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Abstract. The structure of many real-world networks co-evolves with the attributes
of individual network nodes. Thus, in empirical settings it is often necessary to observe
link structures as well as nodal attributes; however, it is sometimes the case that link
structures are readily observed whereas nodal attributes are very difficult to measure.
This paper investigates whether it is possible to assume a model of how networks
co-evolve with nodal attributes, and then apply this model to infer unobserved nodal
attributes based on a known network structure. We find that it possible to do so in
the context of a previously-studied “rank” model of network structure, where nodal
attributes are represented by externally-determined ranks. In particular, we show that
node ranks may be reliably estimated by examining node degree in conjuction with
the average degree of first- and higher-order neighbors.

1. Introduction

Research on complex networks has allowed us to better describe and model the
interconnections amongst agents embedded within social, natural, and physical sys-
tems [8, 16, 21]. Despite advances in the rigorous modeling of self-organizing networks
(see, for example [3] and [4]), we are still in need of better models of how nodal at-
tributes both influence and coevolve with network structure. Such models are crucial
given the well-known role of nodal attributes in driving link structure. In the Web
graph, for instance, it has been posited that new linkages are formed with probability
proportional to node degree [2], however it is also likely that link formation is deter-
mined by the content of nodes—for example, through homophily processes linkages
may form with higher probability if the lexical content of two webpages are very similar
to one another (one possible application of a “spatial” preferential attachment model;
see [1, 10]). Models that explicitly account for the interplay between link structures and
nodal attributes are therefore relevant to research on the Web graph, but also apply
more broadly to the study of complex social networks [13].

In this paper, we investigate how models of complex networks may be used to reliably
guess nodal attributes based on observations of network structure alone. Given the
importance of nodal attributes in driving the dynamics of many real-world systems,
it is important to understand how we may estimate such variables when empirical
observations are difficult or impossible. For example, in some social networks (such as
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online social networks) it may be quite to observe interactions, but the actual prestige,
beliefs, or emotions of individuals within the network (which may partly determine or
be determined by structure) are not easily measured. This research illustrates how one
may a mathematical model of the coevolution of network structure and nodal attributes,
and then “reverse” this model develop reliable estimates of individual nodal attributes
based based on knowledge of the link structure only.

We illustrate this approach by using an existing model of network self-organization
propsed in [11], which in turn is a generalization of the model proposed in [14]. This
model fits well into the larger enterprise of modeling the co-evolution of networks and
nodal attributes, illustrated for example by [7, 11, 12, 14, 18, 19, 20]. In the model used
here, linkages are chosen based in part on nodes’ externally determined rank relative to
other nodes. Usage of this ranking scheme allows us to model attributes that change
stochastically as nodes enter and exit the system over time. In doing so, we build upon
prior work on ranking models [5, 11, 14], and suggest some new directions for future
research and applications of these models.

Our paper builds upon earlier research presented at the 2010 WAW conference [6].
As with the earlier paper, our central purpose is to illustrate the feasibility of reversing
mathematical models of network self-organization to estimate nodal attributes. We
investigate this core question in the context of ranking model by showing how one
can reliably infer the externally-determined rank of nodes based on observations of
node degree, and the average degree of first-order neighbors, the average degree of
second-order neighbors, and so on. While we originally illustrated the possibility of
inferring ranks based on observed degree through computational simulation only, this
paper demonstrates how one may rigorously infer node attributes based on structural
properties alone. We turn first to a discussion of the ranking model. We then consider
the problem of inferring ranks based on observations of node degree, and suggest some
areas for future research.

2. Model

In this section, we formally define a ranking model that reflects the attributes of nodes
within a hypothetical system. This model, called the Protean graph, was introduced
by  Luczak and Pra lat in [14] and then generalized to other ranking schemes by Janssen
and Pra lat in [11]. This model not only specifies the process by which attributes are
assigned to individual nodes, but also specifies the way in which these attributes shift
over time as nodes enter or exit the system. The model focuses on systems where the
total number of nodes is large but fixed (for example, if at each time step an node is
removed uniformly at random and immediately replaced by a new one). This type of
behavior is most consistent for well-established systems. Such stochastic systems are
also usually more challenging to model than, say, systems that are “young” or “middle-
aged” and hence growing over time, with nodes being added to the system at a faster
rate than they are removed.

The only modification in the model we study in this paper from the model studied
in [11] is that an initial rank is biased towards average values. However, the proofs
in [11] may be easily adjusted to the new ranking function used here. We omit proofs
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in this paper, stating the results only. The second minor difference is that in [11] the
model was defined as a graph process, whereas in this paper the model is split into two
parts. In the first part, we focus on the behavior of the rank function only, and in the
second part we introduce a graph process overlaid on the rank function. Separating
these two pieces of the model aids tractability and illustrates the independence of the
ranking and graph evolution processes.

All results presented here are asymptotic (that is, with n tending to infinity). We
say that an event holds asymptotically almost surely (aas), if it holds with probability
tending to one as n → ∞. We will sometimes use the stronger notion of wep in
favour of the more commonly used aas, since it simplifies some of our proofs. We say
that an event holds with extreme probability (wep), if it holds with probability at least
1 − exp(−Θ(log2 n)) as n → ∞. Thus, if we consider a polynomial number of events
that each holds wep, then wep all events hold. To combine this notion with asymptotic
notations such as O() and o(), we follow the conventions in [22].

