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Abstract. The size-Ramsey number R̂(F, r) of a graph F is the smallest integer m such
that there exists a graph G on m edges with the property that any colouring of the edges of
G with r colours yields a monochromatic copy of F . In this short note, we give an alternative
proof of the recent result of Krivelevich that R̂(Pn, r) = O((log r)r2n). This upper bound

is nearly optimal, since it is also known that R̂(Pn, r) = Ω(r2n).

1. Introduction

Following standard notation, we write G→ (F )r if any r-edge-colouring of G (that is, any
colouring of the edges of G with r colours) yields a monochromatic copy of F . We define

the size-Ramsey number of F as R̂(F, r) = min{|E(G)| : G→ (F )r}; that is, R̂(F, r) is the
smallest integer m such that there exists a graph G on m edges such that G → (F )r. For
two colours (that is, for r = 2) the size-Ramsey number was first studied by Erdős, Faudree,
Rousseau and Schelp [9].

In this note, we are concerned with the size-Ramsey number of the path Pn on n vertices.
It is obvious that R̂(Pn, 2) = Ω(n) and it is easy to see that R̂(Pn, 2) = O(n2); for example,

K2n → (Pn)2. The exact behaviour of R̂(Pn, 2) was not known for a long time. In fact,

Erdős [8] offered $100 for a proof or disproof that R̂(Pn, 2)/n → ∞ and R̂(Pn, 2)/n2 → 0.

This problem was solved by Beck [1] in 1983 who, quite surprisingly, showed that R̂(Pn, 2) <
900n. (Each time we refer to inequality such as this one, we mean that the inequality holds for

sufficiently large n.) A variant of his proof, provided by Bollobás [5], gives R̂(Pn, 2) < 720n.
Recently, the authors of this paper [6] used a different and more elementary argument that

shows that R̂(Pn, 2) < 137n. The argument was subsequently tuned by Letzter [12] who

showed that R̂(Pn, 2) < 91n, and then further refined by the authors of this paper [7] who

showed that R̂(Pn, 2) ≤ 74n. On the other hand, the first nontrivial lower bound was
provided by Beck [2] and his result was subsequently improved by Bollobás [4] who showed

that R̂(Pn, 2) ≥ (1+
√

2)n−O(1). The strongest known lower bound, R̂(Pn, 2) ≥ 5n/2−O(1),
was proved in [7].

Let us now move to the multicolour version of this graph parameter. It was proved in [7]

that (r+3)r
4

n − O(r2) ≤ R̂(Pn, r) ≤ 33r4rn. It follows that R̂(Pn, r) is linear for any fixed
value of r but the two bounds are quite apart from each other in terms of their dependence
on r. Subsequently, Krivelevich [11] showed that in fact the dependence on r is (nearly)

quadratic; that is, R̂(Pn, r) = r2+or(1)n. Furthermore, for r ≥ 6 he also improved the lower

bound and showed that R̂(Pn, r) ≥ (r − 2)2n + O(
√
n). Here is the precise statement of his

upper bound:
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Theorem 1 ([11]). For any C > 5, r ≥ 2, and all sufficiently large n we have

R̂(Pn, r) < 4005Cr2+
1

C−4n.

It is straightforward to see that C = C(r) that minimizes the upper bound in this theorem

is of order log r. As a result we get that R̂(Pn, r) = O((log r)r2n). In this note, we give an
alternative proof of this fact.

Theorem 2. For any integer r ≥ 2 and all sufficiently large n we have

R̂(Pn, r) < 600(log r)r2n.

It will follow from the proof that the constant 600 is not optimal. Since we believe that the
factor log r is not necessary, we do not attempt to optimize it.

2. Proof

Before we move to the proof of Theorem 2, we need one, straightforward, auxiliary result.

Proposition 3. For any integer r ≥ 2 there exists an integer N = N(r) such that the
following holds. For any integer n ≥ N , there exists a graph G = (V,E) such that

(i) |V | = 7rn,
(ii) 500(log r)r2n < |E| < 600(log r)r2n, and

(iii) for every two disjoint sets S, T ⊆ V , |S| = |T | = n, the number of edges induced by
S ∪ T with at least one endpoint in S is at most 70(log r)n.

Proof. The proof is an easy application of random graphs. Recall that the binomial random
graph G(n, p) is a distribution over the class of graphs with vertex set [n] in which every

pair {i, j} ∈
(
[n]
2

)
appears independently as an edge in G with probability p, which may (and

usually does) tend to zero as n tends to infinity. Furthermore, we say that events An in
a probability space hold asymptotically almost surely (or a.a.s.), if the probability that An

holds tends to 1 as n goes to infinity.
Fix any integer r ≥ 2. It suffices to show that the random graph G ∈ G(7rn, p) with

p = 22(log r)/n a.a.s. satisfies properties (ii) and (iii). (Property (i) trivially holds.) Indeed,
if this is the case, then there exists an integer N = N(r) such that the desired properties
hold with probability at least 1/2 for G ∈ G(7rn, p) for all n ≥ N . This implies that for
each n ≥ N , there exists at least one graph with these properties.

