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Abstract

Perfect vertex elimination schemes are part of the characterizations for several classes
of graphs, including chordal and cop-win. Partial elimination schemes reduce a graph to
an important subgraph, for example, k-cores and robber-win graphs. We are interested
in those partial elimination schemes, in which once a vertex can be eliminated it is always
ready to be eliminated. In such a scheme, the sets of subsets of eliminated vertices, when
ordered by inclusion, form an upper locally distributed lattice. We also consider the
cop-win orderings having this property, the lattices obtained from the process of cleaning
graphs, and raise the following question: which graphs are associated with distributive
lattices?
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1 Introduction

Elimination schemes occur in a variety of contexts in graph theory. Consider the following
examples.

• A chordal graph is characterized by being able to successively remove a vertex x whose
closed neighbourhood N [x] is a complete graph. Such a vertex x is called simplicial and
the ordering is also called simplicial. See [4] for many references to this problem.

• The k-core of a graph (or hypergraph) is the largest subgraph of minimum degree at
least k. The k-core can be found by the vertex deletion algorithm that repeatedly deletes
vertices with degree less then k. This algorithm always terminates with the k-core of
the graph, which is possibly empty; see [20] for example.
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• In corner elimination, a vertex x can be eliminated if there is a vertex y such that
N [x] ⊆ N [y]. A vertex x can be eliminated by domination if its open neighbourhood,
N(x) is contained in the open neighbourhood of another vertex y, i.e., N(x) ⊆ N(y).
A graph is cop-win [17] if it can be reduced to a single vertex by eliminating corners;
it is tandem-win [6] if it can be reduced by a domination ordering. In both cases, if
the graph is not eliminated then this is the subgraph in which the robber looks for a
winning strategy.

• In cleaning a graph [16], a vertex v can be eliminated if it has at least as many brushes
as incident dirty edges; when eliminated, it passes a brush from v along each incident
dirty edge that becomes clean. The question is: what is the fewest number of brushes
required?

In [4], all the orderings are perfect, that is, all the vertices are eliminated. Our results
cover perfect as well as partial elimination schemes. Informally, we consider partial elimination
schemes in which once a vertex is ready to be eliminated it stays in that state regardless of
which other vertices are eliminated. Formally, fix a graph G, with n vertices, and a property
P . Let A = {v1, v2, . . . , vm} ⊆ V (G), we set GA

0 to be G and, for i ≥ 1, GA
i to be the

induced subgraph on V (G)−{v1, v2, . . . , vi}. A vertex of G will be called primed if it satisfies
property P . The set A = {v1, v2, . . . , vm} is a P -elimination scheme if vi is primed in GA

i−1 for
1 ≤ i ≤ m; it is a P -strong-elimination ordering, Pse-ordering for short, if whenever x 6= vi
and x is primed in GA

i−1 then it is primed in GA
i again for 1 ≤ i ≤ m. Note that A need not

include all the vertices of G. Finally, G is a P -strong-elimination graph if every P -elimination
scheme is also a P -strong-elimination ordering.

Given a graph G, property P , and a Pse-order I, there is an associated subset CI of
eliminated vertices which we will refer to as a configuration. Configuration CI is reachable
from configuration CJ if the Pse-order J can be extended to I; in symbols, J → I. Given G
and P , let Con(G,P ) = {CI : I is a Pse-ordering}. Note that two different orderings I and
J could have CI = CJ .

Recall that a lattice is a partial order in which every pair of elements have a least upper
bound and a greatest lower bound. A finite lattice in which every element has a unique
representation as the meet of meet-irreducibles (defined in Section 2) is called upper locally
distributive (ULD) lattice. Caspard showed the following result.

Theorem 1.1. [5] A lattice is upper locally distributive if and only if the interval between
an element and the join of its upper covers forms a boolean lattice (i.e. a complemented
distributive lattice).

In the next section, our main result, Theorem 2.5, shows that for a Pse-ordering P , the set
Con(G,P ) ordered by inclusion forms an upper-locally distributive lattice. In Section 3, we
show that for all graphs both the processes of constructing a k-core and for cleaning a graph
give Pse-orderings. In Section 3.1, we give sufficient conditions on a graph so that the cop-
win dismantling procedure is a Pse-ordering. In each context, we raise the question: which
graphs are associated with distributive lattices? and which upper-locally distributive lattices
are associated with the context?

