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Abstract. Information gathering by crawlers on the web is of practical interest. We
consider a simplified model for crawling complex networks such as the web graph,
which is a variation of the robot vacuum edge-cleaning process of Messinger and
Nowakowski. In our model, a crawler visits nodes via a deterministic walk determined
by their weightings which change during the process deterministically. The minimum,
maximum, and average time for the robot crawler to visit all the nodes of a graph
is considered on various graph classes such as trees, multi-partite graphs, binomial
random graphs, and graphs generated by the preferential attachment model.

1. Introduction

A central paradigm in web search is the notion of a crawler, which is a software
application designed to gather information from web pages. Crawlers perform a walk
on the web graph, visiting web pages and then traversing links as they explore the
network. Information gathered by crawlers is then stored and indexed, as part of the
anatomy of a search engine such as Google or Bing. See [11, 18, 27] and the book [24]
for a discussion of crawlers and search engines.

Walks in graph theory have been long-studied, stretching back to Euler’s study of the
Königsberg bridges problem in 1736, and including the travelling salesperson problem [3]
and the sizeable literature on Hamiltonicity problems (see, for example, [30]). An in-
triguing generalization of Eulerian walks was introduced by Messinger and Nowakowski
in [25], as a variant of graph cleaning processes (see, for example, [2, 26]). The reader
is directed to [9] for an overview of graph cleaning and searching.

In the model of [25], called the robot vacuum, it is envisioned that a building with
dirty corridors (for example, pipes containing algae) is cleaned by an autonomous robot.
The robot cleans these corridors in a greedy fashion, so that the next corridor cleaned
is always the “dirtiest” to which it is adjacent. This is modelled as a walk in a graph.
The robot’s initial position is any given node, with the initial weights for the edges of
the graph G being −1,−2, . . . ,−|E(G)| (each edge has a different value). At every step
of the walk, the edges of the graph will be assigned different weights indicating the last
time each one was cleaned (and thus, its level of dirtiness). It is assumed that each edge
takes the same length of time to clean, and so weights are taken as integers. In such a
model, it is an exercise to show that for a connected graph, one robot will eventually
clean the graph (see [25]).

In the robot vacuum model, let s(G) and S(G) denote the minimum and maximum
number of time-steps over all edge weightings, respectively, when every edge of a graph
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G has been cleaned. As observed in [25], if G is an Eulerian graph, then we have that
s(G) = |E(G)|, and moreover the final location of the robot after the first time every
edge has been cleaned is the same as the initial position. Li and Vetta [22] gave an
interesting example where the robot vacuum takes exponential time to clean the graph.
Let Se be the maximum value of S(G) over all connected graphs G containing exactly
e edges. It is proven in [22] that there exists an explicit constant d > 0 such that,
for all e, Se ≥ d(3/2)e/5 − 1/2. Moreover, Se ≤ 3e/3+1 − 3. An analogous result was
independently proven by Copper et al. [14] who analyzed a similar model to the robot
vacuum. The “self-stabilization” found in robot vacuum is also a feature of so-called
ant algorithms (such as the well-known Langton’s ant which is capable of simulating a
universal Turing machine; see [17]). The robot vacuum model can be regarded as an
undirected version of the rotor-router model; see [29, 31].

In the present work, we provide a simplified model of a robot crawler on the web,
based on the robot vacuum paradigm of [22, 25] described above. We note that the paper
is the full version (with full proofs and additional results) of the proceedings version
of the paper [8]. In our model, the crawler cleans nodes rather than edges. Nodes are
initially assigned unique non-positive integer weights from {0,−1,−2, . . . ,−|V (G)|+1}.
In the context of the web or other complex networks, weights may be correlated with
some popularity measure such as in-degree or PageRank. The robot crawler starts at
the dirtiest node (that is, the one with the smallest weight), which immediately gets
its weight updated to 1. Then at each subsequent time-step it moves greedily to the
dirtiest neighbour of the current node. On moving to such a node, we update the weight
to the positive integer equalling the time-step of the process. The process stops when
all weights are positive (that is, when all nodes have been cleaned). Note that while
such a walk by the crawler may indeed be a Hamilton path, it usually is not, and some
weightings of nodes will result in many re-visits to a given node. Similar models to the
robot crawler have been studied in other contexts; see [20, 23, 29].

The paper is organized as follows. A rigorous definition of the robot crawler is given
in Section 2. We consider there the minimum, maximum, and average number of time-
steps required for the robot crawler model. The connections between the robot crawler
and robot vacuum are discussed in Section 3. In Section 4, we give asymptotic (and
in some cases exact) values for these parameters for paths, trees, and complete multi-
partite graphs. In Section 5, we consider the average number of time-steps required
for the robot crawler to explore binomial random graphs. The robot crawler is studied
on the preferential attachment model, one of the first stochastic models for complex
networks, in Section 6.

Throughout, we consider only finite, simple, and undirected graphs. For a given graph
G = (V,E) and v ∈ V , N(v) denotes the neighbourhood of v and deg(v) = |N(v)| its
degree. For background on graph theory, the reader is directed to [30]. For a given
n ∈ N, we use the notation Bn = {−n + 1,−n + 2, . . . ,−1, 0} and [n] = {1, 2, . . . , n}.
All logarithms in this paper are with respect to base e. We say that an event An holds
asymptotically almost surely (a.a.s.) if it holds with probability tending to 1 as n tends
to infinity. All asymptotics throughout are as n→∞ (we emphasize that the notations
o(·) and O(·) refer to functions of n, not necessarily positive, whose growth is bounded).
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For simplicity, we will write f(n) ∼ g(n) if f(n)/g(n) → 1 as n → ∞ (that is, when
f(n) = (1 + o(1))g(n)).

2. Definition and properties

We now formally define the robot crawler model and the various robot crawler num-

bers of a graph. The robot crawler RC(G,ω0) =
(
(ωt, vt)

)L
t=1

of a connected graph
G = (V,E) on n nodes with an initial weighting ω0 : V → Bn, that is a bijection from
the node set to Bn, is defined as follows.

(1) Initially, set v1 to be the node in V with weight ω0(v1) = −n+ 1.
(2) Set ω1(v1) = 1; the other values of ω1 remain the same as in ω0.
(3) Set t = 1.
(4) If all the weights are positive (that is, minv∈V ωt(v) > 0), then set L = t, stop

the process, and return L and RC(G,ω0) =
(
(ωt, vt)

)L
t=1

.
(5) Let vt+1 be the dirtiest neighbour of vt. More precisely, let vt+1 be such that

ωt(vt+1) = min{ωt(v) : v ∈ N(vt)}.
(6) ωt+1(vt+1) = t+ 1; the other values of ωt+1 remain the same as in ωt.
(7) Increment to time t+ 1 (that is, increase t by 1) and return to 4.

If the process terminates, then define

rc(G,ω0) = L,

that is rc(G,ω0) is equal to the number of steps in the crawling sequence (v1, v2, . . . , vL)
(including the initial state) taken by the robot crawler until all nodes are clean; oth-
erwise rc(G,ω0) = ∞. We emphasize that for a given ω0, all steps of the process are
deterministic. Note that at each point of the process, the weighting ωt is an injective
function. In particular, there is always a unique node vt+1, neighbour of vt of minimum
weight (see step (4) of the process). Hence, in fact, once the initial configuration is
fixed, the robot crawler behaves like a cellular automaton. It will be convenient to refer
to a node as dirty if it has a non-positive weight (that is, it has not been yet visited by
the robot crawler), and clean, otherwise.