2.1. A rank model of content. At each time t, we have exactly n objects (such as
nodes, who may represent agents in a social system) in a set Vt. Moreover, at each time
t, each object v ∈ Vt has rank rt(v) ∈ [n] (we use [n] to denote the set {1, 2, . . . , n}).
In order to obtain a proper ranking, the rank function rt : Vt → [n] is a bijection for all
t, so every object has a unique rank. In agreement with the common use of the word
“rank,” high rank refers to an object v for which rt(v) is small: the highest ranked
object is ranked number one, so has rank equal to 1; the lowest ranked object has rank
n. The initialization and update of the ranking is done according to a ranking scheme.
Various ranking schemes may be considered, and each might lead to different behaviors.
We first define the general model, and then list a few natural ranking schemes.

The model produces a sequence {(Vt, rt)}∞t=0 of sets Vt of n objects and ranking
functions rt, where t denotes time. To initialize the model, let V0 be any set of n
objects and let r0 be any initial rank function r0 : V0 → [n] which is consistent with the
ranking scheme. For t ≥ 1 we form (Vt, rt) from (Vt−1, rt−1) according to the following
rules:

(i) Choose uniformly at random an object ut ∈ Vt−1 and delete it.
(ii) Add a new object v. (We refer to the time step t in which object v was added

as time in which v was born.)
(iii) Assign an initial rank to v, update Vt and the ranking function rt : Vt → [n]

according to the ranking scheme.

One can define a number of different ranking schemes. In this paper, we focus on
the random initial rank scheme but the concept of the ranking by age will also be
important. Therefore, let us define the following two schemes. In order to distinguish
them, we will use at for the ranking by age and rt for the random initial rank.

(i) Ranking by age: The newly added object v obtains an initial rank n; its rank
decreases by one each time an object with smaller rank is removed. Formally,
for each v ∈ Vt−1 \ {ut}, at(v) = at−1(v) − γ, where γ = 1 if the rank of the
object deleted in step t is smaller than at−1(v), and 0 otherwise.
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(ii) Random initial rank: The object added at time t obtains an initial rank
Rt which is randomly chosen from [n] according to a prescribed distribution.
Ranks of all objects are adjusted accordingly. Formally, for each v ∈ Vt−1 \{ut},
rt(v) = rt−1(v) + δ − γ, where δ = 1 if rt−1(v) > Rt and 0 otherwise, and γ = 1
if where the rank of ut, the object deleted in step t, is smaller than rt−1(v), and
0 otherwise.

The coupon collector problem can give us insight into when all objects from the
initial set V0 will be deleted. Namely, let L = n(log n + ω(n)) where ω(n) is any
function tending to infinity with n. It is a well-known result that aas after L steps all
original objects will have been deleted.

The behavior of the age rank function at(v) was studied in [11].

Theorem 2.1 ([11]). Let at(v) be the age rank of object v at time t. Then wep, for
every t in the range 0 ≤ t ≤ tf = 1

2
n log n− 2n log log n, we have

at(v) = n exp(−t/n)(1 +O(log−1/2 n))

conditional upon the object v surviving until time tf .

We consider the case where the rank Ri of the object v added at time i is chosen
at random from [n]. The ranks of existing objects are adjusted accordingly. We make
the assumption that all initial ranks are chosen according to the same distribution. In
particular, we fix a continuous bijective function F : [0, 1]→ [0, 1], and for all integers
1 ≤ k ≤ n, we let

P(Ri ≤ k) = F

(
k

n

)
.

Thus, F represents the limit, for n going to infinity, of the cumulative distribution
functions of the variables Ri. To simplify the calculations while exploring a wide array
of possibilities for F , we assume F to be of the form

F (x) =

{
(2x)s/2 if 0 ≤ x ≤ 1/2

1− (2(1− x))s/2 if 1/2 < x ≤ 1
, where s ≥ 1.

In [11], a similar function was analyzed, namely F (x) = xs. We modify the function
slightly to obtain the behaviour we desire, namely, that average initial ranks occur more
often comparing to both extreme cases. As noted earlier, the proofs are easily adapted
to a new function.

This distribution has the advantage of allowing us to generalize our results to a
broad class of realistic initial distributions, ranging from situations where initial ranks
are distributed uniformly at random (when s = 1) to situations where agents enter
the system with a mediocre rank with higher probability (when s > 1; in this case the
highest probability rank is n/2). For example, see Figure 1 (a)-(b) to see the differences
in distributions across s = 1.0, s = 1.2, and s = 1.5. This functional form is reasonable
because it reflects the notion that many types of attributes follow a Normal distribution
in social systems; it tends to be unlikely that new agents will be “born” into the system
with a very low rank or a very high rank. If rank represents a type of dynamic fitness
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where agents compete for better ranks, entering agents are unlikely to have poor ranks
because then they may not be able to enter the system at all, and they are also unlikely
to enter with very good ranks, which are obtained only through a history of competition
in the system. Our functional form for F (x) reflects these possibilities.