Upper distributive lattices also occur in chip-firing [7, 10, 12, 13, 14, 18]. Indeed, the
similarities between cleaning a graph and chip-firing was the original motivation to this work.
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2 Pse-orderings form an Upper Locally Distributive Lattice

Let I and J be Pse-orders both on subsets of V (G). Define (I, J) to be the order I followed
by the elements of J − I preserving the order in J.

Lemma 2.1. Given graph G and property P , let I and J be Pse-orders. The ordering (I, J)
is a Pse-ordering.

Proof. Consider the orderings I = 〈a1, a2, . . . , ai〉 and J = 〈b1, b2, . . . , bj〉. Let (I, J) =
〈a1, a2, . . . , ai, c1, c2, . . . , ck〉. Clearly, ar can be eliminated once a1, a2, . . . , ar−1 have been
eliminated. Consider cr = bs ∈ J − I and suppose that a1, a2, . . . , ai, c1, c2, . . . , cr−1 have
been eliminated. Since {b1, b2, . . . , bs−1} ⊆ {a1, a2, . . . , ai, c1, c2, . . . , cr−1}, it follows that
b1, b2, . . . , bs−1 have been eliminated, which is a sufficient condition for bs = cr to be ready to
be eliminated.

Lemma 2.2. Given G and property P , let I, J be Pse-orderings. Then I → J if and only if
CI ⊆ CJ .

Proof. That I → J implies CI ⊆ CJ follows immediately from the definition of the process.
Suppose CI ⊆ CJ . By Lemma 2.1, (I, J) is also a Pse-ordering that eliminates CJ . More-

over, it follows immediately from the definition of the Pse-ordering (I, J) that when (I, J) is
used, configuration CI is reached first before the process arrives at configuration CJ . As a
result, I → J .

We now show that the set Con(G,P ) with ⊆ together form an upper locally distributive
lattice. First, we need to show that it forms a partially ordered set. Let GP = (Con(G,P ),⊆).

Theorem 2.3. Given G and property P , the relation GP is a partially ordered set.

Proof. Since I → J is equivalent to CI ⊆ CJ , GP is equivalent to a set of subsets of V (G)
ordered by inclusion and hence is a partially ordered set.

There is a problem when dealing with a subset that may have come from any number of
orderings: going in the reverse direction intuitively might make sense, but it is not usually well
defined. To avoid that in our next definition, we set V (G) = {v1, v2, . . . , vn} and whenever
there is a choice of primed vertices, we automatically choose the vertex with lower index.
The common configuration, C〈I,J〉, of I and J is obtained by the following procedure: let

C0 ⊆ CI ∩ CJ be all the vertices with property P in G and C0 be the sequence formed by
taking the vertices in the order of their indices; and recursively Cj ⊆ (CI ∩CJ)−

⋃j−1
i=0 Ci be

all the vertices with property P in G−
⋃j−1

i=0 Ci. Form the sequence Cj by adding the vertices
of Cj in order of their indices to Cj−1. Continue until there are no more primed vertices. This
produces a Pse-ordering (again biased by the original ordering of V (G)) which we will denote
by 〈I, J〉.

Given G and some property P , take CI , CJ ∈ Con(G,P ). Let CI∨CJ be the configuration
CI ∪ CJ . Let CI ∧ CJ = C〈I,J〉 be the configuration obtained from 〈I, J〉. In the next result,
we will show that A∨B and A∧B are in fact the least upper and the greatest lower bounds of
subsets A and B, often called the join and the meet respectively, proving that GP is a lattice.
Note that the meet does not correspond to the intersection of sets. For example, in the path
P3 = (a, b, c) where property P is ‘a vertex is simplicial’, {a, b} and {b, c} are configurations
but {b} is not.
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Theorem 2.4. Given G and some property P , the partially ordered set GP is a lattice.

Proof. Take CI , CJ ∈ GP . As both sequences I and J are Pse-orderings, by Lemma 2.1,
K = (I, J) is a Pse-ordering. Moreover, this Pse-ordering results in the set CK = CI ∪ CJ ,
hence, CK is an upper bound of CI and CJ . It remains to show that it is the least one. If
CI ⊆ CK′ and CJ ⊆ CK′ then it follows that CK = CI ∪CJ ⊆ CK′ so K → K ′ and hence CK

is the join of CI and CJ in the partial order.
It is a basic fact of lattice theory that a finite partially ordered set with a bottom element

and a join operation is a lattice. However, since it is of independent interest, we give the meet
operation explicitly.