The next observation that the process always terminates in a finite number of steps
is less obvious.

Theorem 1. For a connected graph G = (V,E) on n nodes and a bijection ω0 : V →
Bn, RC(G,ω0) terminates after a finite number of steps; that is, rc(G,ω0) <∞.

Proof. For a contradiction, suppose that there exists a connected graph G = (V,E)
and initial weightings ω0 such that RC(G,ω0) runs forever. The node set V can be
partitioned into two sets: V<∞ consists of nodes that are visited a finite number of
times (including those that are not visited at all); V∞ = V \ V<∞ consists of the nodes
that are visited infinitely many times. Note that V<∞ 6= ∅; otherwise, the process would
terminate. Moreover, V∞ 6= ∅ as the graph is finite but the process goes forever. Since
G is connected, there exist w ∈ V<∞ and u ∈ V∞ such that uw ∈ E.

Let U = N(u) ∩ V<∞ be the set of neighbours of u that are visited a finite number
of times, and let T be the last time-step when some node from U was visited (that
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is, ωt(v) = ωT (v) for any v ∈ U and t > T ). Note that {w} ⊆ U. Since u and all
neighbours of u outside of U are visited infinitely many times, there exists time-step
S > T such that the robot crawler arrives at node u and all nodes of N(u) \ U were
visited at least once since time-step T . But then the process must move to some node
of U as all the neighbours of u outside U are “cleaner” than those of U . This give us a
desired contradiction as no node of U is visited after time-step T . �

The fact that every node in a graph will be eventually visited inspires the following
definition. Let G = (V,E) be any connected graph on n nodes. Let Ωn be the family
of all initial weightings ω0 : V → Bn. Then

rc(G) = min
ω0∈Ωn

rc(G,ω0) and RC(G) = max
ω0∈Ωn

rc(G,ω0).

In other words, rc(G) and RC(G) the are minimum and maximum number of time-
steps, respectively, needed to crawl G, over all choices of initial weightings. Now let
ω0 be an element taken uniformly at random from Ωn. Then we have the average case
evaluated as

rc(G) = E [rc(G,ω0)] =
1

|Ωn|
∑
ω0∈Ωn

rc(G,ω0).

Now, let us make some simple observations.

Lemma 2. Let G be a connected graph of order n, maximum degree ∆, and diameter
d. Let Cn and Kn denote the cycle and the clique of order n, respectively.

(1) rc(G) ≤ rc(G) ≤ RC(G).
(2) rc(Kn) = rc(Kn) = RC(Kn) = n
(3) rc(Cn) = rc(Cn) = RC(Cn) = n.
(4) rc(G) = n if and only if G has a hamiltonian path.
(5) RC(G) ≤ n(∆ + 1)d.

Proof. We only prove item (5) since the proofs of the other items are straightforward.
First, observe that if a node v is visited by the robot crawler ∆ + 1 times within an
interval of time-steps, then right after each of the first ∆ visits to v in that interval, the
robot crawler must visit a new neighbour of v that was not yet visited in that interval
(if any still exists). Therefore, since |N(v)| ≤ ∆, all neighbours of v must be visited
at least once in that interval. In view of this, if a node v is cleaned (∆ + 1)k times
during the robot crawler process, then each of its neighbours must be cleaned at least
k times. Suppose now that the robot crawler runs for n(∆ + 1)d or more steps. By
the pigeonhole principle, at least one node v is cleaned at least (∆ + 1)d times. By
inductively applying our previous conclusion, we deduce that every node at distance
0 ≤ t ≤ d from v is visited at least (∆ + 1)d−t ≥ 1 times by the robot crawler. The
proof follows as the diameter is d. �

3. Connections between the robot crawler and robot vacuum models

In this section, we are going to show that our model is a generalization of the robot
vacuum model studied by Messinger and Nowakowski in [25]. We will use the following
notation for that model, analogous to the one defined in Section 2 for the robot crawler.
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Let G = (V,E) be any connected graph. Given a bijection ω0 : E → B|E| and a node
v0 ∈ V , we denote by S(G,ω0, v0) the robot vacuum process that starts at node v0 and
has initial weighting ω0 of the edges; s(G,ω0, v0) is the number of steps taken by the
robot vacuum to visit all edges at least once; s(G) is the minimum of s(G,ω0, v0) over
all (ω0, v0); and similarly S(G) is the maximum of s(G,ω0, v0) over all (ω0, v0). Note
that, in this model, steps are associated to edges instead of nodes and thus, the number
of steps taken by the robot vacuum in S(G,ω0, v0) counts the total number of visits
to the edges during the process. Moreover, the following generalization of the graph
parameters rc(G) and RC(G) will turn out to be useful: for any W ⊆ V , let

rc(G,W ) = min{rc(G,ω0) : ω0 ∈ Ωn such that RC(G,ω0) starts at some node of W},
RC(G,W ) = max{rc(G,ω0) : ω0 ∈ Ωn such that RC(G,ω0) starts at some node of W}.
In particular, rc(G) = rc(G, V ) and RC(G) = RC(G, V ). Moreover, for any sets of
vertices ∅ 6= W1 ⊆ W2 ⊆ V ,

rc(G) ≤ rc(G,W2) ≤ rc(G,W1) ≤ RC(G,W1) ≤ RC(G,W2) ≤ RC(G).

Finally, for any k ∈ N, a k-subdivision of G, Lk(G), is a graph that is obtained from G
by replacing each edge of G by a path of length k.

The following theorem connects the robot crawler and robot vacuum models, showing
how the parameters rc and s relate.

Theorem 3. Let G = (V,E) be any connected graph and let k ∈ N \ {1}. Then we
have that

rc(Lk(G), V ) ∈ {k · s(G), k · s(G) + 1} (1)

and
rc(Lk(G)) ∈ {k · s(G)− 1, k · s(G), k · s(G) + 1}. (2)

Note that in (1), we are restricting ourselves to crawling sequences that start from a
node in V , which is the node set of G and thus, a strict subset of the node set of Lk(G).

Proof of Theorem 3. Suppose G has n nodes and m edges. Let ω0 : E → Bm be a
bijection, and v0 ∈ V be such that s(G,ω0, v0) = s(G). Recall that the node set of
Lk(G) consists of V , original nodes of G, and (k − 1)m cloned nodes (k − 1 nodes
for each edge of G) that are created during the subdivision process. We construct
ω̂0 : V (Lk(G)) → B(k−1)m+n as follows. Assign initial weight −(k − 1)m − n + 1 to v0

to insure it is the dirtiest node of Lk(G). Next, we run S(G,ω0, v0), the edge variant of
the process on graph G. Each time an edge of G is visited for the first time, we assign
initial weights to the corresponding cloned nodes of Lk(G); starting from the smallest
available weight (that is, −(k−1)m−n+2) and then using consecutive integers. Initial
weights for original nodes from V \ {v0} ⊆ V (Lk(G)) can be assigned arbitrarily from
Bn−1.

