed hypergraph. Let p = (pr)r≥1 be any sequence
such that 0 ≤ pr = pr(n) ≤ 1 for each r ≥ 1. Let J denote the family of all strong
subgraphs of H.

(a) If for some H ′ ∈ J we have µs(H
′)→ 0 (as n→∞), then a.a.s. H (n,p) does

not contain H as a strong subgraph.
(b) If for all H ′ ∈ J we have µs(H

′) → ∞ (as n → ∞), then a.a.s. H (n,p)
contains H as a strong subgraph.

Moreover, if there exists ε > 0 such that pr ≤ 1− ε, for all r, then the conditions above
determine whether or not H appears as an induced strong subgraph.

Let us mention that the result also holds in the multiset setting (i.e. when vertices
are allowed to be repeated in each hyperedge with some multiplicity). This can be
easily seen by replacing

(
n

v(H)

)
v(H)! by nv(H) in the proof below and making several

other trivial adjustments.

Proof. Denote by Xn = Xn(H) the random variable that counts strong copies of H in
a random hypergraph H (n,p). Denote by H1, H2, . . . , Ht all strong copies of H in the
complete hypergraph on n vertices. Note that

t = t(H) =

(
n

v(H)

)
v(H)!

aut(H)
= Θ

(
nv(H)

)
,

where aut(H) is the number of automorphisms of H. For i ∈ [t], let

Ii =

{
1 if Hi is a strong subgraph of H (n,p)

0 otherwise,

be an indicator random variable for the event that Hi is a strong subgraph of H (n,p).
Then Xn =

∑t
i=1 Ii.

We start with part (a) of the statement. Let H ′ ∈ J with µs(H
′) → 0. It follows

from Markov’s inequality that

P(Xn(H) > 0) ≤ P(Xn(H ′) > 0) ≤ E[Xn(H ′)]

= t(H ′)
∏
r≥1

per(H′)
r = Θ

(
µs(H

′)
)

= o(1).

Hence a.a.s. Xn(H) = 0 and part (a) is done.
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For part (b), we need to estimate the variance:

Var[Xn(H)] = Var

[
t∑

i=1

Ii

]
=
∑

1≤i,j≤t

Cov(Ii, Ij) =
∑

1≤i,j≤t

(
E[IiIj]− (E[Ii])(E[Ij])

)
=

∑
1≤i,j≤t

(
P(Ii = 1, Ij = 1)− (P(Ii = 1))2

)
=

∑
1≤i,j≤t

(
P(Ii = 1, Ij = 1)−

∏
r≥1

p2er(H)
r

)
.

Observe that random variables Ii and Ij are independent if and only if Hi and Hj are

edge-disjoint. In that case P(Ii = 1, Ij = 1) =
∏

r≥1 p
2er(H)
r , and such terms vanish

from the above summation. Therefore, we may consider only the terms for which
e(Hi ∩Hj) ≥ 1. For each H ′ ⊆s H, there are Θ(nv(H′)n2(v(H)−v(H′))) = Θ(n2v(H)−v(H′))
pairs (Hi, Hj) of copies of H in the complete hypergraph on n vertices with Hi ∩ Hj

isomorphic to H ′. Thus,

Var[Xn(H)] =
∑

H′⊆sH,
e(H′)>0

Θ(n2v(H)−v(H′))

(∏
r≥1

p2er(H)−er(H′)
r −

∏
r≥1

p2er(H)
r

)

=
∑

H′⊆sH,
e(H′)>0

O

(
n2v(H)−v(H′)

∏
r≥1

p2er(H)−er(H′)
r

)
.

Since E[Xn(H)] = Θ(nv(H)
∏

r≥1 p
er(H)
r ), we can use the second moment method to get

P(Xn(H) = 0) ≤ Var[Xn(H)]

(E[Xn(H)])2
=

∑
H′⊆sH,
e(H′)>0

O

(
n−v(H′)

∏
r≥1

p−er(H′)
r

)
= o(1).

Note that there are a finite number of terms in the above sum and, by assumption,
each term tends to zero as n→∞. Hence a.a.s. Xn(H) ≥ 1 and part (b) is done. �

In view of Theorem 3.2, we emphasize that the existence of strong copies of H in
H (n,p) cannot be determined by translating to graphs via the 2-section. For instance,
consider the three hypergraphs H1, H2, and H3 in Figure 3. Each of these has H1

as its 2-section. However, the expected number of strong copies of H1, H2 and H3 in
H (n,p) is n4p5

2, n4p2
2p3, and n4p2

3, respectively. So if, say p3 = n−5/2 and p2 = n−3/4,
then we expect many copies of H1, a constant number of copies of H2, and o(1) copies
of H3. Moreover, by testing the conditions of Theorem 3.2 for all the strong subgraphs
of H1, H2, and H3, we obtain that a.a.s. H (n,p) contains H1 as a strong subgraph,
but not H3 (and the theorem is inconclusive for H2).