By construction, C〈I,J〉 ⊆ CI ∩CJ so C〈I,J〉 ⊆ CI and C〈I,J〉 ⊆ CJ . Hence C〈I,J〉 is a lower
bound of CI and CJ , and it remains to show that it is the greatest one. If CK 6= C〈I,J〉 is a
lower bound of CI and CJ then C〈I,J〉 ∨ CK is also a lower bound, so we may assume that
C〈I,J〉 ⊆ CK . In eliminating the vertices of CK , we may eliminate the vertices of C〈I,J〉 first.
For a contradiction, suppose that x is the first vertex of CK −C〈I,J〉 that is eliminated. Now
x 6∈ CI ∩ CJ else it would be in 〈I, J〉. Therefore either x ∈ CI − CJ or x ∈ CJ − CI . In the
first case, C〈I,J〉 ∪ {x} 6⊆ CJ and in the second one C〈I,J〉 ∪ {x} 6⊆ CI . This is a contradiction,
since C〈I,J〉 ∪ {x} ⊆ CK and K is a lower bound of I and J . Since x does not exist, it follows
that 〈I, J〉 = H and so C〈I,J〉 is the greatest lower bound of CI and CJ .

In general, we will refer to GP as a Pse-lattice. Since we will now be referring to lattices
and partially ordered sets we will use the more conventional ≤.

Let L be a lattice. Then a ∈ L is an upper cover of b ∈ L if a < b and there is no element
c where a < c < b; a is meet-irreducible if a = b∧ c implies a = b or a = c; a is join-irreducible
if a = b ∨ c implies a = b or a = c. Note that the meet-irreducibles of L correspond to the
elements with only one upper cover; join-irreducibles to those having one lower cover. The
interval [a, b] in a lattice is [a, b] = {x : a ≤ x ≤ b}.

Chip-firing lattices are upper locally distributive (see [7, 10, 12, 13, 14, 18]) and we now
prove that are Pse-lattices are also upper locally distributive (abbreviated ULD).

Theorem 2.5. Given a graph G and a property P , then GP is upper locally distributive.

Proof. Let A ∈ GP and set U = {u1, u2, . . . , um} be the set of primed vertices in A. Let
Ai = A ∪ {ui} for i ∈ {1, 2, . . . ,m}. These are the upper covers of A.

Let 1A be the join of the upper covers of A and let I be the interval between [A, 1A]. Since
each upper cover of A is obtained by eliminating a single element of U , we get that 1A = A∪U .
Also recall that every element of U stays primed regardless of how many other elements of U
have been eliminated. It follows, therefore, that for every subset I of {1, 2, . . . ,m} we have
∨i∈IAi ∈ I and if J,K ⊆ {1, 2, . . . ,m} and J 6= K then ∨j∈JAj 6= ∨k∈KAk.

Suppose M ∈ I. Then M ⊆ 1A and hence M = A ∪ U ′ where U ′ ⊆ U and therefore
M = ∨ui∈U ′Ai. Suppose now that M,N ∈ I so that M = ∨i∈WAi and N = ∨i∈Y Ai, where
W,Y ⊆ {1, 2, . . . ,m}. Certainly, M ∨ N = M ∪ N and A ⊆ M ∪ N ⊆ 1A thus M ∨ N ∈ I.
Consider M ∧N . Now M ∩N = A∪{ui : i ∈W ∩Y } and each vertex of {ui : i ∈W ∩Y } ⊆ U
is ready to be eliminated in configuration A. Hence, M ∧N = M ∩N and so M ∧N ∈ I. This
proves that the interval I is isomorphic to the lattice of all subsets of U ordered by inclusion,
i.e., a boolean lattice. From Theorem 1.1 it follows that GP is an upper locally distributive
lattice.
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3 Examples of Pse Orderings

In this section, we provide a few simple Pse-lattices and analyze two slightly more sophisticated
ones. In Section 3.1 we consider the reduction to robber-win graphs in the usual cops-and-
robber game as well as in the tandem-win version. In Section 3.2, we consider the lattices
obtained from the process of cleaning a graph.

