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Abstract. We examine a version of the Cops and Robber (CR) game in which the robber is
invisible, i.e., the cops do not know his location until they capture him. Apparently this game
(CiR) has received little attention in the CR literature. We examine two variants: in the first the
robber is adversarial (he actively tries to avoid capture); in the second he is drunk (he performs
a random walk). Our goal in this paper is to study the invisible Cost of Drunkenness (iCOD),
which is defined as the ratio cti(G)/dcti(G), with cti(G) and dcti(G) being the expected capture
times in the adversarial and drunk CiR variants, respectively. We show that these capture
times are well defined, using game theory for the adversarial case and partially observable
Markov decision processes (POMDP) for the drunk case. We give exact asymptotic values of
iCOD for several special graph families such as d-regular trees, give some bounds for grids, and
provide general upper and lower bounds for general classes of graphs. We also give an infinite
family of graphs showing that iCOD can be arbitrarily close to any value in [2,∞). Finally,
we briefly examine one more CiR variant, in which the robber is invisible and “infinitely fast”;
we argue that this variant is significantly different from the Graph Search game, despite several
similarities between the two games.

1. Introduction

Cops and Robber (CR) is a game introduced by Nowakowski and Winkler [42] and (indepen-
dently) by Quilliot [51]. CR is played on a fixed, undirected, simple and finite graph G where
K cops pursue a single robber. Both the cops and the robber are located in the vertices of G
and everybody has full information about everybody else’s current location. In every turn of
the game, first the cops and then the robber can move to their new locations along the edges
of the G. The cops win if they capture the robber, i.e., if at least one cop is in the same vertex
as the robber; the robber’s goal is to avoid capture. This is the “classical”, extensively studied
version of the CR game. Many other versions have been proposed and studied; for a review of
the literature see [2, 8, 22] and the book [6].

We call the robber of the classical CR game adversarial : he wants to avoid capture for as long
as possible and plays optimally towards this end. In a recent paper [29] we have studied a CR
variant where the robber is drunk, i.e., he performs a random walk on G (he does not attempt
to avoid capture; essentially he is oblivious of the cops). This is really a one-player game. In
[29] we have compared the adversarial and drunk CR variants and have especially studied the
Cost of Drunkenness (COD), i.e., the ratio of “adversarial” capture time and “drunk” expected
capture times.

In the current paper we are concerned with the much less studied version of the CR game, in
which the robber is invisible to the cops (unless they are located in the same vertex). All the
other rules remain the same as in the classical CR and we examine both the adversarial and the
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drunk variants. We will call this game cops-and-invisible-robber (CiR). Our main goal is (as in
[29]) to study the “invisible COD” (iCOD).

CiR and, more generally, invisible robber versions of CR have so far received little attention
in the graph theory literature. To the best of our knowledge, the first paper that deals with
the invisible robber is [59]. More recent work in which the cops have either zero, incomplete
or intermittent information about the robber’s location include [14, 15, 28, 58]. In addition,
some works [13, 16, 17, 18] examine the case in which the cops’ incomplete observations are
augmented by the use of traps, alarms, radars and so on. The variant of an intermittently
observed robber is related to another variant, where the robber moves with greater speed than
the cops; this is studied in [9]. All these works share a common approach, according to which
cops use a predetermined move sequence by which capture is guaranteed. Because the cops will
only see the robber when they capture him, this sequence does not depend on actual robber
moves, hence it can be computed before the CiR game starts. Furthermore, the robber can
also compute the same sequence, so he is omniscient in the sense that he knows all cop moves
before the game starts. This approach is also used in graph search (GS) games in which the
robber is additionally endowed with infinite speed. However, we will argue in Section 7 that GS
is a different game from CiR (the seminal paper for graph search is [46]; good recent reviews
are [2, 8, 22]).

In this paper we are interested in a different approach, which improves the cops’ fortunes.
Since the cops will never see the robber, they must predetermine their strategy ; but this can be
randomized, so the actual cop moves do not need to be predetermined at the beginning of the
game. Hence, in CiR, at every time step the robber will know previous cop moves but not the
future ones. As we will show in later sections, the use of randomized strategies can, in some
cases, reduce the number of cops necessary to capture the robber, provided that our goal is to
obtain a finite expected capture time and so cops win the game after a finite number of steps
with probability one.

Randomized strategies have not received much attention in the graph theoretic CR literature.
From the few papers which explore this approach, we mention [1, 26, 27] (note that in [1] both
cops and robber are invisible to each other until they occupy the same vertex). Brief mentions
of randomized strategies also appear in [13, 58]. However, the problem of determining the
(original) cop number for random graphs received a lot of attention recently [5, 35, 7, 48]. In
particular, it has been shown that Meyniel’s conjecture holds for random graphs as well as for
random d-regular graphs [49, 50].

On the other hand, there is a large robotics literature which deals with the (more general)
pursuit/evasion problem; while roboticists do not often use the term “cops and robber”, they
have studied pursuit/evasion on graphs using formulations quite similar to CiR, especially for the
case of the drunk robber; see for example [10, 11, 24, 25, 31, 32, 43, 60, 62] and the review [12]. As
expected, this research is more application-oriented. Also, the operations research community
has studied what is essentially the search for an invisible drunk robber in a graph; we only cite
here three representative works: [32, 56, 57].

Most of the works cited in the previous paragraph handle the invisible drunk robber with tools
from the theory of partially observable Markov decision processes (POMDP; see [33, 39, 55]) and
this is the approach we will use in the current paper. For the invisible adversarial robber, we
believe the “natural” treatment is through game theoretic methods; in fact what is required is
the generalization of POMDP’s to stochastic or Markovian games. The subject was introduced
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in [53]; some of the subsequent results can be found in [3, 19, 20, 30, 37, 38, 40, 41, 44, 45, 52, 61];
a paper we have found especially useful is [23].

The rest of the paper is organized as follows. In Section 2 we introduce preliminary notation
and results. In Section 3 we give an extended example which illustrates the basic aspects of the
CiR game and, perhaps more importantly, establishes that the iCOD can become arbitrarily
large. In Section 4 we prove that the value of the CiR game always exists (for both the adversarial
and drunk variant). In Section 5 we provide general upper and lower bounds, which are then
used and tightened in Section 6 to obtain (almost) exact values for special graph classes, among
them d-regular trees and grids; we also introduce the family of broom graphs and use it to show
that the iCOD can be arbitrarily close to any value in [2,∞). In Section 7 we briefly study CiR
(and compare it to GS) when the robber has “infinite” speed. In Section 8 we summarize and
discuss our conclusions.