In order to derive an upper bound for rc(Lk(G), V ), we will start the process on
Lk(G) with initial weighting ω̂0 (and thus, from v0). An important property of Lk(G)
is that all neighbours of any original node v ∈ V are cloned nodes associated with some
edges of G (incident to v in G). Hence, it is easy to see that the process on Lk(G)
mimics the edge process on G: the robot crawler occupying some original node decides
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where to go based on how dirty cloned nodes are (incident edges in the edge process);
on the other hand, when the crawler enters some cloned node, it is immediately pushed
through to the other original node. It follows that

rc(Lk(G), ω̂0, v0) ∈ {k · s(G), k · s(G) + 1}.
Note that each step of the edge process on G corresponds to k steps of the process on
Lk(G). Moreover, there are two possible endings of the process on Lk(G). Suppose that
the last step of the edge process on G is to move from v to u. The process on Lk(G)
might finish at node u for the total number of steps k · s(G) + 1 or at the last cloned
node corresponding to edge vu yielding k ·s(G), depending whether u was visited earlier
or not. In any case, we obtain that

rc(Lk(G), V ) ≤ k · s(G) + 1.

Now, let us move to the lower bound for rc(Lk(G), V ). For a contradiction, suppose that
there exists a bijection ω̂0 : V (Lk(G)) → B(k−1)m+n that assigns the smallest weight
to some v0 ∈ V and such that rc(Lk(G), ω̂0) < k · s(G). In order to construct the
corresponding initial configuration ω0 : E → Bm for the edge process, we use a similar
reduction trick as before. We run RC(Lk(G), ω̂0). Each time some cloned node of
Lk(G) is visited for the first time, we assign an initial weight to the corresponding edge
of G; starting from the smallest weight (that is, −m + 1) and then using consecutive
integers. Arguing as before, we derive that S(G,ω0, v0) mimics RC(Lk(G), ω̂0) implying
that s(G) ≤ s(G,ω0, v0) ≤ 1

k
rc(Lk(G), ω̂0) < s(G). This contradiction implies that

rc(Lk(G), V ) ≥ k · s(G),

and the proof of (1) follows.
The upper bound for (2) is obvious as rc(Lk(G)) ≤ rc(Lk(G), V ) so we need to

concentrate on the lower bound. For a contradiction, let us suppose that there exist
some cloned node e0 ∈ V (Lk(G)) \ V and bijection ω̂0 : V (Lk(G)) → B(k−1)m+n such
that ω̂0 assigns the smallest weight to e0 and rc(Lk(G), ω̂0) < k ·s(G)−1. Let v0 be the
first original node cleaned during the process. Clearly, one can start the process at v0

and craft the initial weighting so that the robot crawler still mimics RC(Lk(G), ω̂0); the
omitted cloned nodes would obtain weights 0, 1, . . ., and the relative order of weights
of the remaining nodes would be preserved. Let us call this process an adjusted one.
There are some cases we need to consider.

Case 1: The original process re-cleans e0 before it terminates.
The adjusted process would terminate even earlier than RC(Lk(G), ω̂0), which implies
that it was not an optimal initial configuration and, in fact, rc(Lk(G)) < rc(Lk(G), ω̂0) <
k · s(G) − 1; we are not using this fact though. An important thing is that it starts
from original node v0 as this contradicts the fact that rc(Lk(G), V ) ≥ k · s(G).

Case 2: The original process terminates at a neighbour of e0 but never re-cleans e0.
Note that the process might terminate on an original node or a cloned one. Regard-
less of that, the observation is that the adjusted process would also terminate after
rc(Lk(G), ω̂0) steps, again contradicting rc(Lk(G), V ) ≥ k · s(G). Indeed, once the
adjusted process reaches the previous terminating node, it cleans the omitted cloned
nodes and then it stops.
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Case 3: The original process terminates at a node that is not a neighbour of e0 and
never re-cleans e0.
Note that e0 is adjacent to some original node w0 different than v0; indeed, if this is
not the case, then the (cloned) neighbour of e0 not visited at step 2 of the process is
never cleaned. This time we can start the process at w0 and craft the initial weighting
so that the robot crawler still mimics RC(Lk(G), ω̂0). It terminates after at most
rc(Lk(G), ω̂0) + 1 < k · s(G) steps, as usual contradicting the fact that rc(Lk(G), V ) ≥
k · s(G). �

From Theorem 3, we derive the following straightforward but important corollary.

Corollary 4. Let G = (V,E) be any connected graph. Then we have that

s(G) =

⌊
rc(L3(G)) + 1

3

⌋
=

⌊
rc(L2(G), V )

2

⌋
.

This shows that the model we consider in this paper is a generalization of the edge
model introduced in [25]. Instead of analyzing s(G) for some connected graphG, one can
construct L3(G) and analyze rc(L3(G)) (or construct L2(G) and analyze rc(L2(G), V )).

We mention that Theorem 3 is sharp; that is, all three values in (2) can be achieved.
For example, for any k ∈ N \ {1},

(a) s(P3) = 2 and rc(Lk(P3)) = k · s(P3) + 1;
(b) s(K3) = 3 and rc(Lk(K3)) = k · s(K3);
(c) s(K4) = 7 and rc(Lk(K4)) = k · s(K4)− 1.

Similarly, one can show the relationship between S(G) and RC(Lk(G)). Since the
proof is similar to the previous one, we leave it for the reader.

Theorem 5. Let G = (V,E) be any connected graph and let k ∈ N \ {1}. Then we
have that

RC(Lk(G), V ) ∈ {k · S(G), k · S(G) + 1}
and

k · S(G) ≤ RC(Lk(G)) ≤ k · (S(G) + 1).

Hence,

S(G) =

⌊
RC(L2(G), V )

2

⌋
.

As before, the result is sharp. For example, for any k ∈ N \ {1},
(a) S(C3) = 3 and RC(Lk(C3)) = RC(C3k) = 3k = k · S(C3);
(b) S(P3) = 3 and RC(Lk(P3)) = RC(P2k+1) = 2 ·(2k+1)−2 = 4k = k ·(S(P3)+1).

4. Paths, trees, and complete multi-partite graphs

In this section, we analyze the robot crawler parameters for some deterministic classes
of graphs. For the path Pn of length n− 1 ≥ 2, we have that rc(Pn) = n and RC(Pn) =
2n − 2. In order to achieve the minimum, one has to start the process from a leaf of
Pn. Regardless of ω0 used, the process takes n steps to finish (see Lemma 2(4) and
Theorem 7 for more general results). In order to achieve the maximum, the robot
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crawler has to start from a neighbour of a leaf and a weighting that forces the process
to move away from the leaf (again, see Theorem 7 for more general result).

Theorem 6. For any n ∈ N,

rc(Pn) =
3n

2
− 3

2
+

1

n
∼ 3n

2
.