(a) f(x) = P
(
x ≤ R/n ≤ x+ 1

100

)
(b) F (x) = P(R/n ≤ x).

Figure 1. Different distributions: s = 1.0, 1.2, 1.5.

The case s = 1 represents the uniform distribution of the Ri. The random variable
rt(v) is sharply concentrated around the initial rank Ri. The following result was
obtained in [11].

Lemma 2.2. Suppose that object v obtained an initial rank R ≥
√
n log2 n. Then, wep

rt(v) = R(1 +O(log−1/2 n))

to the end of its life.

In the case s > 1, the initial rank is biased towards the middle range ranks. The
rank function exhibits more complex behaviour in this case. Due to the symmetry of
the function F (x), without loss of generality we can assume that an initial rank is at
most n

2
. For ranks close to n

2
we clearly cannot predict the behaviour; the final rank

can be bigger or smaller than the initial rank. However, if the initial rank is separated
a bit from the middle rank, then we get a concentration.

Theorem 2.3. Suppose that an object v obtained an initial rank

r0(v) = R <
n

2
−
√
n log2 n

at time 0. Then wep, for every t in the range 0 ≤ t ≤ tf = 1
2
n log n − 2n log log n

conditional upon the object v surviving until time t,

rt(v) =
n

2

(((
2R

n

)1−s

− 1

)
e(s−1)t/n + 1

) 1
1−s

(1 +O(log−1/2 n)) (1)

provided

n

2

(((
2R

n

)1−s

− 1

)
e(s−1)t/n + 1

) 1
1−s

≥
√
n log2 n .
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Figure 2 (a),(b) presents the behaviour of different initial ranks for one specific value
of s = 1.2 as well as the behaviour of one specific initial rank R = 0.4n for different
values of s. Both rank and time are scaled by n.

(a) (b)
R = 0.1, 0.2, 0.3, 0.4 s = 1.2, 1.3, 1.4, 1.5

Figure 2. (a) The behaviour for different initial ranks (s = 1.2); (b)
The behaviour for different values of s (R = 0.4).

2.2. A rank model of network structure. In this subsection, we introduce the
network on top of the process discussed in previous sections. We need two more param-
eters, the attachment strength α ∈ (0, 1) and initial degree d ∈ N. This time, the model
produces a sequence {(Gt, rt)}∞t=0 of graphs Gt = (Vt, Et) on n vertices and ranking
functions rt : Vt → [n]. To initialize the model, let G0 be any graph on n vertices and
let r0 be any initial rank function r0 : V0 → [n] which is consistent with the ranking
scheme. For t ≥ 1 we form Gt from Gt−1 according to the following rules:

(i) Choose uniformly at random a vertex ut ∈ Vt−1 and delete it.
(ii) Add a new vertex vt together with d edges from vt to existing vertices chosen

randomly with weighted probabilities. The edges are added in d substeps. In
each substep, one edge is added, and the probability that vi is chosen as its
endpoint (the link probability), is proportional to rt−1(vi)

−α.
(iii) Assign an initial rank to vt, update Vt and the ranking function rt : Vt → [n]

according to the ranking scheme.

Similarly as before, we need to wait until time L when all vertices from the initial
graph G0 are deleted. At this point we reach the stationary distribution and our task
is to analyze the behaviour of a random graph GL. As we already mentioned, aas
L ≤ n(log n+ ω(n)) where ω(n) is any function tending to infinity with n.

In [11], it was shown that the uniform distribution for the initial rank (that is, the
specific case of s = 1 in our model) generates a power-law degree distribution with
exponent 1 + 1/α. One can adopt the proofs from [11] and show that this is also the
case for s > 1.

3. The discovery of nodal attributes through structure

While the Web graph is a useful platform for social networks research, the notion that
networks self-organize as a function of nodal attributes suggests the need to observe
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both structure as well as attributes of the nodes. While structures may be observed
directly, for example through hyperlink data, in many cases attributes (ranks) of agents
embedded in the network will be latent, unobserved variables. However, given a realistic
model of the process by which the network was generated, it is possible to infer likely
attributes of nodes. Here we begin with a heuristic argument for how nodal attributes
may be inferred from structure, followed by a more rigorous analysis of this problem.
The simulations presented in the paper were performed by using a program written in
C/C++, which may be found at [24].

3.1. A heuristic argument. We focus on time L when all vertices from the initial
graph G0 are deleted and the stationary distribution of the Markov chain is reached.
Consider the degree deg(v, L) of a given node. In this section, for simplicity let us focus
on ‘in-degree’ deg−(v, L) of v; that is, the number of neighbors of v that are older than
this vertex.

Note that for a vertex of high degree, the number of younger neighbors is negligible
comparing to the total degree. Moreover, despite of the fact that precise ages of vertices
are difficult to estimate in practice, given any edge uw it is known which vertex is older.
Thus, it makes sense to focus on in-degrees here.