2. Preliminaries

Let G = (V,E) be a fixed undirected, simple, connected, and finite graph. We begin by listing
definitions, notation, assumptions, and a useful theorem.

(1) N = {1, 2, 3, . . .}, N0 = {0, 1, 2, . . .}, and we will denote {1, 2, . . . , K} by [K].
(2) We will always use n to denote the number of vertices of G (i.e., |V (G)| = n).
(3) N(v) denotes neighbourhood of vertex v and does not include v.
(4) We assume that the cops-and-robber game (both the CR and CiR versions) are played

by two players, denoted by C (the cop player) and R (the robber player).
(5) C controls K cops (K ∈ N). Xk

t ∈ V denotes the position of the k-th cop at time t
(k ∈ [K], t ∈ N0); Xt = (X1

t , X
2
t , . . . , X

K
t ) ∈ V K denotes the vector of all cop positions

at time t.
(6) In the adversarial variant of the game, R controls a single robber, whose position at time

t ∈ N0 is denoted by Yt ∈ V . The moving sequence is as follows. At t = 0, first C chooses
initial positions X0 ∈ V K , then R chooses Y0 ∈ V . For t ∈ N, first C chooses Xt ∈ V K

and then R chooses Yt ∈ V . Each player can either stay in the same vertex or move to
a new vertex along an edge of the graph G. In other words, for k ∈ [K] and t ∈ N0,
either {Xk

t , X
k
t+1} ∈ E or Xk

t = Xk
t+1. Similarly, for t ∈ N0, either {Yt, Yt+1} ∈ E or

Yt = Yt+1.
(7) In the drunk variant, the robber performs a random walk on G (i.e., he is controlled by

Chance) according to the following rules

∀u ∈ V, Pr (Y0 = u) =
1

n
(1)

∀u ∈ V, Pr (Yt+1 = u | Yt = v) =

{
1

|N(v)| if u ∈ N(v)

0 otherwise.
(2)

(This is the “standard” random walk, in which the robber never stays in the same node.
An alternative would be to use the “lazy” random walk, in which the robber can also
stay in place. This is not pursued in the current paper, because of space limitations, but
is briefly discussed in Section 8.) The moving sequence is the same as in the adversarial
variant, except that Y0, Y1, Y2, . . . are chosen by Chance, according to equations (1)-(2).

(8) Once the robber is caught (which, in the adversarial version, can happen only after the
cops’ move; in the drunk version, it might also happen after the robber’s move) he cannot
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move anymore. Given the complete sequences of cops and robber moves, the capture time
is denoted by T and defined as follows

T = min{t ≥ 0 : ∃k ∈ [K] such that Xk
t = Yt};

i.e., it is the first time a cop is located at the same vertex as the robber. If capture never
takes place, then T =∞. As will be seen in the sequel, capture time will in general be a
random variable, dependent on the strategies used by the cop and the robber (and also
on K).

In what follows, unless stated otherwise, it will be assumed that (a) C’s goal is to capture the
robber as fast as possible and (b) C plays optimally with respect to this goal; we will summarize
these assumptions by saying that C is adversarial. R can be in one of two modes: adversarial
(he plays optimally to avoid capture for as long as possible) or drunk (he simply performs a
random walk on G). The cops’ locations are always known to the adversarial R (specifically,
at time t he knows X0, X1, . . . , Xt, but not the future moves). The robber can be visible (his
location is known to the cops) or invisible (his location is unknown).

When the robber is visible and adversarial, T is deterministic [29]. The cop number of G
is denoted by c(G) and defined to be the minimum K for which T < ∞ (there is always such
a K, less than or equal to |V |). We define ct (G) to be the “optimal capture time given that
K = c (G) and C and R play optimally” (this definition requires some care, see [29]). When the
robber is visible and drunk, he performs a random walk on G as indicated by (1)-(2). In [29] we
show that the following quantity is well defined

dct (G) = E (T | when K = c (G) , C plays optimally, R is drunk) .

Hence the cost of (visible) drunkenness is also well defined by

F (G) =
ct(G)

dct(G)
,

and we obviously have F (G) ≥ 1 (capturing the adversarial robber is at least as hard as capturing
the drunk one, since the former can always choose to behave as if he were drunk).

Let us now turn to the invisible robber. In [29] we have proved the following.

Theorem 2.1. Suppose that c(G) cops perform a random walk on a connected graph G, starting
from any initial position and the robber is adversarial. Then E (T ) <∞.

It follows that c(G) adversarial cops suffice to capture the invisible adversarial robber. On
the other hand, capturing the invisible robber is at least as hard as capturing the visible one,
hence c(G) is also the minimum required number of cops. In short, the cop number of a graph
is the same for the visible and invisible CR version (however, the expected capture time T will
generally be bigger in the invisible variant, comparing to the capture time in the visible one).
In the rest of the paper we will assume that K = c(G), unless stated otherwise.

For the invisible variant of the game we will define

cti (G) = E (T | K = c (G) , C and R play optimally) , (3)

dcti (G) = E (T | K = c (G) , C plays optimally, R is drunk) , (4)

Fi(G) =
cti(G)

dcti(G)
≥ 1. (5)

Fi (G) is the “invisible cost of drunkenness ”(iCOD). Note that we will always assume that
n ≥ 2 and so cti(G) ≥ dcti(G) > 0. The existence of the quantities defined in (3)-(5) and the
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meaning of “optimal play” require careful study, which will be deferred to Section 4; we will
first present an extended example in Section 3.

3. The Invisible Cost of Drunkenness Can be Arbitrarily Large

To clarify some of the key CiR concepts, we now present an extended example which involves
the N -star graphs SN , illustrated in Figure 1 and defined as follows (note that, for all N , we
have n = |V | = N + 1). For N ∈ N, SN has the vertex set V = {0, 1, . . . , N} and the edge set
E = {(0, 1), (0, 2), . . . , (0, N)}. Obviously a single cop can catch the visible robber in SN . So
we will study CiR with a single cop, as well.

Figure 1. The N -star SN .