Proof. As it is evident that rc(P1) = 1, we focus on n ∈ N \ {1}. We label nodes as
follows: V (Pn) = {v1, v2, . . . , vn}. With probability 2/n, the process starts at one of
the two endpoints of Pn (node v1 or vn). If this happens, the robot crawler moves along
the path and the process terminates after n steps, regardless of a weighting used. With
probability 1/n, the process starts at some node vi, i ∈ {2, 3, . . . , n − 1}. Then, by
symmetry, with probability 1/2 it moves to vi−1, continues all the way to v1, and then
walks again along the path reaching vn after (i− 1) +n steps. Otherwise, it moves first
to vi+1 walking along the path as before, reaching the last node (that is, node v1) after
(n− i) + n steps. It follows that

rc(Pn) =
2

n
· n+

1

n

n−1∑
i=2

(
1

2
(n+ i− 1) +

1

2
(2n− i)

)
= 2 +

(
1− 2

n

)(
3n

2
− 1

2

)
=

3n

2
− 3

2
+

1

n
,

and the proof is finished. �

We next give the precise value of rc and RC for trees. The main idea behind the
proof of this result is comparing the robot crawler to the Depth-First Search algorithm
on a tree.

Theorem 7. Let T = (V,E) be a tree on n ≥ 2 nodes. Then we have that

rc(T ) = 2n− 1− diam(T ) and RC(T ) = 2n− 2,

where diam(T ) is the diameter of T .

To prove Theorem 7, we will show a connection between the robot crawler and the
Depth-First Search (DFS) algorithm for traversing a tree (or a graph in general). In
this algorithm, one starts at the root node (selected arbitrarily) and explores as far
as possible along each branch before backtracking. Using this observation, it will be
straightforward to investigate rc(T ) and RC(T ) for a tree T .

Let us start with the following, recursive, definition of DFS. For a given connected
graph G = (V,E) on n nodes, a weighting ω : V → Bn, and an initial node v0 ∈ V , the
Depth-First Search algorithm is defined as follows:

(1) procedure DFS(G,ω, v);
(2) label v as discovered ;
(3) let ` = |N(v)| be the number of neighbours of v;
(4) consider all neighbours of v, (w1, w2, . . . , w`), in order yielded by ω, starting

from the dirtiest one; that is, ω(w1) < ω(w2) < . . . < ω(w`);
(5) for each i = 1, 2, . . . , `,

if node wi is not labelled as discovered, then recursively call DFS(G,ω,wi).
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As we run the DFS algorithm, we keep a global pointer to the node that is currently
being processed on each recursive call. We say that the algorithm visits node v, every
time that the pointer points to v. Note that a node v is first visited when it is labelled
as discovered at step 2, and then again after returning from each recursive call at step
5. Therefore, v may be visited as many times as its degree (or its degree plus one, if v
is the starting node).

We state a useful lemma.

Lemma 8. Let T = (V,E) be any tree on n nodes, ω0 : V → Bn be any initial
weighting of the nodes. Consider tree T rooted at the node v0 with the smallest weight.
Let P = P (ω0, v0) be the (directed) path from the root v0 to some leaf of T , obtained by
moving greedily at each step to the neighbour of largest weight until a leaf is reached.
Then we have that

rc(T, ω0) = 2n− 1− |E(P )|.

Proof. As already mentioned, it is easy to see that the robot crawler process RC(T, ω0)
behaves exactly as DFS(T, ω0, v0) with the only difference that the robot crawler stops
at the last leaf without backtracking to the root v0 through path P . Since each edge of
the path P is visited once and every other edge is visited twice,

rc(T, ω0) = 1 + 2(n− 1− |E(P )|) + |E(P )| = 2n− 1− |E(P )|,
and the proof follows. �

From Lemma 8 we obtain the desired result.

Proof of Theorem 7. Let D = (v1, v2, . . . , vd) be a path of length d = diam(T ). By
assigning ωmax(v1) = 0 and ωmax(v2) = −n + 1 (the other values can be assigned
arbitrarily), we find that P = P (ωmax) = (v2, v1), and so

RC(T ) ≥ rc(T, ωmax) = 2n− 1− |E(P )| = 2n− 2.

(Note that for this bound, we are not using the fact that path D has length diam(T ),
but only that the process starts at a node v2 that is adjacent to a leaf v1 and terminates
at v1.) Clearly, this is the largest value that can be achieved as |E(P )| ≥ 1, and so the
result holds for RC(T ).

Similarly, one can assign ωmin(v1) = −n + 1 and ωmin(vi) = 2 − i for i = 2, 3, . . . , d
(again, the other values can be assigned arbitrarily) to derive P = P (ωmin) = (v1, v2, . . . , vd).
This time, we have

rc(T ) ≤ rc(T, ωmin) = 2n− 1− |E(P )| = 2n− 1− d.
As the bound is tight, the result holds for rc(T ). �

We finish this section by considering complete multi-partite graphs. For k ∈ N \ {1}
and n ∈ N, denote the complete k-partite graph with partite sets V1, . . . , Vk of size n by
Kk
n. Note that for any n ∈ N and k = 2, we have that

rc(K2
n) = rc(K2

n) = RC(K2
n) = |V (K2

n)| = 2n.

Indeed, since K2
n has a hamiltonian path, rc(K2

n) = 2n (see Lemma 2(4)). However, in
fact, regardless of the ω0 used, the robot crawler starts at a node v0 and then oscillates

9



between the two partite sets visiting all nodes in increasing order of weights assigned
initially to each partite set of K2

n.
We next consider the case k ≥ 3. Since Kk

n still has a hamiltonian path, rc(Kk
n) = kn.

For any k ∈ N \ {1, 2} and n ∈ N, it is straightforward to see that

rc(Kk
n) = kn and RC(Kk

n) = (k + 1)n− 1.

Investigating rc(Kk
n) appears more challenging. However, we derive the asymptotic

behaviour.

Theorem 9. For any k ∈ N \ {1, 2}, we have that

rc(Kk
n) = kn+O(log n) ∼ kn.

Before we sketch the proof of Theorem 9, we need a definition. Suppose that we are
given an initial weighting ω0 of Kk

n. For any ` ∈ [kn], let A` be the set of ` cleanest
nodes; that is,

A` = {v ∈ V1 ∪ V2 ∪ . . . ∪ Vk : ω0(v) ≥ −`+ 1}.
Finally, for any ` ∈ [kn] and j ∈ [k], let aj` = aj`(ω0) = |A` ∩ Vj|; that is, aj` is the
number of nodes of Vj that are among ` the cleanest ones (in the whole graph Kk

n).

Note that for a random initial weighing ω0, the expected value of aj` is `/k. Let ε > 0.
We say that ω0 is ε-balanced if for each j ∈ [k] and 6ε−2k log n ≤ ` ≤ kn, we have that∣∣∣∣aj` − `

k

∣∣∣∣ < ε`

k
.