Given the model outlined here, this degree (or in-degree) is a function of two factors
related to content: first, the length of time the node has been in the system, and second,
the initial rank assigned to the node when it was born into the network. Agents with
smaller initial ranks tend to have larger degrees, and older vertices also tend to have
larger degrees. Despite this correlation, the true relationship is quite complicated and
it would seem to be a lost cause to try to infer only one of these attributes (age or
rank) based on degree only. Figure 3 presents the relation between age and degree for
vertices of degree at least d/2 when networks are simulated according to the model
described here (n = 20, 000, d = 100, s = 1.5, and α = 0.8). Young vertices have small
degree (there is no time to accumulate neighbors, even if the initial rank is good) but
old vertices can still have small degree (because they have an unattractive rank).

 50

 100

 150

 200

 250

 300

 350

 400

 5

 10

 15

 20

(a) (b)

Figure 3. In-degree of v vs. the age rank of v (rescaled)

It turns out, however, that it becomes feasible to estimate these properties when
we broaden our focus from the degree of a single agent to properties of their second
neighborhood. Consider, for example, the following coefficient defined for a vertex v of
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non-zero degree that is proportional to the average degree of neighbors of v:

b2(v) =

∑
u∼v deg−(u)

deg−(v)
.

We put b2(v) = 0 if deg−(v) = 0. Clearly, old nodes have more old neighbors compared
to younger nodes. In other words, there is a correlation between the age of v and ages of
its neighbors. On the other hand, ranks are generated independently, so a distribution
of ranks of the neighbors of v should be similar to the distribution we use in the model.
The more neighbors v has, the stringer the correlation should be. Older vertices should
have larger b2(v) coefficients. See Figure 4(a) for the relation for vertices of degree at
least d/2.

This process can be carried even further to develop more finely-tuned estimates of
nodes’ unobserved attributes. We can take a look at third, fourth, and higher-order
neighborhoods by defining, recursively, for k ≥ 3

bk(v) =

∑
u∼v bk−1(u)

deg−(v)
,

provided that deg−(v) > 0; otherwise, bk(v) = 0. Again, in this case older vertices
should have larger coefficients and the error should decrease for, say, k = 3 and k = 4.
See Figure 4(b-c) for the results for b3(x) and b4(x).
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 0.1

 0.12
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(a) b2(x) (b) b3(x) (c) b4(x)

Figure 4. bk(x) vs. the age rank of v (rescaled)

Even upon casual examination, these scatterplots reveal a strong, nearly linear, re-
lationship between the average degree of neighbors (or higher-order bk coefficients) and
the age of node. Inferring rank rather than age may be accomplished in a similar way.

One way of viewing the increasing predictive power of these structural characteristics
is to perform an simple OLS linear regression with node age as the dependent variable
(the unobserved variable to be inferred in real-world applications) and degree or vari-
ous bk measures as possible independent variables. Using this approach, we find that
predicting age as a linear function of average degree becomes more precise as we move
to higher-order neighborhoods. For example, the R2 statistic when age is predicted
using degree only is 0.01, meaning that node degree explains only 1% of the variance in
actual node age. When the average degree of neighbor (b2) is used as an independent
variable, a linear model explains 35% of the variance on age (R2 = 0.35). R2 jumps to
0.77 for b3, and 0.83 for b4.
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These regression models provide at least heuristic evidence that one can achieve fairly
accurate predictions of age when one examines the degree of neighbors, and neighbors
of neighbors, and so forth. And while these linear models are suggestive of strong
patterns, the scatterplots also make it clear that the accuracy with which we can predict
age depends on the degree of the node. In particular, it seems that for low-degree nodes
age may be predicted with fair accuracy (in particular because, having just entered the
system, the number of relationships is a more direct result of initial rank) while the
relationship between bk and age for high-degree nodes is less precise.

It is also interesting to note that going from the second neighborhood to the third
neighborhood provides a smaller marginal benefit in terms of predictive power, as mea-
sured by the R2 values. While examination of the third neighborhood provides the
strongest inferences regarding age, of course there will be an upper bound on the depth
of neighborhoods that may be examined, plus there is likely to be an optimal neighbor-
hood to examine in terms of maximizing the predictive power of this method. These
issues, along with the strength of predictions that may be made for small- versus high-
degree agents, are discussed presently.

3.2. A rigorous approach to inferring nodal attributes. In order to obtain an
estimation for b2(v) (or bk(v), in general) we need to calculate the expected (in- and
total) degree of a vertex vi with age-rank aL(vi) = i = xn. In the proof of Theorem 5.6
(see the Appendix) we provide a useful estimation for the case where the expected
value is tending to infinity together with n. This was enough to prove that the degree
distribution follows a power-law, despite the fact that almost all vertices have a constant
expected degree. When the expected degree does not grow with n we cannot, of course,
expect the degree to be well concentrated around this value. However, when a large
number of vertices are considered, the average degree must be very close to what we
expect (by the Chernoff bound). Hence, if the degree of a vertex v (for which we aim
to have a well-estimated parameter) is large enough, then the value of b2(v) is well
concentrated (recall that b2(v) is, in fact, an average degree of a neighbor of v).