A robber strategy generates a robber’s move for every time t, based on the information avail-
able to R at time t; this information is the cop moves X0, X1, . . . , Xt and the robber moves
Y0, Y1, . . . , Yt−1. As will become clear, R may gain an advantage by randomizing his strategies.
Hence a robber strategy σR is an infinite sequence of probability distributions conditioned under
previous moves/positions of both cops and robber:

σR = {Pr (Yt | X0 = x0, . . . , Xt = xt, Y0 = y0, . . . , Yt−1 = yt−1)}∞t=0 . (6)

The strategies must also be feasible, i.e., positive probabilities are assigned only to staying in
the same vertex or moving along edges. Similarly a cop strategy σC is an infinite sequence of
probability distributions conditioned under previous moves/positions of only the cops (and an
initial probability, for t = 0):

σC = {Pr (Xt | X0 = x0, . . . , Xt−1 = xt−1)}∞t=1 ∪ {Pr (X0)} . (7)

The conditionals must satisfy the feasibility requirement. Note that conditioning is on cop
moves only, since the robber is invisible to the cops. However, let us stress that the sequence of
previous moves of the cops affects their strategy for the future, since the fact that the robber
was not seen at these vertices before contains important information. In the adversarial variant,
the expected capture time depends on both σR and σC , hence we will write E (T | σR, σC). In
the drunk variant we will write E (T | σC) instead.

Now let us consider optimal cop and robber strategies for SN . We will first deal with the
adversarial variant. Let us fix some N ≥ 2 (so SN is a tree with N leaves) and let C use the
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following strategy: he chooses a permutation u1u2 . . . uN of the set [N ] with uniform probability
(Pr (u1u2 . . . uN) = 1

N !
) and the cop moves as follows

X0 = u1, X1 = 0, X2 = u2, X3 = 0, X4 = u3, . . . , X2N−2 = uN .

In other words, the cop starts at a random leaf and visits every other leaf in a random order
(without repetitions). Therefore there exists a cop strategy σ̂C of the form (7) which produces
this sequence.

Now, R sees X0 = u1 before placing the robber and he knows that the cop has no incentive to
stay in place, so he infers that X1 = 0. Hence R knows that Y0 must belong to {u2, u3, . . . , uN}
but he has no incentive to prefer one of these (since he is unaware of the order by which they will
be visited by the cop), and thus he will place the robber equiprobably in one of {u2, u3, . . . , uN}.
After the initial placement, R will never move the robber because the only possible move is
into 0 and this would result in a capture (either the robber runs into the cop during an odd
turn, or vice versa during an even turn). Hence the robber will use the strategy σ̂R which sets
Y0 = v ∈ {u2, u3, . . . , uN} with probability 1

N−1
, and Yt = Y0 for t = N. For every initial cop

placement we can compute

E (T | σ̂R, σ̂C , X0 = u1) =
1

N − 1
·2+

1

N − 1
·4+. . .+

1

N − 1
·(2N − 2) =

2

N − 1
·(N − 1) ·N

2
= N

and, since there are N equiprobable choices for u1, we also have

E (T | σ̂R, σ̂C) = N.

As we have already argued, σ̂R gives to R the best possible result (longest expected capture
time) given C uses σ̂C . In other words,

max
σR

E (T | σR, σ̂C) = E (T | σ̂R, σ̂C) = N

from which follows

min
σC

max
σR

E (T | σR, σC) ≤ E (T | σ̂R, σ̂C) = N. (8)

By the same argument, if the cop decided to start at the root and visit the leaves in a randomly
chosen order, the expected capture time of the best robber (choosing uniformly at random any
leaf) would also be N . On the other hand, suppose R uses σ̂R irrespective of C’s strategy.
Clearly C must use a strategy which visits every vertex and, since he has no reason to prefer
a particular order of visitation, he will do just as well by using σ̂C (he gains no advantage by
visiting the same vertex twice). Hence we have

N = E (T | σ̂R, σ̂C) = min
σC

E (T | σ̂R, σC)⇒

N = E (T | σ̂R, σ̂C) ≤ max
σR

min
σC

E (T | σR, σC) . (9)

Finally, we know that

max
σR

min
σC

E (T | σR, σC) ≤ min
σC

max
σR

E (T | σR, σC) . (10)

From (8)-(10) we see that

max
σR

min
σC

E (T | σR, σC) = E (T |σ̂R, σ̂C) = min
σC

max
σR

E (T | σR, σC) = N.
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In other words, σ̂R and σ̂C are optimal strategies for R and C, respectively, and the optimal
expected capture time in the adversarial variant is

cti (SN) = N = n− 1, (11)

for all N ≥ 2; it is easy to see that (11) also holds for N = 1.
Let us now turn to the drunk variant. In this case only C has to choose a strategy and the

optimal σ̃C is obvious: he places the cop at u = 0 and just waits there. For any N ≥ 1, the
robber will start at 0 with probability 1

N+1
or at some u ∈ {1, 2, . . . , N} with the remaining

probability N
N+1

. In the former case T = 0; in the latter case the robber will move into 0 at
t = 1, resulting at T = 1. Hence

dcti (SN) = E (T | σ̃C) =
N

N + 1
=
n− 1

n
. (12)

From (11) and (12) we get Fi (SN) = N + 1 = n. It follows that the cost of drunkenness Fi(SN)
can attain any integer in N. Our results are summarized in the following.

Theorem 3.1. For every N ≥ 1 we have

cti(SN) = N = n− 1, dcti(SN) =
N

N + 1
=
n− 1

n
, Fi (SN) =

cti(SN)

dcti(SN)
= N + 1 = n.

4. The Cost of Drunkenness is Well Defined

In the previous section we have proved that Fi (G) can take arbitrarily large values. Our
proof involved only a particular family of graphs, the N -stars. In this section we will show that
iCOD is well defined for every graph G. The issue, of course, is whether cti(G) and dcti(G) are
well defined. Settling this question requires the use of game theoretic concepts for cti(G) and
POMDP concepts for dcti(G). For simplicity, we will consider the case of a single cop (K = 1);
the generalization to K > 1 is straightforward. Hence we pick a graph G with c (G) = 1 and
keep it fixed for the rest of the section (but Lemma 4.1 and Theorems 4.2 and 4.4 remain true
for any G).

4.1. Adversarial Robber. Here we show that cti(G) is well-defined. Our notation and analysis
follows very closely [23]. The adversarial variant of CiR is a two player game, which we will call
Γ, played on G. Note that Γ can last an infinite number of turns (the robber is never captured).
We will also make use of auxiliary, truncated games : Γm is the same game as Γ but is played
for a maximum of m turns.