Next we consider the appearance of weak subgraphs of H (n,p). For technical rea-
sons, we restrict ourselves to hypergraphs with bounded edge sizes. Formally, for a
given M ∈ N, we say that H = (V,E) is an M-bounded hypergraph if |e| ≤ M for all
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H1 H2 H3

Figure 3. These three hypergraphs have the same 2-section, which
is precisely H1, but their behaviour as potential strong subgraphs of
H (n,p) is different.

e ∈ E. Similarly, p = (pr)r≥1 is an M-bounded sequence if pr = 0 for r > M . We will
use p = (pr)

M
r=1 for an M -bounded sequence instead of an infinite sequence p = (pr)r≥1

with a bounded number of non-zero values. Clearly, if p is M -bounded, then so is
H (n,p) (with probability 1). For r ∈ [M ], let

p′r = pr + npr+1 + n2pr+2 + · · ·+ nM−rpM , (2)

and, given any fixed hypergraph H, define

µw(H) = nv(H)

M∏
r=1

(p′r)
er(H), (3)

which will play a role analogous to that of µs(H).

Theorem 3.3. Let H be an arbitrary fixed hypergraph, and let J be the family of all
strong subgraphs of H. Let p = (pr)

M
r=1 be an M-bounded sequence.

(a) If for some H ′ ∈ J we have µw(H ′)→ 0 (as n→∞), then a.a.s. H (n,p) does
not contain H as a weak subgraph.

(b) If for all H ′ ∈ J we have µw(H ′) → ∞ (as n → ∞), then a.a.s. H (n,p)
contains H as a weak subgraph.

Proof. Let H ′ ∈ J be a strong subgraph of H for which nv(H′)
∏M

r=1(p′r)
er(H′) → 0. As

before, if there is more than one strong subgraph with this property, then choose one
arbitrarily. Note that the product above still tends to 0 if all isolated vertices from H ′

are removed, so we can assume that H ′ has no isolated vertices. We will show that
a.a.s. H (n,p) does not contain H ′ as a weak subgraph and so a.a.s. it does not contain
H as a weak subgraph either. Let F be the family of all M -bounded hypergraphs (up
to isomorphism) with precisely |E(H ′)| edges, no isolated vertices, and containing H ′

as a weak subgraph. An important property is that each member of F has a bounded
number of vertices (trivially M |E(H ′)|) and so F also has bounded size. Clearly, if
H (n,p) contains H ′ as a weak subgraph, then H (n,p) contains some member of F
as a strong subgraph.
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Let us focus on any F ∈ F . For any e ∈ E(H ′), let ē ∈ E(F ) be the corresponding
edge in F that e is obtained from; that is, e = ē ∩ V (H ′). Observe that

µs(F ) = nv(F )

M∏
r=1

per(F )
r = nv(F )

∏
ē∈E(F )

p|ē| = nv(F )
∏

e∈E(H′)

p|ē|

= nv(F )−
∑

e∈E(H′)(|ē|−|e|)
∏

e∈E(H′)

n|ē|−|e|p|ē|

≤ nv(H′)
∏

e∈E(H′)

p′|e| = µw(H ′)→ 0.

It follows from Theorem 3.2(a) that a.a.s. H (n,p) does not contain F as a strong
subgraph. As |F| is bounded, a.a.s. H (n,p) does not contain any member of F as a
strong subgraph and so a.a.s. H (n,p) does not contain H as a weak subgraph. Part
(a) is finished.

Let us move to part (b). It follows immediately from the definition of p′r that for each
r there exists i(r) ∈ Z, 0 ≤ i(r) ≤M−r, such that ni(r)pr+i(r) ≥ p′r/(M−r+1) ≥ p′r/M .
We construct a new hypergraph J from H as follows: for each e ∈ E(H), add i(|e|)
new vertices to V (J) and add them to e to form ē ∈ E(J). See Figure 4 for an example
of this construction. Our goal is to show that a.a.s. H (n,p) contains J as a strong
subgraph, which will finish the proof as it implies that a.a.s. H (n,p) contains H as a
weak subgraph.

H

−→

J

Figure 4. The construction of J from H; here i(1) = 1, i(2) = 2,
i(3) = 0.

Let J ′ be any strong subgraph of J , and let H ′ be obtained from J ′ as follows:
V (H ′) = V (J ′) ∩ V (H) and E(H ′) = {ē ∩ V (H) : ē ∈ E(J ′)} (i.e., H ′ is the weak
subgraph of J ′ induced by V (H)). Note that E(H ′) ⊆ E(H) and so H ′ is a strong
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subgraph of H. This time, observe that

µs(J
′) = nv(J ′)

M∏
r=1

per(J ′)
r = nv(J ′)

∏
ē∈E(J ′)

p|ē| = nv(J ′)
∏

e∈E(H′)

p|ē|

= nv(J ′)−
∑

e∈E(H′) i(|e|)
∏

e∈E(H′)

ni(|e|)p|ē| ≥ nv(H′)
∏

e∈E(H′)

p′|e|
M

=
nv(H′)

M e(H′)

M∏
r=1

(p′r)
er(H′) = Ω

(
µw(H ′)

)
→∞.