A crucial observation is that almost all initial weightings are ε-balanced, regardless
of how small ε is. We will use the following version of Chernoff’s bound. Suppose that
X ∈ Bin(n, p) is a binomial random variable with expectation µ = np. If 0 < δ < 3/2,
then

Pr (|X − µ| ≥ δµ) ≤ 2 exp

(
−δ

2µ

3

)
. (3)

(For example, see Corollary 2.3 in [19].) It is also true that (3) holds for a random
variable with the hypergeometric distribution. The hypergeometric distribution with
parameters N , n, and m (assuming max{n,m} ≤ N) is defined as follows. Let Γ be a
set of size n taken uniformly at random from set [N ]. The random variable X counts
the number of elements of Γ that belong to [m]; that is, X = |Γ ∩ [m]|. It follows
that (3) holds for the hypergeometric distribution with parameters N , n, and m, with
expectation µ = nm/N . (See, for example, Theorem 2.10 in [19].)

Now we are ready to state the important lemma which is used in the proof of Theo-
rem 9.

Lemma 10. Let ε > 0 and k ∈ N \ {1, 2}, and let ω0 be a random initial weighting of
Kk
n. Then we have that ω0 is ε-balanced with probability 1−O(n−1).

Proof. Theorem 9 Let k ∈ N \ {1, 2} and fix ε = 0.01. We will show that for any
ε-balanced initial weighting ω0, rc(Kk

n, ω0) = kn + O(log n). This will finish the proof
since, by Lemma 10, a random initial weighting is ε balanced with probability 1 −

10



O(n−1), and for any initial weighting ω0 we have rc(Kk
n, ω0) ≤ RC(Kk

n) = (k+1)n−1 =
O(n). Indeed,

rc(Kk
n) = Pr (ω0 is ε-balanced) (kn+O(log n)) + Pr (ω0 is not ε-balanced)O(n)

= (kn+O(log n)) +O(1) = kn+O(log n).

Let ω0 be any ε-balanced initial weighting. Fix ` ∈ [kn] and let us run the process
until the robot crawler is about to move for the first time to a node of A`. Suppose
that the robot crawler occupies node v ∈ Vi for some i ∈ [k] (v 6∈ A`) and is about to
move to node u ∈ Vj for some j ∈ [k], j 6= i (u ∈ A`). Let us call Vi a `-crucial partite
set. Concentrating on non-crucial sets, we observe that for any s 6= i, all the nodes of
Vs \A` are already cleaned; otherwise, the robot crawler would go to such node, instead
of going to u. On the other hand, it might be the case that not all nodes of Vi \ A`,
that belong to a `-crucial set, are already visited; we will call such nodes `-dangerous.
Let f(`) be the number of `-dangerous nodes.

Our goal is to control the function f(`). We say that ` is good if f(`) ≤ 0.6`/k.
Clearly, ` = kn is good, as f(kn) = 0. We use the following claim.

Claim. If ` is good, then `′ = b2`/3c is good, provided that b2`/3c ≥ 6ε−2k log n.

Proof. We run the process and stop at time T` when the robot crawler is about to move
to the fist node of A`. We concentrate on the time interval from T` up to time-step T`′
when a node of A`′ is about to be cleaned. First, note that during the first phase of
this time interval, the crawler oscillates between nodes of A` \ A`′ that are not in the
`-crucial set and `-dangerous nodes. Clearly, there are ` − `′ ≥ `/3 nodes in A` \ A`′ .
Since ω0 is ε-balanced, the number of nodes of the `-crucial set that belong to A` and
A`′ is at most (1 + ε)`/k and at least (1− ε)`′/k, respectively. Since

`

3
−
(

(1 + ε)`

k
− (1− ε)`′

k

)
=
`

3
− (1 + 5ε)`

3k
+O(1) ≥

(
k − 1

3
− 2ε

)
`

k
> 0.64

`

k
≥ f(`),

this phase lasts 2f(`) steps and all `-dangerous nodes are cleaned. The claim now
follows easily as one can use a trivial bound for the number of `′-dangerous nodes.
Regardless which partite set is `′-crucial, since ω0 is ε-balanced, we can estimate the
number of nodes in `′-crucial set that belong to A` \A′`. Since `′-dangerous nodes must
be in A` \ A′`, we obtain that

f(`′) ≤ (1 + ε)`

k
− (1− ε)`′

k
=

(
1

2
+

5

2
ε

)
`′

k
+O(1) < 0.53

`′

k
.

It follows that `′ is good and the claim holds by induction. �

To finish the proof, we keep applying the claim recursively concluding that there exists
` < (3/2)6ε−2k log n = O(log n) that is good. At time T` of the process, ` + f(`) ≤
` + 0.6`/k = O(log n) nodes are still dirty and every other node is visited exactly
once. The process ends after at most 2(`+ f(`)) another steps for the total of at most
kn+ (`+ f(`)) = kn+O(log n) steps. �
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5. Binomial random graphs

The binomial random graph G(n, p) is defined as a random graph with node set [n] in
which a pair of nodes appears as an edge with probability p, independently for each pair
of nodes. As typical in random graph theory, we consider only asymptotic properties
of G(n, p) as n→∞, where p = p(n) may and usually does depend on n.

It is known (see, for example, [21]) that a.a.s. G(n, p) has a hamiltonian cycle (and
so also a hamiltonian path) provided that pn ≥ log n+ log log n+ω, where ω = ω(n) is
any function tending to infinity together with n. On the other hand, a.a.s. G(n, p) has
no hamiltonian cycle if pn ≤ log n+log log n−ω. It is straightforward show that in this
case a.a.s. there are more than two nodes of degree at most 1 and so a.a.s. there is no
hamiltonian path. Combining these observations, we immediately derive the following
result.

Corollary 11. If ω = ω(n) is any function tending to infinity together with n, then the
following hold a.a.s.

(1) If pn ≥ log n+ log log n+ ω, then rc(G(n, p)) = n.
(2) If pn ≤ log n+ log log n− ω, then rc(G(n, p)) > n.

The next upper bound on RC(G(n, p)) follows from Lemma 2(5) and the fact that
G(n, p) has maximum degree at most n− 1 and a.a.s. diameter 2 for p in the range of
discussion.

Corollary 12. Suppose pn ≥ C
√
n log n, for a sufficiently large constant C > 0. Then

a.a.s. we have that
RC(G(n, p)) ≤ n3.

Proof. Given two different nodes u, v, the number of common neighbours is distributed
as Bin(n− 2, p2), which by Chernoff bound (3) is at least 1 with probability 1− o(n−2)
(by taking C large enough). Therefore, a.a.s. every pair of nodes of G(n, p) has some
common neighbour and hence, the diameter is at most 2. Moreover, trivially (and
deterministically) the maximum degree is ∆ ≤ n− 1. Therefore, by Lemma 2(5), a.a.s.
RC(G(n, p)) ≤ n3. �

Moreover, we give the following lower bound.

Theorem 13. Suppose C
√
n log n ≤ pn ≤ (1 − ε)n, for constants C > 1 and ε > 0.

Then a.a.s. we have that

RC(G(n, p)) ≥ (2− p+ o(p))n.

Proof. Fix a node v of G ∈ G(n, p), and expose its neighbourhood K = N(v). Let
k = |K|, M = V \K, and m = |M |. We will show that the following properties hold
a.a.s.

(a) k ∼ pn and m = Θ(n).
(b) The subgraphs of G induced by K and by M (which we denote G[K] and G[M ],

respectively) are both hamiltonian.
(c) There is a pair CK = (u1, u2, . . . , uk) and CM = (v1, v2, . . . , vm) of Hamilton

cycles of G[K] and G[M ], respectively, such that u1vm−1 and ukvm are edges in
G (that is, edges vm−1, vm and uk, u1 are contained in a 4-cycle).