C moves the cop according to a strategy σC . For a rigorous definition of strategy we need the
following.

(1) AC = V is the set of possible C actions (possible placement of the cop on G).

(2) H
(m)
C ⊆ V m is the set of feasible m long sequences of cop configurations.

(3) HC =
⋃∞
m=0 H

(m)
C is the set of all finite-length feasible cop histories.

(4) P (AC) is the set of all probability functions on C actions.

Hence a cop strategy is a function σC : HC → P (AC), i.e., a function which maps to every
finite-length history x0, x1, . . . , xt−1 a probability (conditional on x0, x1, . . . , xt−1 when t ≥ 0)
on the next C move Xt. We are interested in feasible strategies, i.e., those which assign positive
probabilities only to feasible next-step cop configurations; we will denote the set of all feasible
C strategies by SC .
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The situation is almost identical for R. A strategy σR specifies the next robber move at time
t, depending on information available to R at t; this information is the realizations x0, x1, . . . , xt
and y0, y1, . . . , yt−1. We define the following.

(1) AR = V is the set of possible R actions (possible robber positions).

(2) H
(m)
R ⊆ V m× V m−1 is the set of feasible m long sequences of cop/robber configurations.

(3) HR =
⋃∞
m=0H

(m)
R is the set of all finite-length feasible cop/robber histories.

Hence a robber strategy is a function σR : HR → P (AR), i.e., a function which maps to every
finite-length history a probability on the next R move; again, we are interested in feasible strate-
gies, i.e., those which assign positive probabilities only to feasible next-step cop configurations.
We will denote the set of all feasible R strategies by SR.

A specific strategy pair (σR, σC), specifies the probabilities p (x0, x1, . . . , xt, y0, y1, . . . yt | σR, σC)
for all cylindrical sets (X0 = x0, X1 = x1, . . . , Xt = xt, Y0 = y0, Y1 = y1, . . . , Yt = yt). Hence, let-

ting H̃R = V N×N denote the set of all infinitely long feasible cop/robber histories, (σR, σC)
induces a probability measure on the associated σ-algebra. In short, at the start of the game Γ,
C chooses σC and R chooses σR, resulting in a well defined expected capture time, conditioned
on σR and σC ; this quantity is denoted by E (T | σR, σC ,Γ).

The strategies σR and σC can be used in any truncated game Γm as well: C and R will use
them to generate moves only until turn m. Hence the corresponding expected capture time for
Γm is also well defined; it will be denoted by E (T | σR, σC ,Γm). Clearly Γ and every Γm are
two-person, zero-sum games.

It is worth emphasizing that C and R choose their strategies simultaneously, before the game
starts. Even though the game rules stipulate that (in every turn) C plays before R, this is
unimportant because (the probabilities of) both players’ moves are specified by their strategies,
which have been selected before the game starts. (It is a well known fact [4] that, if either player
chooses his optimal strategy then he has no incentive to change it, no matter what strategy the
other player uses.) In fact, the rules can be modified so that the players play simultaneously: at
the initial turn (t = 0) R plays a “null” move and C plays X0; at all subsequent turns (t ∈ N),
R plays Yt−1 and C plays Xt. The game remains the same under these modified rules.

In Γ, if R uses σR and C uses σC then C pays R E (T | σR, σC ,Γ) per game (on the average).
The situation is similar in Γm (for every m ∈ N0) except that the game lasts at most m steps
and if the robber has not been caught by the end of the m-th step, he receives a payoff of m;
the average payoff in Γm is E (T | σR, σC ,Γm). In either case (full or truncated game) R tries
to maximize the payoff while C tries to minimize it.

Consider for a moment pure strategies available to C in the finite-length game Γm. Each
such strategy, call it sC , will be a collection of deterministic functions mapping finite length cop
histories x0, x1, . . . , xt−1 to feasible moves:

Xt = f (x0, x1, . . . xt−1) .

Since t ≤ m and |V | is finite, there is a finite number of cop histories and a finite number of
pure strategies that C can use. Similarly R has a finite number of pure strategies. Hence Γm is

a finite game and has a value [4], which however is generally achieved by mixed strategies σ̂
(m)
R

and σ̂
(m)
C :

max
σR∈SmR

min
σC∈SmC

E (T | σR, σC ,Γm) = E
(
T | σ̂(m)

R , σ̂
(m)
C ,Γm

)
= min

σC∈SmC
max
σR∈SmR

E (T | σR, σC ,Γm)

(13)
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(In fact Γm can be summarized by a finite payoff matrix Q(m) where Q
(m)
sr,sC = E (T | sR, sC ,Γm)

and sR, sC are understood as classes of pure strategies which are identical up to the m-th turn.)

We sometimes will denote E
(
T | σ̂(m)

R , σ̂
(m)
C ,Γm

)
by val (Γm), for brevity.

In the infinite-length game Γ there is an infinite number of pure strategies, hence the existence
of a value and optimizing strategies is not guaranteed. Let us define

val (Γ) = sup
σR∈SR

inf
σC∈SC

E (T | σR, σC ,Γ)

val (Γ) = inf
σC∈SC

sup
σR∈SR

E (T | σR, σC ,Γ) .

Hence R, playing optimally, is guaranteed to receive no less than (arbitrarily close to) val (Γ);
C, playing optimally, is guaranteed to pay no more than (arbitrarily close to) val (Γ); we have
val (Γ) ≤ val (Γ). What we want is to show val (Γ) = val (Γ); if equality holds, then we will
denote the common value by val (Γ), the value of the game Γ.

Existence of val (Γ) follows almost immediately from a theorem proved by Gurevich [23]. A
couple of modifications of his proof are required. First, we need the following lemma.

Lemma 4.1. Given any graph G, let σC be the strategy according to which the cop performs a
random walk on G. Define v = supσR∈SR E (T | σR, σC ,Γ). Then

lim
m→∞

val (Γm) ≤ val (Γ) ≤ v <∞.

Proof. From Theorem 2.1 we know that, when the cop random-walks in G, he can catch the
robber in finite expected time. Hence

sup
σR∈SR

E (T | σR, σC ,Γ) = v <∞. (14)

Then we have

val (Γ) = sup
σR∈SR

inf
σC∈SC

E (T | σR, σC ,Γ) ≤ sup
σR∈SR

E (T | σR, σC ,Γ) = v <∞.

