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Abstract 

This paper advances theories of social learning through an empirical examination of how 

social networks—which constrain individuals’ access to information about the behaviors and 

cognitions of other people—evolve over time. Using data on a large social network of mobile 

device users over a one-month time period, we test three hypotheses: 1) attraction homophily 

causes individuals to form ties on the basis of attribute similarity, 2) aversion homophily causes 

individuals to delete existing ties on the basis of attribute dissimilarity, and 3) social influence 

processes cause individuals to adopt the attributes of others they share direct ties with. 

Statistical models offer varied degrees of support for all three hypotheses and show that these 

mechanisms are more complex than assumed in prior work. Although homophily is normally 

thought of as a process of attraction, people also avoid relationships with others who are 

different. These mechanisms have distinct effects on network structure. And while social 

influence does help explain behavior, people tend to follow global trends more than they follow 

their friends. 
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Introduction 

 What determines the adoption of beliefs, new technologies, cultural behaviors, and 

cooperation among human agents? These are all questions of social learning, a term that refers 

broadly to the processes by which a person’s social environment shapes their actions (how a 

person behaves) and cognitions (how a person thinks). Through social learning, an agent—a 

term we use to refer to any individual actor within a social network—may adopt the cognitions 

or behaviors from those they have an opportunity to observe or interact with directly. 

Combined with forms of individual learning, where an agent learns through their own direct 

experiences, social learning may provide a more efficient, less costly, and less risky way to learn 

optimal social behaviors (Feldman, Aoki, & Kumm, 1996; Olsson & Phelps, 2007; Rendell et al., 

2010; Sandberg et al., 2012). Developing a better understanding of the mechanisms of social 

learning can yield insights into the development and evolution of human culture. At the same 

time, theories and models of social learning are also of great practical importance as they can 

also inform how people can more effectively collaborate to solve wrenching social, 

environmental, and economic problems, such as global climate change (Adger, 2005; Bidwell, 

Dietz, & Scavia, 2013; Gerlak & Heikkila, 2011; Henry, 2009; Parson & Clark, 2005). 

Social networks will occupy a prominent role in a comprehensive theory of learning. This 

is because direct social contacts—who people interact with, talk to, and observe on a regular 

basis—provide the raw material needed for learning and define a large part of the social 

environment that constrains what a person could potentially learn from other social agents 

(Henry 2009; Friedkin & Johnsen, 1997; Friedkin, 2001; Marsden & Friedkin, 1993). At the same 

time, products of learning (behaviors and cognitions) also shape the social environments of 
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human agents, since individuals also exercise control over their social environment and 

potentially select network partners as a function of individual attributes, including their 

behaviors and cognitions (Boardman, Domingue, & Fletcher, 2012; Girard, Hett, & Schunk, 

2015; Jackson, 2008; McPherson, Smith-Lovin, & Cook, 2001). In this way, social network 

structures co-evolve with the products of social learning (Aral, Muchnik, & Sundararajan, 2009; 

Dandekar, Goel, & Lee, 2013; Lewis, Gonzalez, & Kaufman, 2012). A better understanding of 

social learning processes therefore depend on understanding how social agents form networks, 

are influenced by others within their network, and how these two phenomena work in tandem. 

This paper contributes to our understanding of social learning by developing and testing 

empirical models of how social networks evolve over time; particularly, how people in a social 

network choose links on the basis of their own attributes (a phenomenon known as 

homophily), and how individual attributes are in turn shaped by network structure (a 

phenomenon known as social influence). Examining these co-evolutionary processes is 

challenging because it requires data on both networks and attributes that shift over time. So 

while there are many theoretical models of homophily and social influence, empirical datasets 

that allow scholars to test these models and calibrate theoretical expectations based on 

empirical findings are relatively rare. There are, however, a number studies that have tested for 

social influence and homophily within a single social network, such as Kandel’s (1978) now-

classic study of adolescent friendships, homophily, and socialization in terms of behaviors (drug 

use and delinquency) and cognitions (political ideology and education goals). Other more 

recent studies include Lazer’s (2001) study of attitudes and communication among federal 

agency bureaucrats, Aral, Muchnik, & Sundararajan’s (2009) study of product adoption and 
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instant messaging among mobile device users, and Lewis, Gonzalez, & Kaufman’s (2012) study 

of tastes and online social networks among college students. 