It follows from Theorem 3.2(b) that a.a.s. H (n,p) contains J as a strong subgraph.
Part (b) and the proof of the theorem is finished. �

We shall discuss a few details concerning Theorem 3.3. First, it is possible that a.a.s.
some graph occurs as a weak subgraph but not as a strong one. For example, if

p1 = n−0.6, p2 = n−0.9, p3 = n−1.7, and p4 = n−3.1, (4)

then a.a.s. H (n,p) does not contain H as a strong subgraph but a.a.s. it does contain
J (both presented in Figure 4) and therefore a.a.s. it contains H as a weak subgraph.
Next, observe that if we replace the collection of all strong subgraphs J in the statement
of Theorem 3.3 by the collection Jw of all weak subgraphs of H, the theorem remains
valid. This is trivially true for part (b), since Jw ⊇ J . For part (a), simply replace
H ′ ∈ J by H ′ ∈ Jw in the proof, and note that the argument follows. Finally, let us
comment on the definition of p′r, and introduce related parameters p′′r and p′′′r , which
will play a role later on. Our particular choice of p′r in (3) and thus in the statement
of Theorem 3.3 is the simplest function from the equivalence class of all functions of
the same order. However, it is arguably more natural to replace p′r with p′′r which is
asymptotically the expected number of edges to which a given set of size r belongs. For
r ∈ [M ], let

p′′r = pr + npr+1 +

(
n

2

)
pr+2 + · · ·+

(
n

M − r

)
pM . (5)

Note that p′r and p′′r are of the same order. More precisely,

(1 + o(1))
p′r

(M − r)!
≤ p′′r ≤ p′r.

Hence, p′r can be replaced in (3) by the more natural (but less simple) p′′r , and The-
orem 3.3 remains valid. It is worth noting that both p′r and p′′r can be greater than
one or even tend to infinity as n → ∞. While p′′r is not a probability, we can create a
probabalistic version, p′′′r , that represents the probability that a set of size r belongs to
some edge:

p′′′r = 1− (1− pr)(1− pr+1)n−r(1− pr+2)(
n−r
2 ) · · · (1− pM)(

n−r
M−r). (6)
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Observe that, if p′r = o(1) (or equivalently p′′r = o(1)), then p′′r , p
′′
r+1, . . . , p

′′
M = o(1), and

therefore

p′′′r = 1− exp

(
−(1 + o(1))

(
pr + npr+1 +

(
n

2

)
pr+2 + · · ·+

(
n

M − r

)
pM

))
= 1− exp (−(1 + o(1))p′′r) ∼ p′′r , (7)

so p′′r and p′′′r asymptotically coincide.

4. Induced weak subgraphs

Let us discuss how one can use Theorem 3.3 to determine whether H appears as an
induced weak subgraph of H (n,p). This seems to be a more complex question than
in the case of strong subgraphs. Trivially, if H is a complete hypergraph on k vertices,
then every weak copy of H in H (n,p) is automatically also induced. Otherwise, the
non-edges of H play a crucial role in determining the existence of induced weak copies.
Indeed, a weak subgraph H of H (n,p) is induced provided that, for every set e of
vertices of H that do not form an edge, e cannot be extended to an edge of H (n,p)
by adding vertices not in H.

First, we will give some conditions that forbid a.a.s. the existence of induced weak
copies of H in H (n,p) (even if H does appear as a weak subgraph).

Proposition 4.1. Let H be an arbitrary fixed hypergraph on k vertices with a non-edge
of size r (1 ≤ r ≤ k). Suppose p′′r ≥ (k + ε) log n for some constant ε > 0, then a.a.s.
H does not occur as an induced weak subgraph of H (n,p).

Proof. If H (n,p) contains a copy H1 of H as an induced weak subgraph, then there
must be a set of r vertices in H1 that cannot be extended to an edge of H (n,p) by
only adding vertices outside of H1. The expected number of such sets is(

n

k

)(
k

r

)
(1− pr)(1− pr+1)n−k · · · (1− pM)(

n−k
M−r) ≤ nk exp(−(1 + o(1))p′′r) = o(1),

so a.a.s. there are none. �

Proposition 4.1 implies that if H is an induced weak subgraph of H (n,p) of order
k and p′′r ≥ (k + ε) log n, then H must contain all possible edges of size r. Let us
return to our example hypergraph H in Figure 4 and the probabilities in (4). Note
that p′′1 ∼

(
n
2

)
p3 ∼ n0.3/2, thus, a.a.s. H does not occur as an induced weak subgraph

of H (n,p), as not every vertex of H belongs to an edge of size one.
On the other hand, suppose that r ≥ 1 is the size of the smallest non-edge of H and

assume that

max{p′′′r , p′′′r+1, . . . , p
′′′
M} ≤ 1− ε (8)

for some constant ε > 0. Then any given weak copy of H in H (n,p) is also induced
with probability bounded away from zero. In this case, the calculations in the proof
of Theorem 3.3 are still valid – with an extra Θ(1) factor – and thus the conclusions
of that theorem extend to induced weak subgraphs. Since verifying condition (8) may
sometimes be tedious, we give a simpler sufficient condition.
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Proposition 4.2. Let H be an arbitrary fixed hypergraph, and let r be the size of its
smallest non-edge. Suppose that pr ≤ 1− ε for some constant ε > 0 and that p′r = O(1)
(and, as a result, p′′r = O(1) too). If the conditions in part (b) of Theorem 3.3 are
satisfied, then a.a.s. H (n,p) contains H as an induced weak subgraph.