If we extend the truncated game Γm by one move we get the game Γm+1 and R’s payoff cannot
decrease. Hence val (Γm) ≤ val (Γm+1), i.e. the sequence {val (Γm)}∞m=0 is nondecreasing. It is
also bounded, because in the full game Γ, R can do at least as well as in any truncated game Γm.
Hence val (Γm) ≤ val (Γm+1) ≤ val (Γ), from which follows v = limm→∞ val (Γm) ≤ val (Γ). �

Using Lemma 4.1 we can now prove the following.

Theorem 4.2. Given any graph G and the corresponding CiR game Γ played with c (G) cops,
val (Γ) exists and satisfies

val (Γ) = lim
m→∞

val (Γm) .

Furthermore, there exists a strategy σ̂C such that

sup
σR∈SR

E (T | σR, σ̂C ,Γ) = val (Γ) (15)

and, for every ε > 0 there exists an mε and a strategy σ̂εR such that

∀m ≥ mε : val (Γ)− ε ≤ inf
σC∈SC

E (T | σ̂εR, σC ,Γm) . (16)

Proof. The theorem is a rephrasing of Gurevich’s Theorem 1 [23] and his proof can also be used
here, except for the following two points.
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(1) Gurevich assumes E (T | σR, σC ,Γ) is bounded:

∃M : ∀ (σR, σC) : |E (T | σR, σC ,Γ)| ≤M

This is not necessarily true for CiR. But, as he points out [23, p.372], this assumption
can be removed, provided the sequence {val (Γm)}∞m=0 is bounded; in the CiR game this
is true because of Theorem 2.1 (as discussed in the proof of Lemma 4.1).

(2) Gurevich studies games in which the two players move simultaneously. In CiR this is
not the case but, since C never sees R’s move, we can (as already mentioned) rearrange
the order of moves and have the moves (Yt−1, Xt) take place simultaneously.

Other than these two points, Gurevich’s proof applies exactly to the current theorem. �

Remark. From (15) we see that C has an optimal strategy. From (16) we see that, for every
ε > 0, R has an “ε-optimal” strategy, which is uniformly good (i.e., for all m ≥ mε).

We now can replace equation (3) with a rigorous definition of cti (G).

Definition 4.3. Given a graph G, we define the invisible capture time of G to be

cti (G) = val (Γ)

where the game Γ is played on G with c (G) cops.

Hence cti (G) is not necessarily an achieved expected capture time, but it can be approximated
within any ε > 0 by using strategies σ̂εR and σ̂C .

4.2. Drunk Robber. We now turn to the drunk variant of CiR. Our goal is to rigorously define
dcti (G) by proving the existence of an optimal cop strategy. We present a simple and short
proof, based on the reduction of Gurevich’s argument [23] to the one-player case. Our proof
is useful to illustrate the issues involved, and may also have some independent interest. Since
a single player is involved, the situation is simpler than in the adversarial variant. In fact, as
we will now explain, the drunk variant of CiR is a partially observed Markov decision process
(POMDP) [33, 39, 55].

The robber process Yt is a Markov chain on V , with transition probability matrix P . As
explained in [29], the joint process (Xt, Yt) is also a Markov process on the extended state space
(V × V ) ∪ {λ}, where λ is the capture state. (Xt, Yt) is governed by the controlled transition
probability matrix P (Ut), where Ut = Xt is the control variable (selected by C) which changes
the transition probabilities [29]. In particular, P (Ut) assigns probability 1 to transitions from
“diagonal” states (Xt, Xt) to the capture state λ. C’s goal is to select the sequence U0, U1, . . .
so as to minimize expected capture time. The state (Xt, Yt) is partially observable by C, since
he never knows Yt.

We will use the notation of Section 4.1 denoting, however, the full one-player game by Γ and
the truncated one-player game by Γm. We also need the following facts.

(1) SC , the space of cop strategies, is compact. This is so by Tychonoff’s theorem, since SC
is a product of probability spaces and the probabilities are on finite event sets.

(2) For every m ∈ N0, E
(
T | σC ,Γm

)
is a continuous function of σC (with domain SC). This

is the case because E
(
T | σC ,Γm

)
depends continuously on a finite number of variables.

C must select a strategy σC which minimizes

E
(
T | σC ,Γ

)
= E

(
∞∑
t=0

1 (Xt 6= Yt) | σC ,Γ

)
;
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here 1 (Xt 6= Yt) is the indicator function of the event Xt 6= Yt; this is a typical infinite horizon,
undiscounted POMDP problem. Such problems have been studied by several authors [47, 54]
who prove the existence of a minimizing strategy for a quite general setup using rather involved
proofs.

Note that, similarly to the adversarial variant, Pr
(
T | σC ,Γm

)
is well defined (for every σC)

and can be extended to Pr
(
T | σC ,Γ

)
. Hence E

(
T | σC ,Γm

)
, E
(
T | σC ,Γ

)
are well defined for

every σC ∈ SC . Let us define

val
(
Γm
)

= inf
σC∈SC

E
(
T | σC ,Γm

)
,

val
(
Γ
)

= inf
σC∈SC

E
(
T | σC ,Γ

)
.

We then have the following.

Theorem 4.4. Given any graph G and the corresponding CiR game Γ, we have

val
(
Γ
)

= lim
m→∞

val
(
Γm
)
.

Furthermore, there exists a strategy σ̃C such that

E
(
T | σ̃C ,Γ

)
= val

(
Γ
)
.

Proof. We have

inf
σC∈SC

E
(
T | σC ,Γm

)
≤ inf

σC∈SC
E
(
T | σC ,Γm+1

)
≤ inf

σC∈SC
E
(
T | σC ,Γ

)
.

Hence
val
(
Γm
)
≤ val

(
Γm+1

)
≤ val

(
Γ
)
≤ E

(
T | σC ,Γ

)
<∞,

where σC is the random-walking strategy, which is guaranteed to capture the robber in finite
expected time. Hence v = limm→∞ val

(
Γm
)

exists and v ≤ val
(
Γ
)
.

Now, in val
(
Γm
)

= infσC E
(
T | σC ,Γm

)
, the infimum is achieved by some σ̃

(m)
C (since

E
(
T | σC ,Γm

)
is a continuous function of the σC probabilities, which take values in a com-

pact set). Define
Km =

{
σC : E

(
T | σC ,Γm

)
≤ v
}
.