A vertex is called simplicial if its neighbourhood is a clique. Chordal graphs have a
simplicial elimination scheme—a vertex is primed when its neighbourhood is a clique. In
general, if the neighbourhood of x, denoted N(x), in G is a clique then in H = G − {z},
z 6= x, N(x) − {z} is also a clique. Thus, a simplicial elimination scheme is a Pse-order.
Recall that we do not insist on an elimination scheme that eliminates all the vertices. In
particular, if a graph G has no simplicial vertex then GP consists of the empty set.

Theorem 3.1. Let G be a graph and P the property that ‘N(x) is a clique’. Then GP is a
ULD lattice.

k-cores: For a given k, the property P is that deg(x) < k. Once a vertex has degree less
than k, eliminating other vertices can never increase its degree, therefore this is a strong-
elimination property.

Theorem 3.2. Let G be a graph, and property P is ‘deg(x) < k’. Then (Con(G,P ),≤) is a
ULD lattice.

An acyclic directed graph G can be regarded as a prerequisite structure, such as scheduling.
Taking the transitive closure of G adds no extra restrictions on G and results in a partial order.
Hence, we will assume that G is a poset. A topological sort of G is formed by taking some
vertex, a, with no incoming edges—usually called a source of the graph or a minimal element
in the poset—removing this from G and continuing in G − {a}. Note that once a vertex,
x, is a minimal element, removing other vertices can never change this. Therefore, with the
property P being ‘vertex x is a minimal element,’ then a topological sort is a Pse-ordering.
We will need Birkhoff’s theorem which states:

Theorem 3.3. (Birkhoff) [3] A lattice is distributive if and only if it is isomorphic to the
lattice of the ideals of the order induced on its join-irreducibles.

Theorem 3.4. Let G be an acyclic directed graph and Property P is ‘x is a minimal element’
then GP is distributive.

Proof. In G, an order ideal is a set C of vertices with the property that if x ∈ C and y < x
then y ∈ C. If C ∈ GP then C is an order ideal and any order ideal is in GP . Thus GP is the
set of order ideals of G and it follows from Birkhoff’s theorem that GP is distributive.

3.1 Copwin Graphs and Domination Elimination schemes

The game of Cops-and-Robber was introduced in [17, 21], see also [2]. The characterization of
graphs that require just one cop, called copwin, is via an elimination scheme. Vertex x ∈ V (G)
is primed if either V (G) = {x} or there is a vertex y 6= x such that N [x] ⊆ N [y]. Informally,
if x is primed, then in the context of Cops-and-Robber, it is called a corner : where the robber
can be trapped by the cop being located at y (which we will call an apex ). A graph G is
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cop-win if there is an elimination scheme that reduces G to a single vertex. We artificially
add that a if G is a singleton then it can be eliminated; it is a ‘degenerate’ corner. This does
not apply to an isolated vertex in a larger graph. Now, a graph is cop-win if and only if it
has a perfect elimination scheme via corners.

In a domination elimination scheme, vertex x is primed if there is a y 6= x such that
N(x) ⊆ N(y); we say N(x) is dominated. The difference between the two schemes is that the
domination elimination scheme does not require that x is adjacent to y.

If we again add that if G is a singleton then it can be eliminated then in [6], a sufficient,
but not necessary, condition for a tandem pair of cops to win is the existence of a perfect
domination elimination scheme.

Neither of these elimination schemes are Pse-orders. For example, consider graph D in
Figure 1.

Figure 1: Graph D

Under both elimination schemes, all vertices are primed, but if a is removed then c is no
longer primed. Note that the copwin scheme requires the edge ac, but C4 is a counter example
for the domination elimination scheme. Eliminating the graph in Figure 1 gives a sufficient
condition.

Theorem 3.5. Let G be a connected graph with no induced subgraph isomorphic to D and
let P be the property of ‘x is a corner’. The partially ordered set (Con(G,P ),≤) is a ULD
lattice.

Proof. Let G be a connected graph with no induced subgraph isomorphic to D. We need only
prove that any elimination ordering is a Pse-order. In order to do that, we prove the following
two claims.