Proof. Since p′j+1 = (p′j − pj)/n ≤ p′j/n, we inductively get that p′j ≤ 1 − ε for all j
with r + 1 ≤ j ≤ M . In particular, pj ≤ 1− ε and p′′j = O(1) for r ≤ j ≤ M . In view
of this, for all such j,

1− p′′′j = (1− pj)(1− pj+1)n−j(1− pj+2)(
n−j
2 ) · · · (1− pM)(

n−j
M−j)

≥ ε exp

(
−(1 + o(1))

(
npj+1 +

(
n

2

)
pj+2 + . . .+

(
n

M − j

)
pM

))
≥ ε exp

(
−(1 + o(1))p′′j

)
> ε′,

for some constant ε′ > 0, and thus (8) holds. Hence the conclusion of Theorem 3.3
extends to weak induced subgraphs. In particular, part (b) of that theorem gives a
sufficient condition for the a.a.s. existence of weak induced copies of H. �

Let us return to our example from Figure 4 and the probabilities given in (4) for the
last time. Since p′′2 ∼ np3 = n−0.7 = o(1), if the “missing” edges of size 1 are added to
H, then a.a.s. the resulting graph occurs as an induced weak subgraph of H (n,p).

5. The 2-section of H (n,p)

We begin by considering the question of whether a given graph G appears as a
subgraph of the 2-section of H (n,p). Again we assume that G has no isolated vertices.

Let us start with some general observations that apply to any host hypergraph H ,
not necessarily H (n,p). Observe that G ⊆ [H ]2 if and only if there is a weak subgraph
H of H such that G is a spanning subgraph of [H]2. So we may test for G ⊆ [H ]2
by finding every hypergraph H with G a spanning subgraph of [H]2 and applying
Theorem 3.3 to each. We can reduce the number of hypergraphs that need to be
tested: if H1 is a weak subgraph of H2 and H2 is a weak subgraph of H , then H1 is
also a weak subgraph of H . Note also that a spanning weak subgraph is actually a
strong subgraph; it suffices to check only the minimal hypergraphs H (with respect to
the (strong) subgraph relation) that have G as a spanning subgraph of their 2-section.

In H (n,p) one can reduce the number of hypergraphs H to be tested even further.
Given a hypergraph H, we construct a new hypergraph H ′ on the same vertices and
form hyperedges by taking a subset of each hyperedge of H. Any strong subgraph of
H ′ is called a subedge system of H. Note that if H1 is a subedge system of H2 and H2

is a weak subgraph of H, it is not necessarily true that H1 is a weak subgraph of H,
but it is true a.a.s. for H = H (n,p).

Proposition 5.1. Let H1 and H2 be fixed hypergraphs with H1 a spanning subedge
system of H2, and let p be M-bounded. Let J1 and J2 denote the set of all strong
subgraphs of H1 and H2, respectively. If every H ′2 ∈ J2 satisfies µw(H ′2) → ∞, then
every H ′1 ∈ J1 also satisfies µw(H ′1)→∞.
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Proof. Let H ′1 ∈ J1. Since edges of H ′1 are subsets of edges of H2, we can turn H ′1
into a strong subgraph H ′2 of H2 by appropriately extending some of its edges. For
each edge e1 of H ′1 of size r that is extended to an edge e2 of size r + i, one factor of
p′r in µw(H ′1) is replaced by one corresponding factor of p′r+i in µw(H ′2). We have that
p′r ≥ nip′r+i ≥ p′r+i, so µw(H ′1) ≥ µw(H ′2)→∞. �

Corollary 5.2. Fix a graph G without isolated vertices. Let F denote the family of
minimal (with respect to the subedge system relation) hypergraphs containing G in their
2-section. Let p be M-bounded.

(a) If for every H ∈ F there is some strong subgraph H ′ ⊆s H with µw(H ′) → 0,
then a.a.s. G is not a subgraph of [H (n,p)]2.

(b) If for some H ∈ F every strong subgraph H ′ ⊆s H satisfies µw(H ′)→∞, then
a.a.s. G is a subgraph of [H (n,p)]2.

Next we consider the following question: suppose a copy of G is found in [H (n,p)]2.
What is the probability that this copy comes from a given weak subgraph of H (n,p)?

Let G be a fixed graph with no isolated vertices. Let F denote the family of hyper-
graphs H on the same vertex set as G such that G ' [H]2. Then, G appears as an
induced subgraph of [H (n,p)]2 if and only if some H ∈ F appears as an induced weak
subgraph of H (n,p). More precisely, for every set of vertices S inducing a copy of G
in [H (n,p)]2, there is exactly one H ∈ F such that S induces a weak copy of H in
H (n,p). In this case we say that the hypergraph H originates that particular copy of
G. As a result we have the following corollary.