Since E
(
T | σ̃(m)

C ,Γm

)
≤ v, every Km is nonempty. Also, val

(
Γm
)
≤ val

(
Γm+1

)
≤ v implies

that Km+1 ⊆ Km. As mentioned, E
(
T | σC ,Γm

)
is a continuous function on SC and SC is

compact. For every m, Km is the preimage of the compact set [0, v], hence Km is compact. It
follows that

K∞ =
∞⋂
m=0

Km

is nonempty. So let us take some σ̃C ∈ K∞. Then

E
(
T | σ̃C ,Γ

)
= lim

m→∞

m∑
t=0

t · Pr
(
T = t | σ̃C ,Γ

)
= lim

m→∞

m∑
t=0

t · Pr
(
T = t | σ̃C ,Γm

)
= lim

m→∞
E
(
T | σ̃C ,Γm

)
≤ v.

In other words, we have val
(
Γ
)
≤ v. Hence val

(
Γ
)

= v and is achieved by σ̃C . �

We now provide a formal definition of dcti (G) (to replace equation (4)).
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Definition 4.5. Given a graph G, we define the invisible drunk capture time of G to be

dcti (G) = val
(
Γ
)

where the game Γ is played on G.

4.3. Discussion. The results of Section 4.2 show that for every graph G there is an optimal
average capture time dcti(G) and the cop player can catch the drunk robber in dcti(G) turns
of the game (on the average) if he plays the optimal strategy σ̃C . The actual computation
of dcti(G) and σ̃C is the subject of ongoing research in the POMDP community. While the
problem is well understood in principle (an optimality equation must be solved, similar to the
one presented in [29] for the CR problem) and despite much effort, currently available POMDP
algorithms are not computationally viable, even for moderate-size graphs (the interested reader
is referred to [34, 39] for an extensive discussion of the issues involved).

The results of Section 4.1 yield similar conclusions for the adversarial robber, with one differ-
ence. Namely, while an optimal strategy σ̂C is available to C, the best R can do is to approximate
cti(G) within ε (for any ε > 0) by using an ε-optimal strategy σ̂εR. In the computational direc-
tion, even less progress has been achieved than in the drunk robber case (see [52]).

We consider the development of efficient CiR algorithms important, especially from the ap-
plications point of view. Further, since exact algorithms quickly become intractable (even for
relatively small graphs), we believe that the solution will be obtained by algorithms which are
approximate but have performance guarantees. Such algorithms will probably make use of
domain-specific heuristics.

5. Some Bounds for General Graphs

In this section we provide a lower bound on dcti(G) and an upper bound on cti(G); both
bounds hold for any G. These results have independent interest and will also be used in Section 6
to obtain dcti(G) and cti(G) for special graph families. As already stated, we assume that K,
the number of cops, equals c(G), the minimum number of cops needed to capture the robber in
the traditional visible case.

5.1. General lower bound of dcti(G). Let G = (V,E) be any graph and (Xt)t∈N0 any search-
ing schedule for K ∈ N cops (the kth cop, k ∈ [K], moves from Xk

t−1 to Xk
t at time t ∈ N). For

t ∈ N0, let Zt =
⋃
k∈[K]{Xk

t } be the set of vertices occupied by the cops at the end of turn t.
We now define certain conditional probabilities which will be used to obtain the lower bound

on dcti(G).

p̄t(v) : Pr(“at t-th turn, after the cop move, robber is at v” | “robber has not been captured”),

p̂t(v) : Pr(“at t-th turn, after the robber move, robber is at v” | “before a possible capture”),

pt(v) : Pr(“at the completion of t-th turn, robber is at v” | “robber has not been captured”).

The following remarks should make clearer the meaning of the above probabilities. Effectively,
we break each turn of the game into three phases.

(1) In the first phase, the cops move and they may capture the robber or not. The probability
that the robber is at v, given that he has not been captured, is p̄t(v).

(2) In the second phase, the robber moves but a possible capture (i.e., if he entered a vertex
occupied by a cop) is not yet effected. Hence p̂t(v) is the probability that the robber is
at v (even if v contains a cop).
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(3) In the final phase possible captures (i.e., if the robber ran into a cop) are effected and
pt(v) is the probability that the robber is in v given that no capture took place.

So finally, the probability that the robber is caught at time t ∈ N is

ct =
∑
u∈Zt

(
pt−1(u) + p̂t(u)

)
.

We will now write the equations which govern the evolution of p̄t(v), p̂t(v), pt(v). It is easy
to see that, for every v ∈ V , p̄0(v) = 0 (the robber has not entered the graph yet). Note that
p̄0 is not a probability distribution; one can think of it as a useful function to get the desired
recursion started. It is easy to see that p̂0(v) = 1/n. Regarding p0(v) we have p0(v) = 0 for
v ∈ Z0, and

p0(v) =
p̂0(v)

1−
∑

u∈Z0
p̂0(u)

=
1/n

1− |Z0|/n
=

1

n− |Z0|
for v ∈ V \ Z0.

Suppose now that, at a given time t ∈ N, the game is still on; that is, the robber is still hiding
somewhere on the graph G. Suppose that we know the distribution of the position of the drunk
robber, pt−1 : V → [0, 1], at the end of the previous turn (let us repeat that this probability
is conditional on the robber not having been captured). The cops move from Xt−1 to Xt, and
so they capture the robber with probability

∑
u∈Zt

pt−1(u). Conditioning on the fact that the
robber is still not captured, let p̄t(v) be the probability that the robber is at vertex v after this
cop move. We have p̄t(v) = 0 for v ∈ Zt, and

p̄t(v) =
pt−1(v)

1−
∑

u∈Zt
pt−1(u)

(17)

for v ∈ V \ Zt.
Now, the robber performs a step of his random walk. Let p̂t(v) be the probability that he is

at vertex v after this move; that is,

p̂t(v) =
∑

u∈N(v)

p̄t(u)

deg(u)
. (18)

The probability of the robber being captured at the completion of his move is
∑

u∈Zt
p̂t(u).

Assuming, as before, that the robber is still lucky at the end of turn t, we get the formula for
the distribution of the robber’s position at the end of turn t (once again, conditioned on the
robber not having been captured). For v ∈ Zt: pt(v) = 0; for v ∈ V \ Zt:

pt(v) =
p̂t(v)

1−
∑

u∈Zt
p̂t(u)

. (19)

Equations (17)-(19), along with the initial conditions for t = 0, describe the evolution of
p̄t(v), p̂t(v), pt(v) for a given strategy of the cops. Now, we are ready to state a lower bound for
dcti(G) for a general graph G.