12



If all of these properties hold, then we assign the initial weightings to nodes in the
following order from dirtiest to cleanest: v1, v2, . . . , vm−1, u1, u2, . . . , uk, vm, v. The robot
crawler is then forced to first clean nodes v1, v2, . . . , vm−1, next u1, u2, . . . , uk, then
vmv1, v2, . . . , vm−1 and finally u1 and v. Note that the only way of cleaning v is coming
from a node in K at the previous time-step. This takes

(m− 1) + k +m+ 2 = 2n− k − 1 = (2− p+ o(p))n

steps, as required. (See Figure 1.)

u2 vm−1
u1

vm−2

vm−3

K M
v

uk−1
uk

vm

v1

v2

u3

Figure 1. Example of a crawling sequence on a “typical” instance of
G(n, p) that takes 2n− k − 1 steps to clean all nodes.

Now it suffices to show that (a–c) hold a.a.s. The first statement in (a) follows trivially
from Chernoff bound (3), without exposing any edges other than those incident to v.
The second one uses the fact that p ≤ 1− ε. For (b), note that pk ∼ p2n ≥ C log n ≥
C log k, so the average degree in G[K] is at least C log k and it is well known that G[K] is
a.a.s. hamiltonian, provided that C > 1 (recall the discussion before Corollary 11). For
an analogous reason (with even more room to spare), G[H] is also a.a.s. hamiltonian.
Finally, for (c), fix any Hamilton cycles CK and CM and any edge e = (x, y) in CK .
Let {ei = (v2i−1, v2i) : 1 ≤ i ≤ bm/2c} be a set of independent edges (matching) of
CM . An important observation is that the previous arguments did not expose edges
between K and M . For each i, let Ai be the event that x is adjacent to xi and y is
adjacent to yi. Events A1, A2, . . . , Abm/2c are independent and each one has probability
of holding equal to p2. The number of successful events is distributed as Bin(bm/2c, p2)
and has expectation Ω(np2) = Ω(log n). By Chernoff bound (3), we conclude a.a.s.
that Ai holds for some i, and therefore property (c) holds after conveniently relabelling
the nodes of CK and CM . (Note that there is room to spare as one needs the expected
value to tend to infinity at any rate.) �

The rest of this section is devoted to the following result.

Theorem 14. Let p = p(n) such that pn�
√
n log n. Then a.a.s.

rc(G(n, p)) = n+ o(n).

The main ingredient to derive Theorem 14 is the following key lemma.
13



Lemma 15. Let G = (V,E) ∈ G(n, p) for some p = p(n) such that pn �
√
n log n,

and let ω0 : V → Bn be any fixed initial weighting. Then with probability 1 − o(n−3),
we have that

rc(G,ω0) = n+ o(n).

We are going to fix an initial weighting before exposing edges of the random graph.
For a given initial weighting ω0 : V → Bn, we partition the node set V into 3 types with
respect to their initial level of dirtiness: type 1 consists of nodes with initial weights
from Bn \Bb2n/3c, type 2 with initial weights from Bb2n/3c \Bbn/3c; the remaining nodes
are of type 3. Before we move to the proof of Lemma 15, we state the following useful
claim that holds even for much sparser graphs.

Claim. Let G = (V,E) ∈ G(n, p) for some p = p(n) such that pn � log n. Let ω0 :
V → Bn be any initial weighting. Then the following property holds with probability
1− o(n−3). Each node v ∈ V has (1 + o(1))pn/3 neighbours of each of the three types.

Proof. For the proof of the claim, let ω = ω(n) = pn/ log n; note that ω → ∞ as
n → ∞. Fix a node v ∈ V and one of the three types. The number of neighbours of
v that are of the selected type is a random variable X with the binomial distribution
Bin(n/3 + O(1), p) with E [X] = pn/3 + O(1). (The term O(1) comes from the fact
that n does not need to be divisible by 3, and also the fact that v might also be of this
type.) It follows from Chernoff bound (3) that

Pr
(
|X − E [X] | ≥ (ω−1/3)E [X]

)
≤ 2 exp

(
−(ω−1/3)2E [X]

3

)
= 2 exp

(
−(ω1/3) log n

9 + o(1)

)
= o(n−4).

Hence, with probability 1− o(n−4), X ∼ pn/3 and the result holds by the union bound
(as there are 3n possibilities for selecting v and the type). �

We will use the claim in the proof of the main result but not explicitly; that is, we do
not want to condition on the property stated in the claim. Instead, we uncover edges
of the (unconditional) random graph (one by one, in some order) and show that the
desired upper bound for rc(G(n, p), ω0) holds with the desired probability unless the
claim is false. Now we can move to the proof of Lemma 15.

Proof. Lemma 15 We consider four phases of the crawling process.
Phase 1 : We start the process from the initial node (which is of type 1, since it has

initial weight −n + 1), and then we clean only nodes of type 1. The phase ends when
the robot crawler is not adjacent to any dirty node of type 1; that is, when the crawler
is about to move to a node of some other type than type 1 or to re-clean some node
of type 1. An important property is that, at any point of the process, potential edges
between the crawler and dirty nodes are not exposed yet. Hence, if x ≥ 5 log n/p nodes
of type 1 are still dirty, the probability that this phase ends at this point is equal to

(1− p)x ≤ exp(−px) ≤ n−5.
14



Hence, it follows from the union bound that, with probability at least 1 − n−4 =
1 − o(n−3), this phase ends after T1 steps, where dn/3e − 5 log n/p ≤ T1 ≤ dn/3e, at
most 5 log n/p nodes of type 1 are still dirty, and the other type 1 nodes are cleaned
exactly once. Observe that during this phase we exposed only edges between type 1
nodes.

Phase 2 : During this phase we are going to clean mostly nodes of type 2, with
a few “detours” to type 1 nodes that are still dirty. Formally, the phase ends when
the robot crawler is not adjacent to any dirty node of type 1 or 2; that is, when the
crawler is about to move to a node of type 3 or to re-clean some node (of type 1 or
2). Arguing as before, we deduce that, with probability at least 1− o(n−3), this phase
ends after the total of T2 steps (counted from the beginning of the process), where
d2n/3e− 5 log n/p ≤ T2 ≤ d2n/3e, at most 5 log n/p nodes of type 1 or 2 are still dirty,
and the other type 1 or 2 nodes are cleaned exactly once.

Suppose that at the end of this phase some node v of type 1 is still dirty. This implies
that v has at most 10 log n/p neighbours that are type 2. Indeed, at most 5 log n/p of
them are perhaps not visited by the crawler yet; at most 5 log n/p of them were visited
by the crawler but it did not move to v from them but went to some other of the at
most 5 log n/p dirty nodes of type 1 instead. Since pn ≥ 10

√
n log n, we obtain that

10 log n/p ≤ pn/10 and so this implies that the property stated in the Claim is not
satisfied. If this is the case, then we simply stop the argument. We may then assume
that all nodes of type 1 are cleaned at this point of the process. Finally, let us mention
that during this phase we exposed only edges between type 2 nodes, and between type
1 nodes that were dirty at the end of phase 1 and type 2 nodes.