Proposition 5.3. Let p = (pr)
M
r=1 be an M-bounded sequence. For r ∈ [M ], let p′′′r be

defined as in (6). Given a copy of G in [H (n,p)]2, the probability that it originates
from a given H ∈ F is

(1 + o(1))
aut(H)

∏M
r=1(p′′′r )er(H)(1− p′′′r )(

v(G)
r )−er(H)∑

H′∈F aut(H ′)
∏M

r=1(p′′′r )er(H′)(1− p′′′r )(
v(G)
r )−er(H′)

.

Define the signature of H ∈ F as the vector e(H) = (e1(H), e2(H), . . . , ek(H)),
where k = v(G) (and hence also k = v(H)). Let e(F) = {e(H) : H ∈ F}. For a given
signature e ∈ e(F), let Fe ⊆ F be the family of hypergraphs in F with signature e.
Notice that {Fe : e ∈ e(F)} is a partition of F . We can state the following corollary
to Proposition 5.3 which we will make use of when comparing model predictions to
real-world networks (see Section 6).

Corollary 5.4. Let p = (pr)
M
r=1 be an M-bounded sequence. For r ∈ [M ], let p′′′r

be defined as in (6). Then, given a copy of G in [H (n,p)]2, the probability that it
originates from a hypergraph with a given signature e = (m1,m2, . . . ,mk) ∈ e(F) is

(1 + o(1))

∑
H∈Fe

aut(H)
∏k

r=1(p′′′r )mr(1− p′′′r )(
v(G)
r )−mr∑

H′∈F aut(H ′)
∏k

r=1(p′′′r )er(H′)(1− p′′′r )(
v(G)
r )−er(H′)

.

We are particularly interested in the subgraphs induced by the action of 2-sectioning,
i.e. complete graphs. Of course, these include as subgraphs all sparser graphs on the
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same or fewer vertices. Let us briefly explore the implications of Corollary 5.4 when G is
a complete graph. Let Kk denote the complete graph on k vertices, k ≥ 2, and suppose
that p is an M -bounded sequence satisfying

(
n
j

)
pj = O(n) for all j ∈ [M ]. The latter

condition is equivalent to assuming that the expected number of edges of each given
size is at most linear in the number of vertices, which is a fairly reasonable assumption
for many hypergraph networks. Additionally, suppose that for some r with k ≤ r ≤M
we also have

(
n
r

)
pr = Ω(n). From (7), we obtain that p′′′j = O(1/nj−1) for every j ∈ [M ]

and p′′′k = Θ(1/nk−1). Consider the signature ê = (0, . . . , 0, 1) corresponding to the

hypergraph Ĥ on k vertices with a single edge of size k. A straightforward inductive
argument reveals that, for any signature e = (m1,m2, . . . ,mk) ∈ e(F),

k∏
r=1

(p′′′r )mr(1− p′′′r )(
k
r)−mr =

{
(1 + o(1))p′′′k = Θ(1/nk−1) if e = ê

o(1/nk−1) if e 6= ê.

As a result, applying Corollary 5.4 to all signatures different from ê, we conclude that,

for a given copy of Kk in [H (n,p)]2, a.a.s. it must originate from Ĥ.

6. Comparing the model with reality

In this section, we look at two real-world datasets that are naturally represented
as hypergraph networks. We consider how well our model captures certain features
of these datasets by looking at the appearance of select weak subhypergraphs and by
comparing a measure of clustering coefficient.

6.1. Real-world datasets. We examine two real-world datasets; a coauthorship hy-
pergraph and an email hypergraph.

The email hypergraph was constructed from the Enron dataset; a version of which
can be obtained from Carnegie Mellon University [16]. This dataset consists of 30,100
email messages from 151 Enron employees. We use the messages sent by these indi-
viduals to build an undirected hypergraph for analysis. From each message we extract
the from, to, cc and bcc fields. The fields are merged (removing repeated addresses)
and the resulting set is treated as an undirected hyperedge. We recognize that this
data might be better represented as directed hyperedges, but that is outside the scope
of this paper and may be considered in future work. For the purpose of this paper we
also ignore the effects of multiple identical hyperedges, leaving us with 11,407 unique
undirected hyperedges. The distributions of degrees and edge sizes can be seen in Fig-
ure 5(a) and Figure 5(b). Note that the degree of a vertex is defined to be the number
of hyperedges the vertex is contained in, while the edge size is defined to be the number
of vertices in the hyperedge. These two definitions are unambiguous in this case as
edges do not contain repeated vertices.

The coauthorship hypergraph was generated from the ArnetMiner (AMiner)
dataset. ArnetMiner [18] is a project which attempts to extract researcher social net-
works from the World Wide Web. Of particular interest to us is that it integrates a
number of existing digital libraries. The dataset built with this tool is available for re-
search purposes at [19]. It consists of 2,092,356 research papers from 1,712,433 authors.
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(a) (b)

Figure 5. Degree distribution (a) and edge-size distribution (b) of the
email hypergraph from the Enron dataset.