Claim 1: If x, y are corners in G, then x is a corner in G− {y}.
If there is an apex z, z 6∼ y, for x then z is still an apex for x in G− {y}. Therefore, we

may assume that y is the only apex of x. However, if z 6= x is an apex for y then it is also an
apex for x. Hence x is the only apex for y and consequently N(x)− {y} = N(y)− {x}. Call
this set N and note that N = N(x)∩N(y). If N = ∅ and since G is connected it follows that
G is isomorphic to K2 in which case x is a ‘degenerate’ corner in G − {y}. If N is a clique
then any vertex of N is an apex for x contrary to our assumption. If w, v ∈ V (N) and w 6∼ v
then the subgraph induced by {x, y, v, w} is isomorphic to D, again a contradiction. Hence,
x is a corner of G− {y}.

Claim 2: If x is a corner in G and G is connected and D-free, then G − {x} is connected
and D-free.
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The property that G− {x} is D-free clearly holds, since an edge is eliminated only when
an endpoint is eliminated. Since G is connected, there is a path from x to every vertex of G.
Let y be an apex for x in G. Since N [x] ⊆ N [y], there is a path from y to every vertex of
G− {x} and so G− {x} is connected. The proof of the claim is complete.

The theorem follows immediately now since once x is a corner it remains a corner until
it is eliminated and thus for connected, D-free graphs, the corner elimination scheme is a
Pse-order.

In fact, the proof of Theorem 3.5 shows that the Pse-orders are a subset of simplicial
orders. There is a similar theorem for domination elimination schemes. The proof is also
similar to that of Theorem 3.5 so we leave it to the reader.

Theorem 3.6. Let G be a connected graph with no induced subgraph isomorphic to D or to
C4, and let P the property that ‘N(x) is dominated’. Then (Con(G,P ),≤) is a ULD lattice.

Note that in both cases, the elimination of the last vertex is necessary else a perfect corner
elimination scheme would give rise to a partial order that is a UDL lattice minus V (G), the
top element. Also note that the assumption of connectedness is not necessary since otherwise
the ULD lattice would be the direct product of the lattices of the components. Unfortunately,
without connectedness we would have non-copwin graphs having a perfect elimination scheme
which is not desirable.

3.2 Cleaning Lattices

Imagine a network of pipes that must be periodically cleaned of a contaminant that regener-
ates, say algae. In cleaning such a network (see [1, 8, 9, 11, 15, 16, 19] for example), there is
an initial configuration of brushes on vertices; every vertex and edge is regarded as dirty. A
vertex is ‘ready to be cleaned’ if it has at least as many brushes as incident dirty edges. These
are our primed vertices. A primed vertex may clean whereupon it sends one brush along each
incident dirty edge which is now said to be clean: no brush traverses a clean edge. The vertex
is also deemed to be clean. Excess brushes remain on the clean vertex and take no further
part in the process. Figure 3.2 illustrates the cleaning process for a graph G where there are
initially 2 brushes at vertex a. The solid edges indicate dirty edges while the dotted edges
indicate clean edges. For example, the process starts with vertex a being cleaned, sending a
brush to each of vertices b, c. We note the number of brushes on the vertex and whether it
has been cleaned by the subscript f .

(a2, b0, c0, d0), (af0, b1, c1, d0), (af0, bf0, c2, d0), (af0, bf0, cf1, d1), (af0, bf0, cf1, df1).

For cleaning, a graph G comes with an initial distribution of brushes: every time a vertex
cleans it and incident edges are eliminated from the graph. Property P is that ‘x has at least
as many brushes as incident dirty edges’. Clearly, once a vertex is primed, it remains primed
until it is cleaned, therefore this is a strong-elimination property.

Theorem 3.7. Let G be a graph with an initial distribution of brushes Ω on G and property
P is that ‘x has at least as many brushes as incident dirty edges’. Then (Con(G,P ),≤) is a
ULD lattice.
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Figure 2: An example of the cleaning process for graph G.

4 Cleaning and Distributive Lattices

If a lattice is ULD and also ‘downward-locally-distributive’ then it would be distributive.
Figure 3, the lattice obtained from cleaning the path P3 = (a, b, c), shows that this is not
always true for cleaning lattices. However, in this section we show that for each distributive
lattice L, there is a graph G and an initial configuration Ω so that L is isomorphic to GP ,
although it is not always the case that the configuration Ω will clean all vertices of G.