We build on these studies through an analysis of a large social network of approximately 

300,000 mobile device users, for whom data are available on both social contacts as well as 

individual behaviors—measured as the “tastes” that users exhibit in their use of the Web and 

mobile applications. In using these data we build on related studies that have used data on 

tastes and virtual connections (i.e., through online friendships or mobile communications) to 

examine fundamental social processes occurring in networks (Eagle, Pentland, & Lazer, 2009; 

Lewis, Gonzalez, & Kaufman, 2012). By observing how contacts (networks) and tastes 

(attributes) change over a one-month time period, we are able to explicitly test hypotheses of 

network evolution that cannot be examined by looking at cross-sectional data alone.  

 

Mechanisms of Social Learning: Homophily and Social Influence 

We study the coevolution of network structure and nodal attributes by focusing on 

three particular social processes as depicted in Figure 1. A distinction here is made between 

those variables that are broadly thought to interact with one another (variables existing at the 

framework level—yellow boxes in Figure 1) and the particular mechanisms through which the 

variables cause change in one another (factors existing at the model level—green boxes in 

Figure 1). At the framework level, social networks and actor attributes are viewed as having a 

reciprocal influence on one another. The particular processes at the model level include the 

formation and deletion of ties based on similarity or differences in agent attributes 
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(homophily), and that certain attributes are likely to diffuse through existing network ties 

(social influence). 

[FIGURE 1 ABOUT HERE] 

 

The role of homophily 

 Actor attributes influence the structure of networks through homophily, a widely-

studied phenomenon where actors tend to position themselves in networks such that they are 

connected to others similar to themselves (Jackson, 2008; McPherson, Smith-Lovin, & Cook, 

2001). That actors form ties on the basis of homophily along a wide spectrum of traits is one of 

the most robust empirical findings in the social networks literature. In social networks, 

homophily has been observed to operate on socio-economic variables such as race (Currarini, 

Jackson, & Pin, 2009, 2010), nationality (Girard, Hett, & Schunk, 2015), and gender (Kleinbaum, 

Stuart, & Tushman, 2013; Stehlé et al., 2013), cognitive and behavioral traits such as personal 

tastes (Lewis, Gonzalez, & Kaufman, 2012) and one’s propensity to cooperate with others 

(Girard, Hett, & Schunk, 2015), as well as physical genetic factors (Boardman, Domingue, & 

Fletcher, 2012). Homophily has also been studied at the level of social aggregates. For example, 

it is hypothesized that organizations involved in the policy process tend to coordinate with 

other organizations sharing their values, interests, and beliefs about policy problems (Sabatier 

& Jenkins-Smith, 1993; Weible et al., 2011)—a hypothesis that is supported by numerous 

empirical studies (e.g., Henry et al., 2011; Ingold & Fischer, 2013; Leach & Sabatier, 2005; 

Weible & Sabatier, 2005). Similarly, homophily has been shown to operate at the level of entire 

cities, such that municipal governments choose other cities as collaborators on the basis of 
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similarity in socio-economic traits as well as shared political ideology (Gerber, Henry, & Lubell, 

2013). 

 Given the widespread recognition that network structures are determined in part by 

homophily, then why continue to study this phenomenon? There are at least four answers to 

this question. First, factors other than homophily help to determine network structure (Jackson, 

2008; Snijders et al., 2006), and an analysis of homophily effects must therefore consider how 

homophily operates in tandem with other structural influences such as optimization (D’Souza et 

al., 2007), seeking out connections with high-degree nodes (Aiello et al., 2008; Barabási & 

Albert, 1999), and the tendency to maintain connections within closed triads, or among “friends 

of friends” (Burt, 2000; Carpenter, Esterling, & Lazer, 2004; Krackhardt, 1999). 

Second, the theoretical mechanisms that lead to homophily in certain contexts are not 

fully understood. One persistent question in understanding homophily is whether this 

phenomenon is due to a systematic bias for ties with similar individuals (known as “choice 

homophily”) or due to the increased opportunities for forming ties with similar individuals 

because people select themselves into social contexts—such as schools, clubs, or residential 

neighborhoods—based on certain traits (known as “structural homophily”). Clearly 

distinguishing between these effects, and making clear inferences as to whether observed 

correlations between network ties and attribute similarity is due to choice or structural 

homophily, is an important area of research (Boucher, 2015; Bramoullé et al., 2012; Currarini, 

Jackson, & Pin, 2010; Kleinbaum, Stuart, & Tushman, 2013; Kossinets & Watts, 2009). 