Suppose that the initial rank of vi is at most n/2 −
√
n log2 n. A more careful

estimation than the one used in Theorem 5.6 will give us an asymptotic value of the
expected degree of vi at time L. To get a better estimation for the number of initial
neighbors of vi that are not deleted at time L, we note that i−1 vertices are older than
vi, and hence we expect that vi has i−1

n−1d = (1 + o(1))xd older neighbors. Therefore,

E deg(vi, L) ∼ xd+ d(1− α)2α
∫ 1

x

(((
2R

n

)1−s

− 1

)(y
x

)s−1
+ 1

) −α
1−s

dy,

where the notation a ∼ b stands for a = (1 + o(1))b. In the formula for deg−(vi, L),
there is no xd term. The rest remains exactly the same.

Suppose now that the initial rank of vi is at least n/2 +
√
n log2 n. Due to the

symmetry of ranks, the rank of vi behaves exactly as n − rt(v∗i ) where v∗i is a vertex
that obtained the initial rank of n−R ≤ n/2−

√
n log2 n. Using Theorem 2.3 as before,
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we get that wep vi had the following rank when vj (j = yn) was born:

rtj(vi) ∼ n− n

2

(((
2(n−R)

n

)1−s

− 1

)(y
x

)s−1
+ 1

) 1
1−s

,

and so

E deg(vi, L) ∼ xd+d(1−α)

∫ 1

x

1− 1

2

(((
2(n−R)

n

)1−s

− 1

)(y
x

)s−1
+ 1

) 1
1−s
−α dy.

(Again, in the formula for deg−(vi, L) there is no xd term; the rest remains exactly the
same.) Since P(R ≤ zn) = F (z) = (2z)s/2 for z ≤ 1/2 and F (z) = 1 − F (1 − z), we
get immediately the following result. Let

g(x) = d(1− α)s2α+s−1
∫ 1/2

0

zs−1
∫ 1

x

((
(2z)1−s − 1

) (y
x

)s−1
+ 1

) −α
1−s

dydz

+ d(1− α)s2s−1
∫ 1/2

0

zs−1
∫ 1

x

(
1− 1

2

((
(2z)1−s − 1

) (y
x

)s−1
+ 1

) 1
1−s
)−α

dydz.

Theorem 3.1. Let 0 < α < 1, d ∈ N, i = i(n) ∈ [n], and let vi be the vertex whose age
rank at time L equals aL(vi) = i = xn. Then, the expected (in-)degree of vi is given by

E deg(vi, L) ∼ xd+ g(x)

E deg−(vi, L) ∼ g(x).

It appears that there is no closed formula for E deg(vi, L) and E deg−(vi, L) but it may
easily be estimated numerically. Figure 5(a-b) presents the expected degree for the set
of parameters used before (that is, d = 100, s = 1.5, and α = 0.8). The computations
presented in the paper were performed by using MapleTM [15]. The worksheets may be
found at [24].

(a) xd+ g(x) (E deg(vi, L)) (b) g(x) (E deg−(vi, L)) (c) b2(x) (asymptotic formula)

Figure 5. (a-b) Degree distribution for d = 100, s = 1.5, and α = 0.8 as
a function of age-rank (rescaled); (c) b2(x) vs. the age rank of v (rescaled)
for the following set of parameters: d = 100, s = 1.5, and α = 0.8
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Let us note that the behaviour we experience here is similar to the one for the
Protean graph [14] which may be viewed as the father of rank-based models. Old
vertices have very large expected value, since they have non-negligible probability of
getting small initial rank (which implies a good rank during the whole process and thus
large expected degree). Young vertices still have relatively large expected degree: most
of initial neighbors are sill in the network with high probability and so the expected
degree is close to d. In the worst position are middle-aged vertices, who are not old
enough to attract new neighbors but have also had many initial neighbors dissapear.
The expected in-degree is, of course, a decreasing function: the older the vertex, the
more time to accumulate a high degree.

Now, with Theorem 3.1 in hand we can easily derive a formula for b2(vi). Suppose
that deg−(vi, L) ≥ log4 n (or deg(vi, L) ≥ log4 n, since the out-degree is negligible) with
i = xn, and the initial rank of vi is R. It follows from (3) that

E

(∑
u∼vi

deg−(u, L)

)
∼ d(1− α)2α

((
2R

n

)1−s

− 1

) −α
1−s

x−α
∫ 1

x

yα · g(y)dy

Since the in-degree of vi is well concentrated around its expectation wep, we are ready
to state the last result of this paper. Figure 5(c) then presents the value of b2(vi) based
on the asymptotic formula.

Theorem 3.2. Let 0 < α < 1, d ∈ N, i = i(n) ∈ [n], and let vi be the vertex whose age
rank at time L equals aL(vi) = i = xn and deg−(vi, L) ≥ log4 n. Then, wep

b2(vi) ∼
E
(∑

u∼vi deg−(u, L)
)

E deg−(vi, L)
∼ 1 + α

1− x1+α

∫ 1

x

yα · g(y)dy.

4. Conclusion

This paper outlined a model of network self-organization that is driven by the ranks
of individual nodes, in terms of arbitrary attributes that are inherently individual phe-
nomenon. This model may be applied to a broad array of social systems, where nodal
attributes (and rank) may represent wealth, power, beliefs, skills, or any other node-
level variables that are likely to play an important role in networking behavior. This is
a stochastic model involving the formation and deletion of network ties, and adjustment
in ranks, as nodes dynamically enter and exit the system over time.