Property (iii): Fix any two disjoint subsets S, T ⊆ V , both of cardinality n. Let XS,T

be the random variable counting the number of edges induced by S ∪ T with at least one
endpoint in S. Clearly, XS,T has the binomial distribution Bin

(
|S| · |T | +

(|S|
2

)
, p
)

with
E(XS,T ) = (3/2 + o(1))n2p = (33 + o(1))(log r)n. It follows from Chernoff’s bound (see, for
example, Corollary 21.7 in [10]) that

Pr(XS,T ≥ 70(log r)n) ≤ Pr(XS,T ≥ 2E(XS,T )) ≤ exp(−E(XS,T )/3) ≤ exp(−10.9(log r)n).

Thus, the probability that there exist S and T such that XS,T ≥ 70(log r)n is, by the union
bound, at most(

7rn

n

)2

exp(−10.9(log r)n) ≤ (7er)2n exp(−10.9(log r)n)

≤ exp
(
n
(

2 log(7er)− 10.9 log r
))

= o(1),
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since (7er)2 < r10.9 for any r ≥ 2. Property (iii) holds a.a.s.

Property (ii): This property is straightforward to prove. Note that |E| is distributed as
Bin

((
7rn
2

)
, p
)

with E(|E|) = (539 + o(1))(log r)r2n. It follows immediately from Chernoff’s
bound that property (ii) holds a.a.s. The proof of the proposition is finished. �

Proof of Theorem 2. The proof is based on the depth first search algorithm (DFS), applied
several times, and it is a variant of the previous approach taken in [7] where it was proved that

R̂(Pn, r) ≤ 33r4rn. Ben-Eliezer, Krivelevich and Sudakov [3] were the first to successfully
apply the DFS algorithm to a Ramsey-type problem.

Fix r ≥ 2 and suppose that n is sufficiently large so that Proposition 3 can be applied. Let
G = (V,E) be a graph satisfying properties (i)–(iii) from Proposition 3. We will show that
G → (Pn)r which implies the desired upper bound as |E| < 600(log r)r2n by property (ii).
Consider any r-colouring of the edges of G. By an averaging argument, there is a colour (say
blue) such that the number of blue edges is at least |E(G)|/r. For a contradiction, suppose
that there is no monochromatic copy of Pn; in particular, there is no blue copy of Pn.

From now on, we restrict ourselves to the subgraph of G induced by blue edges, denoted
G1 = (V1 = V,E1 ⊆ E). We perform the following algorithm on G1 to construct a path P .
Let v1 be an arbitrary vertex of G1, let P = (v1), U = V \ {v1}, and W = ∅. If there exists
an edge from v1 to some vertex in U (say from v1 to v2), we extend the path as P = (v1, v2)
and remove v2 from U . We continue extending the path P this way for as long as possible.
Since there is no Pn in the blue graph, we must reach a point of the process in which P
cannot be extended, that is, there is a path from v1 to vk (k < n) and there is no edge from
vk to U (including the case when U is empty). This time, vk is moved to W and we try
to continue extending the path from vk−1, reaching another critical point in which another
vertex will be moved to W , etc. If P is reduced to a single vertex v1 and no edge to U is
found, we move v1 to W and simply re-start the process from another vertex from U , again
arbitrarily chosen.

Observe that during this algorithm there is never an edge between U and W . Moreover,
in each step of the process, the size of U decreases by 1 or the size of W increases by
1. The algorithm ends when U becomes empty and all vertices from P are moved to W .
However, we will finish it prematurely, distinguishing 7r phases; phase i starts with graph
Gi = (Vi, Ei) and ends when for the first time |W | = n. Before we move to the next phase,
we set Si = W , Ti = V (P ), and Fi to be all edges incident to W . Then, we set Vi+1 = Vi \W
and Gi+1 = Gi[Vi+1], the graph induced by Vi+1 (in other words, Gi+1 is formed from Gi by
removing vertices from W together with Fi, all edges incident with them). Phase i ends now
and we move to phase i + 1 where we run the algorithm on Gi+1.

We make a few important observations. Note that, by property (i), |V | = |V1| = 7rn so the
last phase, phase 7r, finishes with U = ∅ and T7r = ∅. As a result, family (Fi : 1 ≤ i ≤ 7r) is
a partition of E1. By construction, |Si| = n for all i and, since there is no path on n vertices
in G1 (and so also in any Gi), |Ti| < n for all i. Hence, |Fi| < 70(log r)n by property (iii).
Putting these things together and using property (ii) in the very last inequality, we get the
desired contradiction:

|E|/r ≤ |E1| = |F1|+ |F2|+ · · ·+ |F7r| ≤ 7r · 70(log r)n < 500(log r)rn < |E|/r.

The proof is finished. �
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