 Third, insofar as choice homophily is concerned, the reasons why people tend to select 

network partners with similar traits are not well understood. Kossinets & Watts (2009: 406) 
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offer the intuitive explanation that “people form ties with similar others because, rightly or 

wrongly, they prefer to.” Theoretical explanations for this rely on the idea that the creation and 

maintenance of network ties is costly (D’Souza et al., 2007; Saramaki et al., 2014), and these 

“transaction costs” associated with social ties are reduced when one interacts with others who 

are similar (Feiock, 2013). Having more in common with one’s social partners makes it easier to 

form and maintain healthy relationships. Of course, this is also complicated by the fact that 

different traits might matter differently for homophily, and these differences are likely to be 

highly dependent on context—so, for example, a person might select their friends based on 

similarity in political views, but not based on similarity in musical tastes. 

 Choice homophily, as we show here, is not just a matter of tie formation. Choice 

homophily can also influence choices about the termination of social ties, or avoidance of 

certain relationships altogether. We refer to these processes respectively as “attraction 

homophily” and “aversion homophily.” While attraction and aversion homophily might appear 

to be two sides of the same coin, in fact these are two distinct mechanisms that might operate 

independently of one another (Noel & Nyhan, 2011). To illustrate, consider Thomas Schelling’s 

classic work on the emergence of residential segregation (Schelling, 1971). Starting with the 

observation that many communities exhibit racial segregation (such that people of similar races 

tend to live spatially proximate to one another) a natural explanation is that people have a 

strict preference for living in a racially homogenous neighborhood—that is, that individuals 

exhibit attraction homophily in their choice of neighborhood, based on race. On the other hand, 

Schelling’s model demonstrated that one need not assume that people seek out homogenous 

neighborhoods for segregation to emerge. Rather, it is sufficient to assume that individuals 
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have a slight bias against being a minority in their local neighborhood—that is, people exhibit a 

small amount of aversion homophily in their choice of residential neighborhood, based on race. 

When one models these processes in a network context it can be shown that slight levels of 

aversion homophily are sufficient to produce global patterns of network segregation and 

community structure that are characteristic of many real-world networks (Henry, Prałat, & 

Zhang, 2011). 

 In this paper, we view both types of homophily as independent processes that influence 

the structure of observed networks: first through the deletion of ties as a result of aversion 

homophily (Figure 1, process #1), and second, through the formation of new ties as a result of 

attraction homophily (Figure 1, process #2). As noted above, we study homophily in terms of 

the various tastes that people have regarding Web browsing behavior and mobile application 

usage. We therefore consider two homophily hypotheses:  

 

H1: In a social network, the likelihood of tie formation between two actors increases 

with greater similarities in the actors’ attributes. 

 

H2: In a social network, the likelihood of tie deletion between two actors increases with 

greater differences in the actors’ attributes. 

 

The role of social influence 

While actor attributes—such as tastes—shape network structures, networks also have a 

reciprocal effect on attributes. Many attributes that drive network structures are malleable, 
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particularly cognitive and behavioral attributes such as opinions, values, and cultural traits. 

Through a process of social influence, the attributes of a particular actor’s network neighbors 

(those nodes that the actor shares direct connections with) potentially shape the focal actor’s 

attributes (Friedkin & Johnsen, 1997; Friedkin & Johnsen, 2011; Friedkin, 2001). Social influence 

is depicted as process #3 in Figure 1. 

Studies of social influence are grounded in the observation that one’s social network 

partly determines one’s actions and behaviors. “Social networks” in this sense need not be 

actual, physical connections, but merely pathways that provide information about other actors’ 

behavior or cognitions (Marsden & Friedkin, 1993). Scholars have long been interested in 

developing models of social influence, with early applications in the modeling of how groups 

with varied opinions on an issue eventually reach a consensus (DeGroot, 1974). Studies of social 

influence are not limited to an investigation of why people hold certain opinions, attitudes, and 

beliefs (the focus of prominent social influence scholars such as Friedkin & Johnsen, 2011). 

Models of social influence may be applied to related phenomena such as the adoption of new 

interests and tastes in an online network (Lewis, Gonzalez, & Kaufman, 2012), new 

communications technologies (Aral, Muchnik, & Sundararajan, 2009), sustainability behaviors 

(Bollinger & Gillingham, 2012; Henry & Vollan, 2014), and even the diffusion of innovations 

across organizations (O’Neill, Pouder, & Buchholtz, 1998) and governments (Berry & Berry, 

2007). 

In terms of people’s tastes, we hypothesize that social influence processes will cause a 

convergence in tastes among those connected in a social network, giving our third main 

hypothesis: 
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H3: In a social network, actors tend to adopt the attributes of others they share direct 

connections with. 