This research builds upon prior work in ranking and associated models of network self-
organization, and continues the enterprise of linking these network models to enhance
our understanding of the dynamics of real-world social systems. An important area for
future research is to carefully consider how network structure evolves as a function of
nodal attributes. Of course, this not only requires models of networks per se, but also
requires models of attributes of individuals and how these attributes are manifest in
network structure.

On the other hand, nodal attributes are often exceedingly difficult to observe and
can be a limiting factor on our ability to study complex, self-organizing networks.
However, given realistic models of how network structure is driven by these attributes,
it is possible to estimate individual attributes based on structure only. This research
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provides a platform for more research, emphasizing analytical proof, that exploits the
potential “reversibility” of mathematical models to infer latent, unobserved variables
that are crucial to the further development of network science.
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5. Appendix

5.1. Introduction to the Differential Equations method. The general setting
that is used in the DEs method [23] is a sequence of random processes indexed by n
(which in our case is the number of objects in any set Vt). The aim is to find properties
of the random process in the limit as n→∞. The conclusion we aim for is that variables
defined on a random process are well concentrated, which informally means that with
high probability they are very close to certain deterministic functions. These functions
arise as the solution to a system of ordinary first-order differential equations. One of
the important features of this approach is that the computation of the approximate
behavior of processes is clearly separated from the proof that the approximation is
correct.

To show that the random variables in a process usually approximate the solution of
differential equations, we need to use large deviation inequalities. These inequalities are
often used to give an upper bound on the probability that a random variable deviates
very far from its expected value. In a typical situation with a random process, the aim
is to show that the random variable Yt of interest is sharply concentrated. In fact,

Yt − Y0 =
t∑
i=1

(Yi − Yi−1).

If the differences Yi−Yi−1 are independent, then the Chernoff bound is very useful (see
for example Theorem 2.8 [9]).

Theorem 5.1 ([9]). Let X be a random variable that can be expressed as a sum X =∑n
i=1Xi of independent random indicator variables where Xi ∈ Be(pi) with (possibly)

different pi = P(Xi = 1) = EXi. Then the following holds for t ≥ 0:

P(X ≥ EX + t) ≤ exp

(
− t2

2(EX + t/3)

)
,

P(X ≤ EX − t) ≤ exp

(
− t2

2EX

)
.

In particular, if ε ≤ 3/2, then

P(|X − EX| ≥ εEX) ≤ 2 exp

(
−ε

2EX
3

)
.

When the differences are not independent but there is a large degree of independence,
results can often be obtained by making use of analogous bound given for martingales.

Definition 5.2. A martingale is a sequence X0, X1, . . . of random variables defined
on the random process such that

E(Xn+1 | X0, X1, . . . , Xn) = Xn.

In most applications, the martingale satisfies the property that

E(Xn+1 | X0, X1, . . . , Xn) = E(Xn+1 | Xn) = Xn.
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As a simple example, consider the following “random walk.” Toss a coin n times.
Let Sn be the difference between the number of heads and the number of tails after n
tosses. Sn is a martingale. Indeed,

E(Sn+1 | Sn) = Sn +
1

2
· 1 +

1

2
· (−1) = Sn.

Clearly, the expected value of Sn is zero. Thus, it is natural to expect that Sn stays
relatively close to zero. The following well-known Hoeffding-Azuma inequality serves
as a tool to investigate this.

Lemma 5.3. Let X0, X1, . . . be a martingale. Suppose that there exist constants ck > 0
such that

|Xk −Xk−1| ≤ ck

for each k ≤ n. Then, for every t > 0,

P(Xn ≥ EXn + t) ≤ exp

(
− t2

2
∑n

k=1 c
2
k

)
,

P(Xn ≤ EXn − t) ≤ exp

(
− t2

2
∑n

k=1 c
2
k

)
.

This is often applied with t growing much faster than
√
n and the ck all small non-zero

integers. In the martingale discussed above ck = 1 for all k. Hence,

P(|Sn| ≥ α
√
n) ≤ 2 exp

(
(α
√
n)2

2n

)
= 2 exp

(
α2/2

)
,

which is arbitrarily small for α large enough.
Finally, let us mention that the Hoeffding-Azuma inequality can be generalized in

many ways: analogous inequality holds for supermartingales (E(Xn+1|Xn) ≤ Xn) as well
as submartingales (E(Xn+1|Xn) ≥ Xn). Our proofs use the supermartingale method of
Pittel et al. [17], as described in [23, Corollary 4.1]. We will use the following useful
lemma.

Lemma 5.4. Let G0, G1, . . . , GL be a random process and Xt a random variable deter-
mined by G0, G1, . . . , Gt, 0 ≤ t ≤ L. Suppose that for some real β and γ,

E(Xt −Xt−1 | G0, G1, . . . , Gt−1) < β

and

|Xt −Xt−1 − β| ≤ γ

for 1 ≤ t ≤ L. Then for all ε > 0,

P
(
For some t with 0 ≤ t ≤ L : Xt −X0 ≥ tβ + ε

)
≤ exp

(
− ε2

2Lγ2

)
.
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5.2. Proof of Theorem 2.3.