Phase 3 : This phase ends when the robot crawler is not adjacent to any dirty node;
that is, when the crawler is about to re-clean some node. During this phase we are
going to clean mostly nodes of type 3, with a few “detours” to type 2 nodes that are
still dirty. Arguing as before, we deduce that, with probability at least 1− o(n−3), this
phase ends after the total of T3 steps, where n − 5 log n/p ≤ T2 ≤ n. Moreover, we
may assume that at the end of this phase at most 5 log n/p nodes of type 3 are still
dirty whereas all other nodes are cleaned exactly once; otherwise, the property stated
in the Claim is not satisfied. As usual, the main observation is that during this phase
we exposed only edges between type 3 nodes, and between type 2 nodes that were dirty
at the end of phase 2 and type 3 nodes.

Phase 4 : During this final phase we are going to re-clean (for the second time) some
nodes of type 1, with a few “detours” to type 3 nodes that are still dirty. This phase
ends when one of the following properties is satisfied:

(a) all nodes are cleaned,
(b) this phase takes more than 20 log n/p2 steps,
(c) the robot crawler is not adjacent to any dirty node nor to any type 1 node that

was cleaned only once, during phase 1 (note that these nodes have the smallest
weights at this point of the process).

Recall that our goal is to show that either the property stated in the Claim is not
satisfied or, with probability at least 1 − o(n−3), the phase ends when all nodes are
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cleaned. From this it will follow that the process takes n+O(log n/p2) = n+o(n) steps
with probability at least 1− o(n−3), and the proof will be finished.

Suppose first that the phase ends because of property (c). It follows that the crawler
occupies a node v that has at most 25 log n/p neighbours that are type 1: at most
20 log n/p of them were re-cleaned during this phase, and at most 5 log n/p of them
were cleaned during phase 2. Since pn ≥ 10

√
n log n, 25 log n/p ≤ pn/4 and so the

property in the Claim is not satisfied. Hence, we may assume that the phase does not
end because of (c).

Suppose now that the phase ends because of property (b) and that property (c) is
never satisfied. This implies that all nodes visited during phase 4 must be different,
since otherwise property (c) would hold. Moreover, the robot crawler can be adjacent to
a dirty node at most 5 log n/p out of the first b20 log n/p2c steps in this phase, since each
time this happens one dirty node will be cleaned in the next step, and there were at most
5 log n/p nodes of type 3 that were dirty at the end of phase 3. A crucial observation is
that no edges between type 1 and type 3 nodes (and also no edges between dirty nodes
of type 3) were exposed at the beginning of this phase. Using this we can estimate the
probability that at the end of this phase some node is still dirty. Indeed, at each step,
the probability that the robot crawler is adjacent to a dirty node (provided that some
dirty node still exists) is at least p. Hence, using Chernoff bound (3), the probability
that phase 4 ends because of property (b) and not (c) is at most

Pr
(

Bin(b20 log n/p2c, p) ≤ 5 log n/p
)
≤ exp

(
−(3/4)220 log n/p

3 + o(1)

)
= o(n−3).

This shows that phase 4 does not stop because of property (b) with probability 1 −
o(n−3), as required. �

We finish the section by proving Theorem 14.

Proof. Theorem 14 We say that a pair (G,ω0) is good if rc(G,ω0) ≤ n + f(n), where
f(n) = o(n) sufficiently slowly. Otherwise, we call the pair bad. Lemma 15 implies that
a random pair (G,ω0) is bad with probability at most qn−3 for some q = q(n) = o(1).
We say that a graph G is dangerous, if the fraction of initial weightings ω0 such that
(G,ω0) is bad over the total number n! of weightings is greater than

√
qn−3. We

conclude that

qn−3 ≥ Pr ( (G,ω0) is bad ) ≥ Pr (G is dangerous )
√
qn−3,

so the probability that a graph in G(n, p) is dangerous is at most
√
q = o(1). Let

us focus on graphs that are not dangerous. By Corollary 12 and the definition of
dangerous, if G is not dangerous, then the contribution to rc(G) from bad pairs (G,ω0)
is at most

√
qn−3n3 = o(1). The result follows since the contribution from good pairs

is n+ o(n). �

Theorem 14 holds for dense random graphs; that is, for pn�
√
n log n. The case of

sparser random graph remains open. In addition, it is not clear whether the bound in
Corollary 12 can be improved. For instance, is it true that RC(G(n, p)) = O(n) for a
wide range of p? Recall, in view of Theorem 13, that we cannot achieve RC(G(n, p)) =
(1 + o(1))n, provided that p < 1− ε for some ε > 0.
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6. Preferential Attachment Model

The results in Section 3 demonstrate that for the binomial random graph, for most
initial weightings the robot crawler will finish in approximately n steps. We now con-
sider the robot crawler on a stochastic model for complex networks. The preferential
attachment model, introduced by Barabási and Albert [4], was an early stochastic model
of complex networks. We will use the following precise definition of the model, as con-
sidered by Bollobás and Riordan in [5] as well as Bollobás, Riordan, Spencer, and
Tusnády [6].

Let G0
1 be the null graph with no nodes (or let G1

1 be the graph with one node, v1,
and one loop). The random graph process (Gt

1)t≥0 is defined inductively as follows.
Given Gt−1

1 , we form Gt
1 by adding node vt together with a single edge between vt and

vi, where i is selected randomly with the following probability distribution:

Pr (i = s) =

{
deg(vs, t− 1)/(2t− 1) 1 ≤ s ≤ t− 1,

1/(2t− 1) s = t,

where deg(vs, t− 1) denotes the degree of vs in Gt−1
1 . (In other words, we send an edge

e from vt to a random node vi, where the probability that a node is chosen as vi is
proportional to its degree at the time, counting e as already contributing one to the
degree of vt.)

For m ∈ N \ {1}, the process (Gt
m)t≥0 is defined similarly with the only difference

that m edges are added to Gt−1
m to form Gt

m (one at a time), counting previous edges as
already contributing to the degree distribution. Equivalently, one can define the process
(Gt

m)t≥0 by considering the process (Gt
1)t≥0 on a sequence v′1, v

′
2, . . . of nodes; the graph

Gt
m if formed from Gtm

1 by identifying nodes v′1, v
′
2, . . . , v

′
m to form v1, identifying nodes

v′m+1, v
′
m+2, . . . , v

′
2m to form v2, and so on. Note that in this model Gt

m is in general a
multigraph, possibly with multiple edges between two nodes (if m ≥ 2) and self-loops.
For the purpose of the robot crawler, loops can be ignored and multiple edges between
two nodes can be treated as a single edge.