 

It should be noted that this hypothesis should not apply to all situations where actors 

exercise—or are prone to—social influence in a network setting. For instance, when actors are 

learning about scientific information characterized by uncertainty, then actors may have 

differential levels of trust in different information sources due to biased assimilation (Innes, 

1978; Lord, Ross, & Lepper, 1979; Munro & Ditto, 1997), which may create and reinforce 

polarization in a social network (Dandekar, Goel, & Lee, 2013). 

 Another important caveat to this hypothesis is that social influence effects are likely to 

be mediated by various properties of the network. For instance, social influence (as the degree 

of convergence in tastes between two actors) is likely to be stronger when actors have higher 

levels of trust, or more frequent interactions. Actors are therefore more likely to adopt the 

tastes of others who are more similar to themselves, or who one shares both direct and indirect 

connections with (Burt, 2000; Centola, 2011). Moreover, actors are not only influenced by 

those they share direct connections with, but are likely also influenced by global shifts as well. 

So while those in a local network neighborhood likely exert the strongest influences on tastes, 

shifts in overall tastes—e.g., changes in what is “trending” or “in fashion”—are also likely to be 

a source of social influence. This possibility is examined in the analysis of a large empirical 

dataset on social connections and tastes, examined in the next section. 
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Data Source 

To test the above hypotheses of homophily and social influence in networks, we 

examine a unique dataset on instant messaging and user tastes from a popular mobile phone 

platform in the United States. In this analysis, network ties represent contacts between 

individual mobile phone users—more specifically, if user A has user B in their phone’s instant 

messaging contact list, then we form an undirected, unweighted network tie from A to B. 

Attributes of network nodes are viewed as a combination of Web browser activity and 

application download history. These behaviors are summarized by a multi-dimensional 

attribute called “tastes,” which represents the overall interests and behavior of users—at least 

as they relate to how individuals use their mobile devices. The various dimensions of the taste 

attribute, called taste categories, were developed by the mobile platform developers and align 

with the platform’s application categories. While taste categories form a tree structure, in this 

paper we examine only the seventeen top-level taste categories: lifestyle, finance, business, 

entertainment, ringtones, photo, news, utilities, health, sports, themes, books, games, social, 

productivity, education and navigation. A proprietary algorithm is used to assign taste scores 

between 0 and 1 for individual users over time in each of these taste categories, where higher 

values indicate stronger interests in Web searches and applications relevant to the given 

category. This provides a dynamic view of how the interests and behaviors of users change over 

time.1 

                                                           
1
 It should be noted that tastes are only estimated for users with activity in a given month, and for those users who 

allow their usage history to be tracked (privacy settings allow users to prevent their usage history from being 
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The dataset used here is drawn from two snapshots of the contact network and user 

tastes (attributes) at two points in time: October 19, 2013 and November 22, 2013. A one-

month time interval was chosen so that we might observe short-term changes in the network—

giving us a view of what might be thought of as the “first derivative” of the longer-term changes 

in attributes and social networks over time. 

Included in this analysis are all mobile platform users in the United States with taste 

data in a given month—this excludes all users who either had no recorded activity, as well as 

those users who used their privacy settings to prevent tracking of their usage history. This 

yields network and attribute data on approximately 300,000 active users, which represents 

about 10% of all users in the United States between these time periods. 

Table 1 provides descriptive statistics for the two network snapshots, and degree 

distributions for both networks are depicted in Figure 2. Between the two time periods, there 

were approximately 426,000 removals of ties and 1.1 million new ties among the active users 

studied here. If we examine the full network (and not only the users included in this analysis), 

we see that the network grew in size between the two time periods. Despite this 12% increase 

in the number of nodes in the network, however, the basic network characteristics remained 

stable. As depicted in Figure 2, both network snapshots are heavy-tailed (with a maximal 

degree of about six thousand), sparse networks (with an average degree of 3.15), with a large 

giant connected component (containing 85% of all nodes), and a large number of smaller 

disconnected components. These characteristics are typical for communication networks 

among mobile phone users. 

                                                                                                                                                                                           
recorded).   have not set their privacy settings  opted to send usage history and in addition some users do not have 
recorded taste opted to set privacy settings some have no taste information recorder users  
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[TABLE 1 ABOUT HERE] 

[FIGURE 2 ABOUT HERE] 

 

Results for Homophily 

The structure of these data allow us to explicitly test two distinct views of homophily 

discussed above—homophily as a process of attraction to others with similar attributes (H1), 

and homophily as a process of aversion from others with dissimilar attributes (H2). To do this, 

we take all dyads (i.e., pairs of individual actors) in the network and group them into one of 

four categories as summarized in Table 2. These groups define whether the dyad contained a 

newly formed tie (Group 0-1), a deleted tie (Group 1-0), a tie that was present in both time 

periods (stable ties; Group 1-1), or a tie that was absent in both time periods (stable non-ties; 

Group 0-0). 