Lemma 5.1. Let G be any graph on n vertices with maximum degree ∆ = ∆(G) and minimum

degree δ = δ(G), and suppose that c(G) is such that ∆c(G)
δ(n−c(G))

≤ 1/24. Then,

dcti(G) ≥ δ · (n− c(G))

7e∆ · c(G)
.
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Proof. We will use the notation introduced earlier in this subsection. Let G = (V,E) be any
graph, and suppose that K = c(G) cops try to catch the drunk robber on this graph. We
may assume that n > K; the statement is trivially true otherwise. Let us define the following

deterministic function: M0 = ∆/δ
n−K , and for t ∈ N

Mt =
Mt−1

1− 2KMt−1

.

We will show that for any t ∈ N0 and any vertex v ∈ V we have

max
{
p̄t(v), p̂t(v), pt(v)

}
≤Mt

deg(v)

∆
. (20)

We prove the claim by induction. Since for each v ∈ V we have

max
{
p̄0(v), p̂0(v), p0(v)

}
≤ 1

n−K
= M0

δ

∆
≤M0

deg(v)

∆
,

the base case (t = 0) holds. Suppose now that (20) holds for t− 1 ∈ N0. It follows immediately
from (17) that for any v ∈ V

p̄t(v) ≤ pt−1(v)

1−
∑

u∈Zt
pt−1(u)

≤
Mt−1

deg(v)
∆

1−KMt−1

≤Mt
deg(v)

∆
.

From (18) we get that

p̂t(v) =
∑

u∈N(v)

p̄t(u)

deg(u)
≤
∑

u∈N(v)

Mt−1
deg(u)

∆

deg(u)(1−KMt−1)

=
∑

u∈N(v)

Mt−1

∆(1−KMt−1)
=

Mt−1
deg(v)

∆

1−KMt−1

≤Mt
deg(v)

∆

for any v ∈ V , so the very same bound holds for p̂t(v). Finally, from (19) we get that

pt(v) ≤ p̂t(v)

1−
∑

u∈Zt
p̂t(u)

≤
Mt−1

deg(v)
∆

1−KMt−1

(
1− KMt−1

1−KMt−1

)−1

=
Mt−1

deg(v)
∆

1− 2KMt−1

= Mt
deg(v)

∆
,

and the proof of the claim is complete.

Suppose that Mt−1 <
3∆

δ(n−K)
(which implies that Ms <

3∆
δ(n−K)

for 0 ≤ s < t, since Ms is

increasing with s). Then,

Mt ≤Mt−1

(
1− 6∆K

δ(n−K)

)−1

≤ . . . ≤M0

(
1− 6∆K

δ(n−K)

)−t
≤ ∆

δ(n−K)
exp

(
7∆Kt

δ · (n−K)

)
,

where the last inequality follows since 1
1−x ≤ e7x/6 for x ≤ 1/4 and ∆K

δ(n−K)
≤ 1/24. Therefore, it

takes at least τ = δ(n−K)
7∆K

steps for Mt to reach 3∆
δ(n−K)

. During this time period, the probability

that we catch the robber at a given time t ≤ τ is

ct =
∑
u∈Zt

(
pt−1(u) + p̂t(u)

)
≤ 2KMt ≤

6K∆

δ(n−K)
.

Hence, the probability that the robber is still not caught at time τ is at least(
1− 6K∆

δ(n−K)

)τ
≥ e−1.
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Finally, we get that the expected capture time is at least τ/e, and the proof is finished. �

Remark. Although the proof of Lemma 5.1 is applied with K = c(G), it can be easily modified

for any K cops. If K cops chase the drunk robber, the expected capture time is at least δ·(n−K)
7e∆·K

as long as ∆K
δ(n−K)

≤ 1/24. Moreover, let us mention that the constants in the statement of the

proof are not best possible.

5.2. General upper bound of cti(G). In this subsection, we investigate the adversarial robber
case providing a universal upper bound for the capture time.

Lemma 5.2. Let G be any graph of n vertices with maximum degree ∆ = ∆(G), cop number

c(G), and diameter D = D(G). Let T̂ denote the maximum number of steps it takes for c(G)
cops to catch the visible robber, when they use an optimal strategy (independently of the position
of the robber). Then,

cti(G) ≤ (T̂ +D) · (∆ + 1)T̂ · n. (21)

Proof. We will introduce a cop strategy by which the adversarial robber will be captured in at

most (T̂ + D) · (∆ + 1)T̂ · n time steps (even if he knows the strategy in advance and plays
optimally against it).

The cop strategy is executed in rounds, each round consisting of one or more turns of the
game. In each round the cops first move to those vertices from which they can capture the

visible robber (independently of his position) in at most T̂ steps. (Such a T̂ < ∞ exists for
every G, since c(G) cops suffice to capture the visible robber in finite time.) Note that in the
first round the cops start immediately from the aforementioned vertices. At any rate, once the
cops are there, they uniformly at random guess the current position of the robber, and then at

each of the next T̂ steps they uniformly at random guess the behaviour of the robber and apply

their optimal move for this guessed behaviour. The round is over T̂ steps after the cops arrived
at their optimal starting position. If the robber has not been captured by then, the cops start
the next round, following the same strategy.

In each round, it takes at most D steps for the cops to go back to the optimal starting position;

after that they move T̂ additional steps in which the robber might be caught. In order to catch
the robber during one round, it suffices that the cops guess correctly the position of the robber
at the start of the round (which happens with probability 1

n
) and also guess correctly the move

of the robber in each of the following T̂ steps. Since the robber at each vertex has at most ∆+1
choices (he can move to any of the at most ∆ neighbours, or he can stand still), in each step the
probability of the cops making the right choice is 1

∆+1
. Thus, capture in a round happens with

probability at least 1

n·(∆+1)T̂
. Since the bounds on the number of a round hold independently

of the starting point, consecutive rounds are independent, and the expected number of rounds

until the robber is caught is at most n · (∆ + 1)T̂ . Hence, cti ≤ (T̂ + D) · (∆ + 1)T̂ · n and the
proof is complete. �

Remark. The bound of (21) does not mean that cti(G) is O(n). Both ∆ and T̂ depend on G
and hence on n, the number of vertices.