From this we construct a coauthorship hypergraph with vertices representing authors
and with one hyperedge for each paper in the database. Hyperedges are undirected and
consist of the set of authors listed on each paper. Again, we eliminate duplicate edges
resulting in a hypergraph containing 1,499,404 unique hyperedges. The distributions of
degrees and edge sizes can be seen in Figure 6(a) and Figure 6(b).

(a) (b)

Figure 6. Degree distribution (a) and edge-size distribution (b) of the
coauthorship hypergraph from the AMiner dataset.

In our analysis we will consider truncated hypergraphs of those described above.
The main reason is that large hyperedges have a significant effect on computation time
and can drown out the signal of smaller, more interesting, effects. In particular, large
hyperedges can have a significant impact on the appearance of small complete graphs in
the 2-section. For example, each edge of size 100 introduces

(
100
k

)
copies of Kk. There

are sporadic hyperedges of such size in both networks we investigate.
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Recall that mi denotes the number of hyperedges of size i. In the email hypergraph
we have m2 = 5,975, m3 = 2,128, m4 = 1,034, and m5 = 561. After removing
hyperedges of size greater than or equal to 6, we were left with a hypergraph, E5, on
n5 = 5,044 vertices and having m =

∑5
i=2 mi = 9,698 edges. After removing hyperedges

of size greater than or equal to 5, we were left with a hypergraph, E4, on n4 = 4,919
vertices and having m =

∑4
i=2 mi = 9,137 edges. In the coauthorship hypergraph we

have m2 = 473,560, m3 = 373,262, m4 = 211,011, and m5 = 94,168. After removing
hyperedges of size greater than or equal to 6, we were left with a hypergraph, D5,
on n5 = 1,264,602 vertices having m =

∑5
i=2 mi = 1, 152,001 edges. After removing

hyperedges of size greater than or equal to 5, we were left with the hypergraph D4 on
n4 = 1,146,130 vertices having m =

∑4
i=2mi = 1,057,833 edges.

Note that all isolated vertices were also removed from the networks.

6.2. Creating the model hypergraphs. For each real-world hypergraph we analyse,
we create model hypergraphs having the same expected edge counts. That is, if mi is the
number of edges of size i in the hypergraph we wish to model, then we create a random
hypergraph H (n,p) on n vertices where each i-set forms a hyperedge of size i with
probability pi = mi/

(
n
i

)
. Note that the model hypergraph created has (an expected

number of) mi hyperedges of size i randomly distributed throughout the graph. For
our comparisons we generated 1048 model hypergraphs for each of the four real-world
datasets.

In Figure 7 we compare the degree distribution of the email hypergraph with edges
of maximum size 5, E5 (a), and the coauthorship hypergraph with edges of maximum
size 5, D5 (b), to their corresponding model hypergraphs.

(a) (b)

Figure 7. Comparing degree distribution of datasets (blue dots) and
generated model hypergraphs (boxplot to indicate variance): E5 (a) and
D5 (b).

While it is clear from these plots that the model produces hypergraphs significantly
different from reality, sections 6.3 and 6.4 further investigate these differences.
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6.3. Comparing the appearance of signatures in theory and practice. Recall
that the signature of a hypergraph H is defined as e(H) = (e1(H), e2(H), . . . , ek(H)),
where k = v(H). Given a subset of vertices from a hypergraph, we will consider the
non-e(1) portion of the signature of the weak subhypergraph induced by these vertices.
For our analysis, we fix a small graph G. We look for this graph G in the 2-section,
[H]2, of the network and then look at H to determine the signature of the originating
weak subhypergraph.

For practical purposes, we focus on the complete graphs K4 and K5. Smaller complete
graphs occur too frequently in the 2-section, whereas larger complete graphs do not
occur frequently enough for us to claim anything statistically reliable. Of course, other
subgraphs appear in [H]2 but we are particularly interested in those specifically induced
by the 2-section action. We use Corollary 5.4 to estimate the probability that a copy
of K4 or K5 taken uniformly at random from the 2-section of H (n,p) originates from
a weak subhypergraph with a given signature in H (n,p).

There are 70 signatures of hypergraphs on 4 vertices. Of these there are 60 that have
at least one hypergraph inducing K4 in the 2-section; call these feasible. For example,
there are 36 =

(
6
1

)(
4
2

)
labelled hypergraphs with one 2-edge and two 3-edges, but only

6 of these induce K4 in the 2-section. The number of signatures of hypergraphs on 5
vertices that can induce K5 in the 2-section is 1,422. In order to apply Corollary 5.4 we
generated all feasible signatures and all realizations of the subhypergraphs that induce
a complete graph of the appropriate size in the 2-section [15].

As the results are similar for all four real-world hypergraphs described above, we
choose E5 for illustration purposes. In Table 1 we list the most popular signatures from
the theoretical point of view. Note that theoretical estimations for probabilities are
decreasing very fast as we go down. As a result, it makes more sense to compare how
signatures rank in both models instead of comparing their corresponding probabilities.