Proof. The conditional expected change in rt(v) in time step t+1, conditional on object
v surviving until time t+ 1 and that rt(v) ≤ n

2
, is given by:

E(rt+1(v)− rt(v) | Gt) = −rt(v)− 1

n− 1
+ 2s−1

(
rt(v)

n

)s
.

Defining a real function z(x) to model the behaviour of rxn(v)/n, this suggests the
differential equation

z′(x) = −z(x) + 2s−1z(x)s,

with the initial condition z(0) = R/n. The general solution is

z(x) =
1

2

(
Ce(s−1)x + 1

) 1
1−s , C ∈ R ,

and the particular solution is

z(x) =
1

2

(((
R

n

)1−s

− 1

)
e(s−1)x + 1

) 1
1−s

.

We need to transform rt(v) into something close to a martingale. Since the general
solution can be written in the form

log

((
1

2z(x)

)s−1
− 1

)
− (s− 1)x = C ∈ R,

we should consider the following real-valued function

H(r, t) = log

((
n

2rt

)s−1
− 1

)
− (s− 1)

t

n
(2)

We hope that a good concentration for H(r, t) implies a good behavior for rt(v).
Clearly, we cannot control the process when the rank of v drops below some small

value (say,
√
n log2 n). However, up to this point of the process we should expect good

concentration for these random variables. But how can we assume that the random
variable is above the threshold when we are about to investigate its shape? The follow-
ing concept, simple but very powerful, comes to the rescue. Define the stopping time
as follows:

T = min

{
t ≥ 0 : rt(v) <

1

2

√
n log2 n ∨ rt(v) >

n

2
− 1

2

√
n log2 n ∨ t = tf

}
.

A stopping time is any random variable T with values in {0, 1, . . . } ∪ {∞} for which it
can be determined whether T = t̂ for any time t̂ from knowledge of the process up to
and including time t̂. The name can be misleading, since a process does not stop when
it reaches a stopping time. The key observation is that if a supermartingale (Xi) is
stopped at a stopping time (that is, (Xi) becomes static for all time after the stopping
time), then the result is a supermartingale.

Let wt = (rt(v), t), and consider the sequence of random variables (H(wt) : 0 ≤
t ≤ tf ). Let us stress it again, H is chosen so that H(w) is close to a constant along
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every trajectory w of the differential equation. It is easy to check that the second-order
partial derivatives of H are O(r−2) = O(n−1 log−4 n) along the trajectory wt, provided
T > t. Therefore, with i ∧ T denoting min{i, T}, using the fact that the rank changes
by at most one in each step, we have

|H(w(t+1)∧T )−H(wt∧T )| = O(1/rt∧T (v)) = O(1/
√
n log2 n)

E(H(w(t+1)∧T )−H(wt∧T ) | Gt∧T ) = O(1/n log4 n).

Now we may apply Lemma 5.4 to the sequence (H(wt∧T ) : 0 ≤ t ≤ tf ), and sym-

metrically to (−H(wt∧T ) : 0 ≤ t ≤ tf ), with ε = 1/ log1/2 n, β = O(1/n log4 n), and
γt = O(1/

√
n log2 n) to show that wep

|H(wt∧T )−H(wt0)| = O(log−1/2 n).

As H(w0) = log((2R/n)1−s − 1), it follows from the definition of H that wep

rt(v) =
n

2

(
eH(w0)e(s−1)t/n + 1

) 1
1−s (1 +O(log−1/2 n))

=
n

2

(((
2R

n

)1−s

− 1

)
e(s−1)t/n + 1

) 1
1−s

(1 +O(log−1/2 n))

for every 0 ≤ t ≤ T .
To complete the proof we need to show that wep, T = tf . The events asserted

by (1) hold wep up until time T , as shown above. Thus, in particular, wep rT (v) >
(1 + o(1))

√
n log2 n and rT (v) < n/2 − (1 + o(1))

√
n log2 n, which implies that T = tf

wep. �

5.3. Power law for s > 1. Let Zk denote the number of vertices of degree k, and
Z≥k =

∑
l≥k Zl.

Theorem 5.5. Let 0 < α < 1 and d ∈ N, log4 n ≤ k ≤ nα/2 log−3α n. Then wep

Z≥k = (1 + o(1))

(
d(1− α)

k(1 + α)

)1/α

n.

The proof is a consequence of the following result.

Theorem 5.6. Let 0 < α < 1, d ∈ N, i = i(n) ∈ [n], and let vi be the vertex whose age
rank at time L equals aL(vi) = i = xn. Let R be the initial rank of vi.

(i) Assume that
√
n log2 n < R < n

2
−
√
n log2 n. Then the expected degree of vi is

given by

E deg(vi, L) = (1 +O(log−1/2 n))
d(1− α)2α

1 + α

((
2R

n

)1−s

− 1

) −α
1−s (

x−α − x
)
,

provided x = o(1) or R/n = o(1); otherwise E deg(vi, L) = O(1).
(ii) Assume that R > n

2
+
√
n log2 n. Then E deg(vi, L) = O(1).
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(iii) Moreover, if E deg(vi, L) ≥ log4 n, then wep

deg(vi, L) = E deg(vi, L) +O(
√
E deg(vi, L) log n),

and if E deg(vi, L) < log4 n, then wep deg(vi, L) = O(log4 n).