[TABLE 2 ABOUT HERE] 

For each of the dyads in the system, we also calculate two alternative measures of how 

different each pair of actors are in terms of their attributes. In particular, for network nodes A 

and B, the taste difference between A and B is defined as either the Euclidean distance or the 

Hamming distance between A and B’s respective tastes (as noted above, each individual taste is 

a seventeen-dimensional vector).2 While Hamming distance is estimated based on the number 

of shared tastes, Euclidean distance is estimated by weighting the shared tastes. Since tastes do 

                                                           
2
 We use a measure of difference rather than similarity because zero has a natural interpretation in a difference 

measure (i.e., zero means that two nodes have exactly the same attribute). 



14 
 

change between the two time periods, the taste difference variable is recalculated for each 

snapshot. 

Given both the taste difference measures and the grouping of dyads, we are able to test 

the homophily hypotheses according to the following logic: 

1)  Under the attraction hypothesis (H1): Among all pairs that are not connected in the first 

time period (Groups 0-0 and 0-1), those pairs with greater similarity in tastes are more 

likely to form a tie between the two periods (that is, belong to Group 0-1). 

2)  Under the aversion hypothesis (H2): Among all pairs that are connected in the in the first 

time period (Groups 1-1 and 1-0), those pairs with greater dissimilarity in tastes are 

more likely to delete a tie between the two periods (that is, belong to Group 1-1). 

 

Homophily as attraction 

The attraction hypothesis is tested by fitting a logistic regression model using dyads in 

Groups 0-0 and 0-1 as the unit of analysis: 

𝑌 =
1

1+𝑒−(𝛽0+𝛽1 𝑡𝑎𝑠𝑡𝑒_𝑑𝑖𝑓𝑓 +𝛽2 𝑝𝑎𝑡ℎ_𝑙𝑒𝑛𝑔𝑡ℎ), where    (1) 

 Y is the probability of tie formation (that is, whether the dyad is a member of Group 0-0 

versus Group 0-1), 

 β0, β1, and β2 are constant coefficients, 

 Variable taste_diff is the taste difference between the two nodes in the dyad in the first 

time period, measured either as Euclidean distance or Hamming distance between taste 

vectors as described above, and 
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 Variable path_length is the geodesic path length between the two nodes in the dyad in 

the first time period (when all dyads included in this model are empty). This variable is 

included as a control, to capture the possible effects of being more proximate in the 

social space on tie formation. For example, a large body of research on triadic closure 

suggests that network actors are more likely to form ties if they both have ties to a 

common third actor (in which case the value of path_length would be two). 

Two important issues with this approach require discussion. First, the use of logistic 

regression models assume that observations are independent of one another—in other words, 

the probability of tie formation between one pair of actors is uncorrelated with tie formation 

between any other two actors in the system. This is not a good assumption, especially given 

that the same actors appear in multiple dyads. To deal with this problem, we fit models only on 

a random sample of dyads in the network. Given that this is a relatively small percentage of 

actor-actor pairs spread out over an entire national market, the chances that we have 

replicated agents in the sample is very small, and we will be able to safely assume that dyads 

included in this analysis are, for the most part, independent. 

The second issue is that Group 0-0 is extremely large compared to Group 0-1. By 

comparing samples drawn from both groups we invoke an implicit theory that all disconnected 

actor pairs have an equal opportunity to form a link between the two time periods. This is, of 

course, unrealistic. Thus, we are in need of a way to narrow the population of stable non-tie 

dyads (Group 0-0) to a subgroup of dyads that we can realistically assume had an opportunity 

to form a link between the two time steps. 
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Our approach is to look at the geodesic path distances between actor pairs in Group 0-0 

in the first time step, and compare them with the geodesic path distances between actor pairs 

in Group 0-1 (newly formed ties). These distributions, depicted in Figure 3, suggest that there is 

a maximum path length beyond which it can be safely assumed that actors are in completely 

different communities, with no opportunity to form ties with one another.  