Figure 3: Configurations for P3 beginning with a brush at each leaf.

In [16], there is a characterization of graphs and configurations with a unique Pse-ordering.
Such graphs and configurations would give rise to a lattice that was a single chain (i.e. every
pair of configurations are comparable).

Theorem 4.1. Let L be a distributive lattice. Then there is a graph G and an initial config-
uration Ω so that L is isomorphic to GP .

Proof. Let L be a distributive lattice and M(L) = {m1,m2, . . . ,mk} be the set of meet-
irreducibles of L. The meet-irreducibles inherit the order from L. We create a graph G with
V (G) = {m1,m2, . . . ,mk}∪{r1, r2, . . . , rk} and E(G) consists of the Hasse Diagram of M(L)
(on {m1,m2, . . . ,mk}); {r1, r2, . . . , rk} is a clique and mi is adjacent to r1, r2, . . . , rj where
j = max{0, d+(mi)−d−(mi)} where d−(mi) is the number of upper covers of mi in M(L) and
d+(mi) is the number of lower covers. Let J be the set of minimal elements in M(L). The
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original configuration will be w(x) = max{0, d−(x) − d+(x)} if x ∈ M(L) and 0 otherwise.
Any Pse-ordering must be a topological sort of M(L). That is, only the minimals of M(L)
can clean at the outset; after, by construction a vertex can clean if and only if all of its lower
covers, and consequently all of the vertices below it in M(L), have been cleaned. Thus a point
in a Pse-ordering corresponds to an order ideal of M(L). The Pse-orderings are ordered by
set inclusion. No vertex in {r1, r2, . . . , rk+1} can be cleaned since they have at most k brushes
but require k + 1 to clean.

To complete the proof, we invoke Birkhoff’s theorem (Theorem 3.3). We started with a
distributive lattice L, obtained a graph G and produced a distributive lattice L′ isomorphic
to the lattice of ideals of M(L). Therefore L is isomorphic to L′.

Not all distributive lattices are cleaning lattices of the cleaning of a whole graph, as shown
in the next example. The sets of clean vertices are indicated in Figure 4. In the following
examples, we use the notation x ∼ y to indicate that x and y are adjacent vertices.

Example 4.2. For a contradiction, suppose that there exists a graph G and an initial config-
uration Ω that cleans the whole graph and yields the lattice presented in Figure 4. The graph
G has 4 vertices. Vertices a and b are initially ready to be cleaned, but c, d are not. After
cleaning vertex b but not after cleaning vertex a, vertex c is ready to be cleaned, hence b ∼ c
and a 6∼ c. Vertex d is ready to be cleaned only after a and b have been cleaned, i.e., a ∼ d ∼ b
and now d has two brushes. Since d was not ready to be cleaned after only one of a and b are
cleaned, it must be adjacent to c, i.e., deg(d) = 3. Thus after both b and c have been cleaned d
will have two brushes and one dirty adjacent vertex (a) and thus should be able to be cleaned
contradicting the fact that it can be cleaned only after a.

Figure 4: A distributive lattice that is not the cleaning lattice of a whole graph.

The next example shows that not every ULD lattice is a cleaning lattice of a subgraph of
a simple graph.

Example 4.3. Consider the lattice in Figure 5. Similarly to the previous example, d can be
cleaned only after a and b, so a ∼ d ∼ b, or after b and c have been cleaned so b ∼ d ∼ c. In
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both cases, d has received two brushes and two incident edges have been cleaned and can now
be cleaned. However, after a and c have been cleaned the same situation arises but d is shown
as not able to be cleaned, a contradiction.

Figure 5: A UDL that is not the cleaning lattice.

This leaves us with several question concerning the other elimination schemes.

Question 4.4. Which graphs under simplicial-elimination give rise to distributive lattices?
And to each distributive lattice is there an associated graph?

What happens if we restrict to perfect elimination schemes?

Question 4.5. Which chordal graphs and cop-win graphs give rise to distributive lattices?
And to each distributive lattice is there an associated chordal and cop-win graph?

For chordal graphs, the subclass of interval graphs would be a candidate but the ‘sun’
graph gives a distributive lattice.
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