Proof. For (i), let us consider vertices vi and vj with age-ranks aL(vi) = i and aL(vj) = j,
respectively, and let i = xn and j = yn (i < j). Suppose that vi obtained an initial rank
of R. Let ti and tj be the times that vertices vi and vj were born, respectively. By Theo-

rem 2.1, wep ti = L−(1+O(log−1/2 n))n log(1/x), tj = L−(1+O(log−1/2 n))n log(1/y),

and so tj− ti = (1+O(log−1/2 n))n log(y/x). By Theorem 2.3, wep vi had the following
rank when vj was born:

rtj(vi) =
n

2

(((
2R

n

)1−s

− 1

)(y
x

)s−1
+ 1

) 1
1−s

(1 +O(log−1/2 n)).

Thus, the contribution to the degree of vi of vertices born after vi is the sum of in-
dependent indicator variables of the event that a vertex vj links to vi in a particular
substep of time step tj. The probability of this event is rtj(vi)

−α/gα(n), where

gα(n) =
n∑
j=1

j−α =
n1−α

1− α
+O(1).

Since every vertex has initial degree d, the contribution to the degree of vi by older
vertices is O(d). Combining this, we obtain the following expression for the expected
degree:

E deg(vi, L) = O(d)+(1+O(log−1/2 n))d(1−α)2α
∫ 1

x

(((
2R

n

)1−s

− 1

)(y
x

)s−1
+ 1

) −α
1−s

dy.

If x = Ω(1) and R/n = Ω(1) then the expected degree is a constant and the degree is
smaller than log2 n wep. Otherwise it simplifies to

E deg(vi, L) = (1 +O(log−1/2 n))d(1− α)2α

((
2R

n

)1−s

− 1

) −α
1−s

x−α
∫ 1

x

yαdy

= (1 +O(log−1/2 n))
d(1− α)2α

1 + α

((
2R

n

)1−s

− 1

) −α
1−s (

x−α − x
)
, (3)

which finishes the proof of (i).
The proof of (ii) is easy: it follows from Theorem 2.3 that wep vi has rank at least

n/2 during the whole process. Hence

E deg(vi, L) ≤ n · (1 + o(1))d(1− α)(n/2)−α/n1−α = O(1).

Finally, in order to get (iii) it is enough to notice that, provided E deg(vi, L) =

Ω(log4 n), wep deg(vi, L) = E deg(vi, L)(1 +O(log−1/2 n)), by the Chernoff bound. �
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As we already mentioned, at this point Theorem 5.5 follows easily from the previous
theorem. If i = o(k−1/αn), then with probability 1/2 + o(1) vertex vi has degree at
least k, but o(k−1/αn) vertices of this type turn out to be negligible comparing to the
total number of vertices of degree at least k. (Note that it follows from part (ii) that
with probability 1/2 + o(1) vertex vi gets the initial rank at least n/2 +

√
n log2 n and

so has no chance to accumulate a large number of vertices, regardless of how old it is
at time L.) Since the expected degree of vi is of order (R

n
· i
n
)−α, the probability that a

vertex has degree at least k is equal to O((k−1/αn/i)s). Hence, the expected number of
vertices with i ≥ i0 = Ck−1/αn (C is a large constant) is equal to

n∑
i=i0

O((k−1/αn/i)s) = O((k−1/αn)s) ·O(i1−s0 ) = O(C1−sk−1/αn).

This number, again, turns out to be negligible for C →∞ (that is, i0 � k−1/αn).
Therefore, the only non-trivial probability of having degree at least k is for vertices

of age-rank i = ck−1/αn for c ∈ (0,∞). The threshold R0 = R0(k, i) on the initial rank
which causes the vertex to have degree at least k at time L is the following:

R0 =
n

2

((
d(1− α)2α

k(1 + α)
((i/n)−α − (i/n))

)(1−s)/α

+ 1

)1/(1−s)

.

To be precise, it follows from Theorem 5.5 that R < (1 − log−1/3 n)R0 implies that

deg(vi, L) ≥ k whereas for R > (1 + log−1/3 n)R0 we get that deg(vi, L) < k. Hence,
the expected number of vertices of degree at least k is

(1 + o(1))
n∑
i=1

F (R0/n) = (1 + o(1))
n∑
i=1

(2R0/n)s/2

= (1/2 + o(1))
n∑
i=1

((
d(1− α)2α

k(1 + α)
((i/n)−α − (i/n))

)(1−s)/α

+ 1

)s/(1−s)

= (1/2 + o(1))n

∫ 1

0

((
d(1− α)2α

k(1 + α)
(x−α − x)

)(1−s)/α

+ 1

)s/(1−s)

dx

= (1/2 + o(1))n

(
d(1− α)2α

k(1 + α)

)1/α

,

and the result follows from the Chernoff bound.
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