[FIGURE 3 ABOUT HERE] 

Examining differences between these distributions enables us to develop a heuristic, 

based on path length, for whether two actors have an opportunity to form a tie. The 98th 

percentile of path lengths among actors with newly-formed ties (Group 0-1) is six, meaning that 

fewer than two percent of all actors who formed a tie started with greater than six degrees of 

separation. This suggests that dyads excluding from Group 0-0 all dyads where actors are 

separated by more than 6 degrees of separation narrows the universe of Group 0-0 dyads to 

those who plausibly had an opportunity to form a tie. 

 Table 3 summarizes the results obtained from fitting the logistic regression model 

(equation 1) after the exclusion of Group 0-0 dyads with path length seven or greater, and a 

random sampling of 20% of all remaining dyads from each group. As predicted (H1), we find 

strong negative coefficients on both concepts of taste differences. This indicates that as taste 

differences in the first time period increase, the probability of tie formation between the two 

time periods decreases. This effect is strongly significant (p < 0.001 in both models). 

 [TABLE 3 ABOUT HERE] 
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Homophily as aversion from those who are different 

Testing for the aversion aspect of homophily is more straight-forward, since it is not 

necessary to estimate the population of ties that are candidates for deletion—dyads in Groups 

1-0 and 1-1 all have an existing tie on the first time period, all of which are treated as 

candidates for deletion. Similar to the analysis reported above, the probability of tie deletion is 

estimated as a logistic function of attribute differences in the first time period, using dyads 

drawn from Groups 1-0 and 1-1 as the unit of analysis: 

𝑍 =
1

1+𝑒−(𝛽0+𝛽1 𝑡𝑎𝑠𝑡𝑒_𝑑𝑖𝑓𝑓 ), where     (2) 

 Z is the probability of tie deletion (that is, whether the dyad is a member of Group 1-0 

versus Group 1-1), 

 β0 and β1 are constant coefficients, and 

 Variable taste_diff is the taste difference as described above. 

This logistic regression model (2) is estimated using another random sample of 20% of 

all dyads to deal with the potential problem of interdependence among observations. Results 

from this logistic regression analysis are reported as Models 3 and 4 in Table 3. 

As with H1, these results lend strong support for the aversion hypothesis (H2). Note that 

the effect of both taste difference measures—Euclidean distance and Hamming distance—are 

both positive and significantly different from zero (p<0.001 in both models). This indicates that, 
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as distances increase, the probability of tie deletion also increases.3 This effect is also 

represented graphically in Figure 4. 

[FIGURE 4 ABOUT HERE] 

 

Results for Social Influence 

 The longitudinal nature of this dataset also allows us to directly test the social influence 

hypothesis (H3), that individuals tend to adopt the attributes of those they are connected to in a 

social network. In the context of this study, we examine whether changes in tastes between the 

two time periods can be explained by social contacts in the first time period. 

 The approach used here is to view shifts in each user’s tastes between the two time 

periods as a function of two factors: 1) shifts in the average tastes of the individual that the 

user is connected to (which we refer to as the user’s local center of mass), and 2) global shifts in 

the average tastes of all users (which refer to as the system’s global center of mass). More 

formally, for a single taste element T, a particular user’s change in tastes is modeled as follows: 

𝑇2 − 𝑇1 = 𝑎(𝐿2(𝑇) − 𝐿1(𝑇)) + 𝑏(𝐺2(𝑇) − 𝐺1(𝑇)) + 𝑒, where  (3) 

 T1 and T2 are the user’s tastes during the first and second time periods, 

 L1(T) and L2(T) are the user’s local centers of mass at the first and second time periods 

for taste element T (that is, the average taste T of individuals the user is connected to in 

a given time period), 

                                                           
3
 The models including Hamming distance allows for a slightly easier interpretation, since coefficients in these 

models tell us how dissimilarity in each additional taste dimension will change the probability of tie formation or 
deletion. 
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 G1(T) and G2(T) are the global centers of mass for taste T in the first and second time 

periods, 

 a and b are constant coefficients ranging from 0 to 1, inclusive, and 

 e is an error term capturing motivations for change not accounted for in the other 

terms. 

According to this model, we assume that a user’s shift in tastes will follow some 

constant fraction of the shift in the global center of mass (that is, users will “follow” global 

trends to some degree), and at the same time users will also follow trends within their local 

network neighborhood. The constant coefficients a and b are weights that indicate the degree 

to which a user is influenced by these global and local trends, where a zero value of a or b 

indicates that users are not at all influenced by shifts in local or global tastes, respectively, and 

a value of one indicates that users are strongly influenced by shifts in these tastes. Finally, the 

error term, e, captures a user’s individual propensities for changing tastes, that is, factors other 

than one’s social environment as measured by the L and G variables. 

