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Abstract

A unique-path labelling of a simple, finite graph is a labelling of its edges with

real numbers such that, for every ordered pair of vertices (u, v), there is at most one

nondecreasing path from u to v. In this paper we prove that any graph on n vertices

that admits a unique-path labelling has at most n log2(n)/2 edges, and that this

bound is tight for infinitely many values of n. Thus we significantly improve on the

previously best known bounds. The main tool of the proof is a combinatorial lemma

which might be of independent interest. For every n we also construct an n-vertex

graph that admits a unique-path labelling and has n log2(n)/2−O(n) edges.

1 Introduction

Let G be a finite, simple graph. A unique-path labelling (also known as good edge-labelling,

see, e.g., [1, 3, 6]) of G is a labelling of its edges with real numbers such that, for any

ordered pair of vertices (u, v), there is at most one nondecreasing path from u to v.

This notion was introduced in [2] to solve wavelength assignment problems for specific

categories of graphs. We say G is good if it admits a unique-path labelling.

Let f(n) be the maximum number of edges of a good graph on n vertices. Araújo,

Cohen, Giroire, and Havet [1] initiated the study of this function. They observed that

hypercube graphs are good and that any graph containing K3 or K2,3 is not good. From
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these observations they concluded that if n is a power of two, then

f(n) ≥ n

2
log2(n) ,

and that for all n,

f(n) ≤ n
√
n√
2

+O
(
n4/3

)
.

The first author of this paper proved that any good graph whose maximum degree is

within a constant factor of its average degree (in particular, any good regular graph) has

at most n1+o(1) edges—see [6] for more details.

Before we state the main result of this paper, we need one more definition. Let b(n)

be the function that counts the total number of 1’s in the binary expansions of all integers

from 0 up to n − 1. This function was studied in [5]. Our main result is the following

theorem.

Theorem 1. For all positive integers n,

n

2
log2

(
3n

4

)
≤ b(n) ≤ f(n) ≤ n

2
log2(n) .

It follows that the asymptotic value of f(n) is n log2(n)/2−O(n). Note that Theorem 1

implies that any good graph on n vertices has at most n log2(n)/2 edges, significantly

improving the previously known upper bounds. Moreover, this bound is tight if n is a

power of two. We also give an explicit construction of a good graph with n vertices and

b(n) edges for every n.

2 The Proofs

This section is devoted to proving the main result, Theorem 1.

2.1 The upper bound

For a graph G, an edge-labelling φ : E(G)→ R, and an integer t ≥ 0, a nice t-walk from

v0 to vt is a sequence v0v1 . . . vt of vertices such that vi−1vi is an edge for 1 ≤ i ≤ t, and

vi−1 6= vi+1 and φ(vi−1vi) ≤ φ(vivi+1) for 1 ≤ i ≤ t − 1. We call vt the last vertex of the

walk. When t does not play a role, we simply refer to a nice walk. The existence of a self-

intersecting nice walk implies that the edge-labelling is not a unique-path labelling: let
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v0v1 . . . vt be a shortest such walk with v0 = vt. Then there are two nondecreasing paths

v0v1 . . . vt−1 and v0vt−1 from v0 to vt−1. Thus if for some pair of distinct vertices (u, v)

there are two nice walks from u to v, then the labelling is not a unique-path labelling.

Also, if for some vertex v, there is a nice t-walk from v to v with t > 0, then the labelling

is not a unique-path labelling. Consequently, if the total number of nice walks is larger

than 2
(
n
2

)
+ n = n2, then the labelling is not a unique-path labelling.

The following lemma will be very useful.

Lemma 1. Let G and H be graphs with unique-path labellings on disjoint vertex sets.

Then if we add a matching between the vertices of G and H (i.e., add a set of edges,

such that each added edge has exactly one endpoint in V (G) and exactly one endpoint in

V (H), and every vertex in V (G)∪ V (H) is incident to at most one added edge), then the

resulting graph is good.

Proof. Consider unique-path labellings of G and H, and let M be a number greater than

all existing labels. Then label the matching edges with M,M + 1,M + 2, etc. It is not

hard to verify that the resulting edge-labelling is still a unique-path labelling. �

Corollary 2. We have f(1) = 0 and for all n > 1,

f(n) ≥ max
{
f(n1) + f(n2) + min{n1, n2} : 1 ≤ n1, 1 ≤ n2, n1 + n2 = n

}
.

The proof of the upper bound in Theorem 1 relies on the analysis of a one-player

game, which is defined next. The player, who will be called Alice henceforth, starts with

n sheets of paper, on each of which a positive integer is written. In every step, Alice

performs the following operation. She chooses any two sheets. Assume that the numbers

written on them are a and b. She erases these numbers, and writes a+ b on both sheets.

Clearly, the sum of the numbers increases by a+ b after this move. The aim of the game

is to keep the sum of the numbers smaller than a certain threshold.