It was shown in [6] that for any m ∈ N a.a.s. the degree distribution of Gn
m follows a

power law: the number of nodes with degree at least k falls off as (1 + o(1))ck−2n for
some explicit constant c = c(m) and large k ≤ n1/15. Let us start with the case m = 1,
which is easy to deal with, sinceGn

1 is a forest. Each node sends an edge either to itself or
to an earlier node, so the graph consists of components which are trees, each with a loop
attached. The expected number of components is then

∑n
t=1 1/(2t − 1) ∼ (1/2) log n

and, since events are independent, we derive that a.a.s. there are (1/2 + o(1)) log n
components in Gn

1 by Chernoff’s bound (3). Moreover, Pittel [28] essentially showed
that a.a.s. the largest distance between two nodes in the same component of Gn

1 is
(γ−1 + o(1)) log n, where γ is the solution of γe1+γ = 1 (see Theorem 13 in [5]). Hence,
the following result holds immediately from Theorem 7.

Theorem 16. The following properties hold a.a.s. for any connected component G of
Gn

1 :

rc(G) = 2|V (G)| − 1− diam(G) = 2|V (G)| −O(log n),

RC(G) = 2|V (G)| − 2.
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We may modify slightly the definition of the model to ensure Gn
1 is a tree on n nodes,

by starting from G2
1 being an isolated edge and not allowing loops to be created in the

process (this is in fact the original model in [4]). For such variant, we would have that
a.a.s. rc(Gn

1 ) ∼ RC(Gn
1 ) ∼ 2n, as the diameter would be negligible comparing to the

order of the graph.
The case m ≥ 2 is more difficult to investigate. It is known that a.a.s. Gn

m is connected
and its diameter is (1+o(1)) log n/ log log n, as shown in [5], and in contrast to the result
for m = 1 presented above. We managed to show that for the case m = 2, the robot
crawler needs substantially more than n steps to clean the graph in this model. This
immediately implies (in a strong sense) that Gn

2 is not hamiltonian a.a.s. (See [16] for
more results in this direction.)

Theorem 17. A.a.s. rc(Gn
2 ) ≥ (1 + ξ + o(1))n, where

ξ = max
c∈(0,1/2)

(
2
√
c

3
− c− c2

6

)
≈ 0.10919.

Proof. Many observations in the argument will be valid for any m but, of course, we will
eventually fix m = 2. Consider the process (Gt

m)t≥0 on the sequence of nodes (vt)t≥0.
We will call node vi lonely if deg(vi, n) = m; that is, no loop is created at the time vi
is introduced and no other node is connected to vi later in the process. Moreover, vi is
called old if i ≤ cn for some constant c ∈ (0, 1) that will be optimized at the end of the
argument; otherwise, vi is called young. Finally, vi is called j-good if vi is lonely and
exactly j of its neighbours are old.

Let us begin with the big picture for the case m = 2. Suppose that an nodes are
young and 1-good, bn nodes are young and 2-good, and dn nodes are old and lonely
(which implies that they are 2-good). Clearly, the robot crawler needs to visit all
young nodes and all old and lonely ones, which takes at least (1 − c)n + dn steps.
Observe that each time a young and 2-good node is visited, the crawler must come
from an old but not-lonely node and move to another such one right after. Similarly,
each time the crawler visits a young and 1-good node, it must come from or move to
some node that is old but not lonely. It follows that nodes that are old but not lonely
must be visited at least an/2 + bn+O(1) times. Hence, the process must take at least
(1− c+ d+ a/2 + b+ o(1))n steps, and our hope is that it gives a non-trivial bound for
some value of c ∈ (0, 1).

The probability that vi is lonely is easy to estimate from the equivalent definition of
Gn
m obtained in terms of Gmn

1 . For i� 1, we derive that

Pr (vi is lonely) = Pr (deg(vi, i) = m)
nm∏

t=im+1

(
1− m

2t− 1

)

∼ exp

(
−

nm∑
t=im+1

m

2t− 1
+O

(
nm∑

t=im+1

t−2

))

∼ exp

(
−m

2

nm∑
t=im+1

t−1

)
∼ exp

(
−m

2
log
(nm
im

))
=

(
i

n

)m/2
.
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We will also need to understand the behaviour of the following random variable: for
bcnc ≤ t ≤ n, let

Yt =
∑
j≤cn

deg(vj, t).

In view of the identification between the models Gn
m and Gmn

1 , it will be useful to
investigate the following random variable instead: for mbcnc ≤ t ≤ mn, let

Xt =
∑
j≤cmn

degGt
1
(v′j, t).

Clearly, Yt = Xtm. It follows that Xmbcnc = Ybcnc = 2mbcnc. Moreover, for mbcnc <
t ≤ mn,

Xt =

{
Xt−1 + 1 with probability Xt−1

2t−1
,

Xt−1 otherwise.

The conditional expectation is given by

E [Xt|Xt−1] = (Xt−1 + 1) · Xt−1

2t− 1
+Xt−1

(
1− Xt−1

2t− 1

)
= Xt−1

(
1 +

1

2t− 1

)
.

Taking expectation again, we derive that

E [Xt] = E [Xt−1]

(
1 +

1

2t− 1

)
.

Hence, arguing as before, it follows that

E [Yt] = E [Xtm] = 2mbcnc
tm∏

s=mbcnc+1

(
1 +

1

2s− 1

)
∼ 2cmn

(
tm

cmn

)1/2

= 2mn
√
ct/n.

Noting that E [Yt] = Θ(n) for any bcnc ≤ t ≤ n, and that Yt increases by at most m
each time (Xt increases by at most one), we obtain that with probability 1 − o(n−1),
Yt = E [Yt] + O(

√
n log n) ∼ E [Yt] (using a standard martingale argument; for Azuma-

Hoeffding inequality that is used here see, for example, [19]). Hence, we may assume

that Yt ∼ 2mn
√
ct/n for any bcnc ≤ t ≤ n.

The rest of the proof is straightforward. Note that, for a given t = xn with c ≤ x ≤ 1,
the probability that an edge generated at this point of the process goes to an old node
is asymptotic to (2mn

√
ct/n)/(2mt) =

√
cn/t =

√
c/x. Moreover, recall that vt is

lonely with probability asymptotic to (t/n)m/2 = x for the case m = 2. It follows that

a ∼
∫ 1

c

2
√
c/x(1−

√
c/x)xdx =

4
√
c

3
− 2c+

2c2

3
,

b ∼
∫ 1

c

(
√
c/x)2xdx = c− c2,

d ∼
∫ c

0

xdx =
c2

2
.

Since

1− c+ d+ a/2 + b ∼ 1 +
2
√
c

3
− c− c2

6
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is maximized at c =

(
(4+4

√
5)

2/3
−4

)2

4(4+4
√

5)
2/3 ≈ 0.10380, the proof follows. �

Properties of the robot crawler remain open in the preferential attachment model
when m > 2. Fix m ≥ 3. Is it true that a.a.s. rc(Gn

m) ≥ (1 + ξ)n for some constant
ξ > 0? Or maybe rc(Gn

m) ∼ n? It is possible that there is some threshold m0 such that
for m ≤ m0, rc(Gn

m) ≥ (1 + ξ)n for some constant ξ > 0 but rc(Gn
m) ∼ n for m > m0.

It would be interesting to study the robot crawler process on other models of complex
networks, such as random graphs with given expected degree sequence [12], preferential
attachment graphs with increasing average degrees [15], or geometric models such as
the spatially preferred attachment model [1, 13], geographical threshold graphs [10], or
GEO-P model [7].
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