 Since the model above (3) expresses changes in user tastes between the two time 

periods as a linear combination of observed local and global shifts in tastes, the coefficients a 

and b may be estimated using a standard ordinary least squares (OLS) regression. Table 4 

reports the results of seventeen regression models, one for each of the measured user tastes. 

While the goodness of fit varies greatly across tastes, the estimated weights on local and global 

shifts in tastes (a and b, respectively) are significantly different from zero in all models (p < 

0.001). This suggests that the tastes of users are indeed influenced by their social environment. 

[TABLE 4 ABOUT HERE] 
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 As noted above, other aspects of the network may exercise an influence over these 

processes of social influence; that is, as a function of their local network, some users may be 

more or less susceptible to social influences. One such influence is the degree of nodes—it 

turns out that users with more contacts also tend to experience smaller shifts in their own 

tastes. This pattern is depicted graphically in Figure 5, which shows for a given taste the 

distribution of users’ change in tastes between the two time periods (vertical axis) against the 

degree of the user in the first time period (horizontal axis). Shifts in four tastes are shown here 

for illustrative purposes; however, this decreasing trend is seen across all measured tastes. This 

suggests that as individuals are exposed to greater numbers of social contacts, they tend to be 

less influenced by their social environment. 

[FIGURE 5 ABOUT HERE] 

 

Conclusion 

This paper contributes to our understanding of social learning and network evolution 

through the analysis of a large mobile contact network, coupled with data on the tastes of 

individuals, over two points in time. The unique structure of these data allow for an 

examination of how tastes influence the formation of new contacts (attraction homophily, H1) 

and the deletion of contacts (aversion homophily, H2), and how contacts in turn influence the 

tastes of actors in the network (social influence, H3). 

We find evidence in support of all three hypotheses. In terms of attraction homophily, 

the overall similarity between actors in terms of their tastes is a significant predictor that they 

will form a tie, controlling for the degree of separation between these actors in the network. 
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Similarly, aversion homophily is seen in that among connected actors, those that terminate ties 

tend to be more different in terms of their tastes than those connected actors who do not cut 

their ties. Finally, there is strong evidence also that tastes diffuse through existing links—that is, 

that shifting individual tastes do tend to follow changes in the average tastes of one’s network 

contacts. Interestingly, shifts in global trends appear to explain far more of the variation in 

individual tastes than shifts in the tastes of one’s direct network contacts. This finding is 

contrary to expectation for network scholars who argue that people are more strongly 

influenced by those they are socially close to. It seems that trends in local neighborhoods do 

matter—that is, social influence does shape tastes—however these data suggests that people 

follow trends more than they follow their friends. 

This paper builds on a large and vibrant literature on network evolution. This research 

shows that it is useful for scholars—both in theoretical models as well as in empirical work—to 

make a distinction between the rationales for tie formation and tie deletion. While in this 

dataset we find similar strengths of taste similarity on the formation and deletion of ties, in 

other contexts homophily may not operate in both directions. It may be possible that actors will 

exhibit a small preference for homophily in the creation of new ties networks, but the 

maintenance of ties with dissimilar alters may be very costly. 

We also show that social influence is a complex phenomenon that is unlikely to reduce 

to a simple process of averaging across the tastes (or other attributes) of one’s network 

neighbors. The effect of social influence differs greatly depending on the attribute in question. 

In the case of tastes, some attributes exhibit relatively low levels of social influence while 

others are quite prone to change as a result of local and global shifts. Social influence is also 
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mediated by other factors such as degree; those who have relatively few connections tend to 

be, on average, much more strongly influenced by their local network neighborhood.  

Finally, this research illustrates the potential of working with large datasets on contacts 

and mobile device usage. The strength of the homophily and influence effects seen in this 

research suggest that we are, indeed, examining a dataset that lend insights into other types of 

social networks—for example, networks involving actual physical interactions between people, 

who vary their worldviews and behaviors based on those they interact with socially.  

At the same time, it is important in future work to explicitly examine the degree to 

which datasets such as these are appropriate laboratories to test hypotheses of social learning 

and network evolution. This dataset allows for an examination of how the tastes of mobile 

device users influence the tastes of any particular user. However, this is probably just one part 

of the true social environment that explains tastes. Similarly, in the future it will be important 

to examine a more broad and fine-grained set of attributes that both determine and are 

influenced by network structure. As defined here, tastes are one useful measure of human 

behavior, but future work should aim to extend this to attribute variables that help us to 

further understand salient environmental, economic, and political problems—such as 

understandings of scientific information, political ideology, or norms of cooperative behavior. 