The configuration of the game is a multiset of size n, containing the numbers written

on the sheets, in which the multiplicity of number x equals the number of sheets on which

x is written. Let S be the starting configuration of the game, namely, a multiset of size

n containing the numbers initially written on the sheets, and let k ≥ 0 be an integer.

We denote by opt(S, k) the smallest sum Alice can get after performing k operations. An

intuitively good-looking strategy is the following: in each step, choose two sheets with the

smallest numbers. We call this the greedy strategy, and show that it is indeed an optimal

strategy. Specifically, we prove the following theorem, which may be of independent

interest.
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Theorem 2. For any starting configuration S and any nonnegative integer k, if Alice

plays the greedy strategy, then the sum of the numbers after k moves equals opt(S, k).

Before proving Theorem 2, we show how this implies our upper bound.

Proof of the upper bound of Theorem 1. LetG be a graph with n vertices andm > n log2(n)/2

edges. We need to show that G does not have a unique-path labelling. Consider an ar-

bitrary edge-labelling φ : E(G) → R. Enumerate the edges of G as e1, e2, . . . , em such

that

φ(e1) ≤ φ(e2) ≤ · · · ≤ φ(em) .

We may assume that the inequalities are strict. Indeed, if some label L appears p > 1

times, we can assign the labels L,L + 1, . . . , L + (p − 1) to the edges originally labelled

L, and increase by p the labels of edges with original label larger than L. It is easy to

see that the modified edge-labelling is still a unique-path labelling, and by repeatedly

applying this operation all ties are broken.

Let us denote by Gi the subgraph of G induced by {e1, e2, . . . , ei}. For each vertex v

and 0 ≤ i ≤ m, let a
(i)
v be the number of nice walks with last vertex v in Gi. Clearly,

a
(0)
v = 1 for all vertices v. Suppose the graph is initially empty and we add the edges

e1, e2, . . . , em, one by one, in this order. Fix an i with 1 ≤ i ≤ m. Let u and v be the

endpoints of ei. After adding the edge ei, for any t, any nice t-walk with last vertex u

(respectively, v) in Gi−1 can be extended via ei to a nice (t + 1)-walk with last vertex

v (respectively, u) in Gi. So, we have a
(i)
u = a

(i)
v = a

(i−1)
u + a

(i−1)
v and a

(i)
w = a

(i−1)
w for

w /∈ {u, v} (if the walk ends at some other vertex, the additional edge ei does not help).

Thus the final list of numbers {a(m)
v }v∈V (G) can be seen as the end-result of an instance

of the one-player game described before, with starting configuration S = {1, 1, . . . , 1}, so

we have ∑
v∈V (G)

a(m)
v ≥ opt(S,m) .

Hence, in order to prove that φ is not a unique-path labelling, it is sufficient to show that

opt(S,m) > n2.

Let m0 be the largest number for which opt(S,m0) ≤ n2, and let α = blog2(n)c. First,

assume that n is even. By Theorem 2, we may assume that Alice plays according to the

greedy strategy. The smallest number on the sheets is initially 1, and is doubled after

every n/2 moves. Hence after αn/2 moves, the smallest number becomes 2α, so the sum

of the numbers would be 2αn. In every subsequent move, the sum is increased by 2α+1,
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so Alice can play at most (n2 − 2αn)/2α+1 more moves before the sum of the numbers

becomes greater than n2. Consequently,

m0 ≤ α
n

2
+
n(n− 2α)

2α+1
.

Now, define h(x) := log2(x)− x+ 1. Then h is concave in [1, 2] and h(1) = h(2) = 0,

which implies that h(x) ≥ 0 for all x ∈ [1, 2]. In particular, for x0 = n/2α, we have

n− 2α

2α
= x0 − 1 ≤ log2(x0) = log2

( n
2α

)
= log2(n)− α .

Therefore,

m0 ≤
n

2
α +

n

2

n− 2α

2α
≤ n

2
log2(n) < m ,

which completes the proof.

Finally, assume that n is odd. Since 2n is even, we have

f(2n) ≤ n log2(2n) = n log2(n) + n .

On the other hand, by Corollary 2,

f(2n) ≥ 2f(n) + n .

Combining these inequalities gives

f(n) ≤ n

2
log2(n) ,

completing the proof of the lemma. �

The rest of this section is devoted to proving Theorem 2. Let S = {s1, s2, . . . , sn} be

the starting configuration of the game. Consider a k-step strategy T =
(
(i1, j1), (i2, j2),

. . . , (ik, jk)
)
, where ir and jr are the indices of the sheets Alice choose in the r-th step.

Note that after the k-th step, the sum of the numbers is of the form
∑n

i=1 cisi for some

positive integers {ci}ni=1. The vector (ci)
n
i=1 depends only on i1, j1, i2, j2, . . . , ik, jk, and

not on {si}ni=1. We call (ci)
n
i=1 the characteristic vector of strategy T . Notice that for

any permutation π of {1, 2, . . . , n}, if (c1, c2, . . . , cn) is the characteristic vector of some

k-step strategy, then so is
(
cπ(1), cπ(2), . . . , cπ(n)

)
. This is because Alice can first permute

the sheets according to the permutation π, and then apply the same strategy as before.