We ranked the 179 (of a possible 1,422) observed signatures based on their number
of occurrences in E5; we denote this Robserved. We also ranked the 179 observed sig-
natures based on their theoretical probabilities; we denote this Rtheory/observed. Some
theoretically popular signatures do not occur at all in practice. For example, signa-
tures (0,1,0,1) and (2,1,1,0) were the 4th and the 7th most popular signatures from
theoretical predictions; we call these ranks Rtheory.

To understand these results at a glance, we took the 179 observed signatures and plot-
ted the observed ranking (Robserved) against their theoretical ranking (Rtheory/observed) in
Figure 8. Figure 8 also contains a similar plot for the E4 dataset. It is clear from these
two plots that the theoretical and observed ranks are highly uncorrelated.

In Figure 9 we present the same comparison of the observed versus theoretical ob-
served ranks of signatures for the coauthorship hypergraph.

These rankings confirm our expectation that the simple random hypergraph model
we have introduced does not capture features exhibited in real-world datasets. In
particular, the model assumes edges occur independently, which is generally not the
case in real-world networks and certainly not the case in the two datasets we considered.
In order to better understand the interdependence of hyperedges in real-world networks,
some notion of clustering coefficient must be investigated in the hypergraph setting.
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Table 1. E5 network: popular signatures in theory

Signature Probability Rtheory Rtheory/observed Probability Robserved

(theory) (observed)

0,0,0,1 9.8118419955e-01 1 1 0.004911591 56
1,0,0,1 1.8649018608e-02 2 2 0.014734774 18

2,0,0,1 1.5950486447e-04 3 3 0.015717092 16

0,1,0,1 5.4464266334e-06 4 -
3,0,0,1 8.0844057265e-07 5 4 0.010805501 31

4,0,1,0 4.4141198260e-07 6 5 0.000982318 148
2,1,1,0 4.0695426832e-07 7 -

1,1,0,1 1.0351829114e-07 8 6 0.004911591 57

0,2,1,0 3.1265534058e-08 9 -
1,0,2,0 1.8314270051e-08 10 -

3,1,1,0 6.1878678650e-09 11 7 0.000982318 141

5,0,1,0 5.0338562002e-09 12 8 0.002946955 89
4,2,0,0 2.8645459166e-09 13 -

4,0,0,1 2.6890048533e-09 14 9 0.013752456 21

2,1,0,1 8.8539088013e-10 15 10 0.011787819 27

Table 2. E5 network: popular signatures in practice

Signature Probability Rtheory/observed Probability Robserved

(theory) (observed)

4,1,0,1 1.4926318276e-14 24 0.033398821 1

4,5,1,0 9.9459608645e-34 119 0.031434185 2
4,4,1,0 1.1916310154e-27 84 0.026522593 3
3,2,0,1 1.1209412171e-17 36 0.02259332 4

4,2,0,1 3.7284328311e-20 48 0.02259332 5
4,4,2,0 4.7383972663e-37 133 0.02259332 6
9,1,0,0 2.5600700779e-16 31 0.02259332 7

10,1,0,0 1.6219446713e-19 45 0.021611002 8
4,6,0,0 6.3964285475e-31 101 0.021611002 9
7,3,0,0 3.2971609825e-21 49 0.019646365 10

(a) E4 network (b) E5 network

Figure 8. Theoretical rank, Rtheory/observed vs. Observed rank, Robserved

(x-axis vs. y-axis)

6.4. Comparing clustering coefficient in theory and practice. Let us recall the
definition of the clustering coefficient for graphs. The clustering coefficient is an attempt
to measure the degree to which vertices in a graphG = (V,E) tend to cluster together by
focusing on connections between neighbours of a vertex. The local clustering coefficient
c(v) for a vertex v is given by the proportion of links between the vertices within its
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(a) D4 (b) D5

Figure 9. Theoretical rank, Rtheory/observed vs. Observed rank, Robserved

(x-axis vs. y-axis)

(open) neighbourhood (i.e. not including v) divided by the number of links that could
possibly exist between them; that is, for vertices of degree at least 2

c(v) =
|{xy ∈ E : x, y ∈ N(v)}|(|N(v)|

2

)
=

number of triangles involving v

number of pairs of edges adjacent at v
,

while for vertices of degree less than 2, c(v) = 0. The clustering coefficient of a graph,
with at least one vertex of degree at least 2, can be defined as the average of the local
clustering coefficients of all the vertices; that is, when |Vdeg≥2| ≥ 1,

C(G) =
1

|Vdeg≥2|
∑
v∈V

c(v),

where |Vdeg≥2| is the number of vertices of degree at least 2. Note that this clustering
coefficient weights the clustering coefficient of each vertex equally even though the
number of possible connections of the neighbours of a vertex v is

(
deg(v)

2

)
. This can lead

to the clustering coefficient of the graph being skewed by the clustering coefficients of
the smaller degree vertices.