 Overall, in this research we contribute to theories of social learning by showing how 

learning is at least partly conditional on social network structures, which both constrain and 

enable the exposure of individual agents to new information, technologies, and behaviors. As 

we show in this paper, an essential part of a theory of learning will be robust models of how 



23 
 

network structures co-evolve with learned attributes, with a particular emphasis on the roles of 

homophily—both aversion and attraction homophily—and social influence. 
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Figure 1: A framework for analysis 
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Table 1: Descriptive statistics for two network snapshots 

 October 19th November 22nd 

Total number of nodes 3.9 million 4.3 million 

Total number of edges 6.1 million 6.9 million 

Average node degree 3.15 3.15 

Size of connected component 3.3 million 
(85%) 

3.7 million 
(85%) 

Total number of components 145,000 172,000 

 
  



30 
 

 

 
Figure 2: Cumulative degree distributions of two network snapshots 
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Table 2: Four categories of dyads 
 

   
In the second time period… 

  ...tie exists …tie does not exist 

In the first 
time period... 

…tie exists Stable tie 
(Group 1-1) 

Deleted tie 
(Group 1-0) 

…tie does 
not exist 

Newly formed tie 
(Group 0-1) 

Stable non-tie 
(Group 0-0) 
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Figure 3: Distributions of geodesic path lengths in first 
time period (October 19th) between disconnected 
actors who later formed a tie (orange) versus those 
who did not form a tie (white) 
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Table 3: The effect of attribute differences on tie formation and tie 
deletion 
 

  
Model 1 
(DV=tie 

formation) 

 
Model 2 
(DV=tie 

formation) 

 
Model 3 
(DV=tie 

deletion) 

 
Model 4 
(DV= tie 
deletion) 

Euclidean 
distance 

-0.135 
(0.041) 

 0.176 
(0.032) 

 

Hamming 
distance 

 -0.053 
(0.016) 

 0.072 
(0.013) 

Path length in 
first time period 

-1.056 
(0.035) 

-1.056 
(0.035) 

  

Constant 
4.048 

(0.164) 
3.998 

(0.156) 
-0.873 
(0.085) 

-0.820 
(0.078) 

 
 

    

N 3,540 3,540 3,328 3,328 

pseudo-R2 0.2767 0.2766 0.0070 0.0068 
 
Note: Standard errors reported in parenthesis. 
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Figure 4: Effect of attribute differences on the probability of tie 
deletion 
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Table 4: Estimated influences of global and local centers of mass on user 
tastes 

Model 
(taste element) 

Effect of change in global 
center of mass (b) 

Effect of change in local 
center of mass (a) R2 

lifestyle 
0.223 

(0.012) 
0.768 

(0.002) 
0.58 

finance 
0.897 

(0.044) 
0.077 

(0.001) 
0.06 

business 
0.870 

(0.037) 
0.070 

(0.001) 
0.05 

entertainment 
0.869 

(0.032) 
0.079 

(0.001) 
0.06 

ringtones 
0.955 

(0.258) 
0.019 

(0.000) 
0.02 

photo 
0.860 

(0.031) 
0.085 

(0.001) 
0.06 

news 
0.908 

(0.041) 
0.051 

(0.001) 
0.04 

utilities 
0.792 

(0.023) 
0.154 

(0.001) 
0.12 

health 
0.904 

(0.046) 
0.073 

(0.001) 
0.06 

sports 
0.903 

(0.051) 
0.050 

(0.001) 
0.04 

themes 
0.976 

(0.068) 
0.017 

(0.000) 
0.01 

books 
0.890 

(0.061) 
0.060 

(0.001) 
0.04 

games 
0.908 

(0.032) 
0.060 

(0.001) 
0.05 

social 
0.445 

(0.014) 
0.545 

(0.002) 
0.43 

productivity 
0.664 

(0.022) 
0.287 

(0.001) 
0.22 

education 
0.877 

(0.041) 
0.073 

(0.001) 
0.05 

navigation 
0.785 

(0.026) 
0.159 

(0.001) 
0.12 

 
Note: Standard errors are reported in parenthesis. 
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Figure 5: Distribution of changes in user tastes as a 
function of number of social contacts 
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Note: Boxplots represent distributions of individual user shifts in 
tastes between October 19th, 2013 and November 22nd, 2013. 
Distributions are conditional on degree of user on October 19th. 
Boxplots exclude outliers. 
 

 
 