Proof of Theorem 2. We use induction over the number of moves k. If k = 1, the state-

ment is obvious, so let us assume that k ≥ 2. Let S = {st}nt=1 be the starting configuration.
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We may assume that s1 ≤ s2 ≤ · · · ≤ sn. Let T =
(
(i1, j1), (i2, j2), . . . , (ik, jk)

)
be an

optimal k-step strategy with characteristic vector (ct)
n
t=1. We first make an observation

and a claim.

First, let 1 ≤ t ≤ n be arbitrary and let r be the first step in which Alice chooses sheet

t, say ir = t. Then, observe that cjr ≥ cir , with equality if and only if r is the first step

in which sheet jr is chosen: indeed, if sheet jr is chosen for the first time at step r, then

from step r onwards the numbers st and sjr are always summed together, hence cjr = cir .

If on the other hand, sheet jr had been chosen before, then the corresponding coefficient

cjr is strictly greater. Note that this fact does not depend on the optimality of T .

Second, we claim that c1 ≥ c2 ≥ · · · ≥ cn. Assume that this was not true, and

consider a permutation π of {1, 2, . . . , n} such that cπ(1) ≥ cπ(2) ≥ · · · ≥ cπ(n). Then, by

the Rearrangement Inequality (see e.g. [4], inequality (368), p. 261),

n∑
t=1

cπ(t)st <
n∑
t=1

ctst .

However,
(
cπ(1), cπ(2), . . . , cπ(n)

)
is the characteristic vector of some k-step strategy, and

this contradicts the optimality of T .

Let r be the first step in which Alice chooses sheet 1, say ir = 1. Then, by the

observation above, cjr ≥ c1. However, c1 is the maximum among {ct}nt=1 by the claim,

hence we have cjr = cjr−1 = · · · = c2 = c1, and r is the first step in which sheet jr is chosen.

Now, let σ be the permutation on {1, 2, . . . , n} obtained from applying the transposition

(2, jr) on the identity permutation. Then
(
cσ(t)

)n
t=1

is the characteristic vector of some

k-step strategy T ′, which is optimal since
∑n

t=1 cσ(t)st =
∑n

t=1 ctst = opt(S, k). Note that

we could possibly have T ′ = T .

In T ′, the sheets 1 and 2 are chosen in the r-th step, and none of them has been

chosen prior to this step. Thus, the move (1, 2) can be shifted to the beginning of the

move sequence without changing the characteristic vector. Hence, there exists an optimal

k-step strategy starting with the summation of two minimal numbers, i.e., the same

starting move as the greedy strategy. After this first step, we have a new configuration

and k − 1 more moves, for which, by induction, the greedy strategy is optimal, and this

concludes the proof. �
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2.2 The lower bound

In this section we prove the lower bound in Theorem 1. Recall that b(n) is equal to the

total number of 1’s in the binary expansions of all integers from 0 up to n − 1. It is

known [5] that b(1) = 0 and b(n) satisfies the recursive formula

b(n) = max{b(n1) + b(n2) + min{n1, n2} : 1 ≤ n1, 1 ≤ n2, n1 + n2 = n} ,

and the lower bound in Theorem 1 follows by using induction and applying Corollary 2.

Moreover, McIlroy [5] proved that b(n) ≥ n log2

(
3
4
n
)
/2.

For every n we also give an explicit construction of a good graph with n vertices

and b(n) edges. It is easy to see that b(n) equals the number of edges in the graph Gn

with vertex set {0, 1, . . . , n − 1}, and with vertices i and j being adjacent if the binary

expansions of i and j differ in exactly one digit. This graph is an induced subgraph of the

dlog2(n)e-dimensional hypercube graph. It can be shown by induction and Lemma 1 that

the hypercube graph is good, which implies that Gn is also good (since the restriction of

a unique-path labelling for the supergraph to the edges of the subgraph is a unique-path

labelling for the subgraph). Hence Gn is a good graph with n vertices and b(n) edges.

3 Concluding Remarks

We proved that any n-vertex graph with a unique-path labelling has at most n log2(n)/2

edges, and for every n we constructed a good n-vertex graph with n log2(n)/2 − O(n)

edges. Thus we proved f(n) = n log2(n)/2−O(n). One can try to investigate the second

order term of the function f(n). Perhaps it is the case that our construction is best

possible; that is, in fact f(n) = b(n)?

It would be interesting to further investigate the connection between having a unique-

path labelling and other parameters of the graph; in particular, the length of the shortest

cycle (known as the girth) of the graph (see, e.g., [3]). Araújo et al. [1] proved that any

planar graph with girth at least 6 has a unique-path labelling, and asked whether 6 can be

replaced with 5 in this result. The first author [6] proved that any graph with maximum

degree ∆ and girth at least 40∆ is good. This does not seem to be tight, and improving

the dependence on ∆ is an interesting research direction.
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