Alternatively, to avoid the potential skew from smaller degree vertices, the clustering
coefficient can be defined to weight every potential connection of neighbours equally.
This leads to the global clustering coefficient for graphs having at least one vertex of
degree 2 being defined as

C ′(G) =

∑
v∈V,deg(v)≥2 |{xy ∈ E : x, y ∈ N(v)}|∑

v∈V,deg(v)≥2

(|N(v)|
2

) (9)

=
3× number of triangles

number of pairs of adjacent edges
. (10)

This clustering coefficient is often thought of as the tendency of the graph to “close”
triangles.

Suppose that G is a graph with at least one vertex of degree at least 2. Then C(G)
and C ′(G) are equal to 1 exactly when G consists of the disjoint union of complete
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graphs. Both clustering coefficients are 0 exactly when G is bipartite; this is a bit of
a shortcoming of the definitions since the complete bipartite graph Kn,n has slightly
more than half the edges of the complete graph, but has a clustering coefficent of 0.

A graph is considered small-world if its average local clustering coefficient C(G) is
significantly higher than a random graph constructed on the same vertex set, and if
the graph has approximately the same mean shortest path length as its corresponding
random graph.

There is no canonical way to generalize the idea of a graph clustering coefficient to
hypergraphs, however, there have been a number of proposals: [17], [5], [2], [14], and
[20]. For this paper we will focus on the following definitions of Zhou and Nakhleh
[20] which generalize the idea of comparing the number of triangles to pairs of adjacent
edges. Let H = (V,E) be a hypergraph. If v ∈ V and ei, ej ∈ E, let M(v) denote the
set of edges that contain v, let N(v) denote the neighbours of v, and let Dij = ei \ ej =
ei \ (ei ∩ ej). Local and global clustering coefficients on H are then defined as

HClocal(v) =

{
1

(|M(v)|
2 )

∑
ei,ej∈M(v) EO(ei, ej) if |M(v)| ≥ 2

0 if |M(v)| ≤ 1,

and

HCglobal(H) =

{
1
|I|
∑
{ei,ej}∈IEO(ei, ej) if I 6= ∅

0 if I = ∅,

where I = {{ei, ej} : ei, ej ∈ E, ei 6= ej, and ei ∩ ej 6= ∅} are the pairs of intersecting
edges, and EO(ei, ej), the extra overlap of a pair of edges, is defined as

EO(ei, ej) =
|N(Dij) ∩Dji|+ |N(Dji) ∩Dij|

|Dij|+ |Dji|

(the proportion of the vertices in exactly one of the edges that are neighbours of vertices
in only the other edge).

Note that if H is a graph then HCglobal(H) = C ′(H) and HClocal(v) = C(v). This
follows from the fact that if ei = {u, v} and ej = {u,w} then the extra overlap
EO(ei, ej) = 1 if {v, w} ∈ E and 0 otherwise.

We calculated local and global clustering coefficients for the four hypergraphs derived
from real-world datasets and over a sample of random hypergraphs generated with
the same edge distribution. Figure 10 presents the distribution of local clustering
coefficients for E5 and its corresponding model. This is illustrative of the results in
general, and so we do not include other figures. In fact, in the case of the coauthorship
network, the results were even more glaringly dissimilar with the models having more
than half the vertices with a local clustering coefficient of zero, while most of the
vertices in the real-world networks were non-zero. Specifically, the number of non-zero
local clustering coefficients in E5 is 126844. This is 7836 standard deviations above the
average for our generative model with maximum edge size 5.

Table 3 presents the global clustering coefficents of the four real-world hypergraphs,
and the mean over a sample of random hypergraphs generated with the same edge
distributions.
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Figure 10. Local clustering coefficient of E5 and corresponding model hypergraphs

D4 D5 E4 E5

networks we examined 0.0550 0.0687 0.1048 0.1382
random hypergraphs 8.01 · 10−6 1.17 · 10−5 0.00224 0.00308

Table 3. Global clustering coefficient for networks we examined and
corresponding model hypergraphs

Note that the true global clustering coefficient for E5 is approximately 41653 standard
deviations from the mean of our model with max edge size 5. Not so glaring, but still
significant, the true global clustering coefficient for D5 is approximately 474 standard
deviations above the mean of our model with max edge size of 5.

Both the local and global clustering coefficient results indicate what we expect; the
model assumption of edge independence is not reflective of real-world networks. We all
know researchers do not select coauthors at random!

7. Conclusions and future work

The ultimate goal of this work is to develop a reasonable model for complex networks
using hypergraphs. While there are many models using graphs – including classic
ones such as the binomial random graph (G (n, p)), random d-regular graphs, and the
preferential attachment model, as well as spatial ones such as random geometric graphs
and the spatial preferential attachment model – there are very few using hypergraphs.
The model we proposed is a generalization of G (n, p) and thus, as we observed, does
not capture several important features of many real-world networks. However, it does
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allow us to identify some structures inherent in many of these networks, in particular,
the non-independence of hyperedges. It also allowed us to illustrate that some questions
posed about hypergraphs cannot be addressed by looking at the 2-section.
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