6. The Cost of Drunkenness for Special Graph Families

We will now show that, by restricting ourselves to some particular graph families, we can
obtain non-trivial bounds on the iCOD. Paths and cycles were considered in [29], so we state
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the results only (Subsection 6.1), and we also give in the same subsection a proof for cliques.
The complete d-ary tree of depth L is studied next (Subsection 6.2), and then we study the grid
(Subsection 6.3). Finally, in Subsection 6.4, we give an example of a family of graphs (brooms)
showing that Fi(G) can be arbitrarily close to any value in [2,∞).

6.1. Paths, cycles and cliques. Recall that for a path Pn and a clique Kn on n ≥ 1 vertices
we have c(G) = 1, whereas for a cycle Cn on n ≥ 4 vertices we have c(G) = 2. The following
two theorems have been proved in [29].

Theorem 6.1. Let Pn be the path of n vertices. Then cti (Pn) = n− 1 and

n

2

(
1−O

(
log n

n

))
≤ dcti(Pn) ≤ n− 1

2
.

In particular, dcti(Pn) = (1 + o(1)) · n
2

and the cost of drunkenness is

Fi(Pn) =
cti(Pn)

dcti(Pn)
= 2 + o(1).

Theorem 6.2. Let Cn be the cycle of n vertices. Then cti (Cn) = n−1
2

and

n

4

(
1−O

(
log n

n

))
≤ dcti(Cn) ≤ n− 1

4
.

In particular, dcti(Cn) = (1 + o(1))n
4

and the cost of drunkenness is

Fi(Cn) =
cti(Cn)

dcti(Cn)
= 2 + o(1).

Now, we will investigate another simple family of graphs for which the cost of drunkenness is
tending to 2.

Theorem 6.3. Let Kn be the clique of n vertices. Then cti (Kn) = n − 1 and dcti(Kn) =
(1 + o(1))n

2
, and so the cost of drunkenness is

Fi(Kn) =
cti(Kn)

dcti(Kn)
= 2 + o(1).

Proof. In order to deal with the drunk version, we use the notation introduced in Subsection 5.1.
Regardless of the strategy used by the cop, it follows from (18) that for every v ∈ V and t ∈ N

p̂t(v) =
∑

u∈N(v)

p̄t(u)

deg(u)
≤ 1

n− 1
= (1 + o(1))/n;

and in particular (since p̄t(X
1
t ) = 0) we have

p̂t(X
1
t ) = 1/(n− 1) = (1 + o(1))/n. (22)

Moreover, from (19), for every v ∈ V and t ∈ N we have

pt(v) ≤ p̂t(v)

1−
∑

u∈Zt
p̂t(u)

=
p̂t(v)

1−O(n−1)
= (1 + o(1))p̂t(v) ≤ (1 + o(1))/n. (23)

On the other hand, by an averaging argument, it is always possible for the cop to select a vertex
X1
t so that

pt−1(X1
t ) ≥ 1/n. (24)
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Recalling the definitions of pt(v) and p̂t(v), the probability that the robber is caught at time
t ∈ N (provided that he was alive at time t − 1 and both players play as best as possible) is
ct = pt−1(X1

t ) + p̂t(X
1
t ). Using (22)-(24) we get

(2 + o(1))/n ≤ ct = pt−1(X1
t ) + p̂t(X

1
t ) ≤ (2 + o(1))/n,

i.e., ct = (2 + o(1))/n and so dcti(Kn) = (1/2 + o(1))n.
For the adversarial version, we note that the cop performing a random walk catches the robber

at any time t with probability 1/(n− 1) (again, conditioning on the fact that the robber is not
caught yet). We have cti(Kn) ≤ n − 1. To obtain a lower bound for cti(Kn), suppose that the
robber is not caught and occupies vertex r; the cop occupies vertex c 6= r. The robber can use
the following strategy: stay at r or go to any vertex v ∈ V \ {r, c} with uniform probability
(that is, each event holds with probability 1/(n− 1)). This strategy guarantees that, regardless
of what the cop is doing, the probability of being caught in the next round is at most 1/(n− 1).
We have cti(Kn) ≥ n− 1 and the proof is finished. �

6.2. Trees. We restrict ourselves to Td,L, the complete d-ary tree of depth L, for d ≥ 2. This

tree has n = dL+1−1
d−1

vertices and M = dL leaves. We know that one cop suffices to capture
the robber on any tree, so let us consider a game played by a single cop and a robber. In this
subsection, we will show the following results.

Theorem 6.4. Let G = Td,L be the complete d-ary tree of depth L with n = dL+1−1
d−1

vertices.
Then,

2LdL−1 · (1− o(1))
d− 1

d
≤ cti(G) ≤ 2LdL−1 · (1− o(1)).

In particular, cti(G) = Θ(n log n).

Theorem 6.5. Let G = Td,L be the complete d-ary tree of depth L with n = dL+1−1
d−1

vertices.
Then,

dcti(G) = Θ(n).

The following corollary is an immediate implication of these two theorems.

Corollary 6.6. Let G = Td,L be the complete d-ary tree of depth L with n = dL+1−1
d−1

vertices.
The cost of drunkenness of G is

Fi(G) =
cti(G)

dcti(G)
= Θ(log n).

Proof of Theorem 6.4. Since c(G) = 1, the (invisible) robber is chased by a single cop. To
simplify the notation we use Xt = X1

t for a position of the cop at time t (this time the vector
Xt has one coordinate).

In order to give an upper bound on cti(G), we provide a strategy for the cop and show that,
independently of the robber’s behaviour, in expectation, the cop will catch the robber after
at most a certain number of steps. Denote by a preleaf a vertex at distance 1 from any leaf.
Consider the following strategy of the cop:

(1) Start at the root,
(2) Choose uniformly at random a preleaf v and go there,
(3) Choose a random permutation of the leaves below v and visit them in this order, always

returning to the preleaf v,
(4) Return to the root,
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(5) Repeat from step 2 down.

Similarly to Lemma 5.2, a round is a sequence of steps starting at the root, visiting a preleaf and
all its leaves and going back to the root. Note that each round consists of 2L + 2(d− 1) steps.
Observe that the cop’s strategy in step (2) is equivalent to choosing at each layer 0 ≤ i ≤ L−2 a
random vertex among all neighbours at layer i+ 1 with probability 1

d
. Note that, independently

of the robber’s strategy, he is caught in each round with probability 1
dL−1 . Indeed, provided that

the robber is in the subtree below the cop (at some step 0 ≤ i ≤ L − 2), the probability that
this is also true at the next round is 1/d. If this property is preserved from the beginning of
the round until step L− 2, the robber has no chance to survive and is caught after visiting all
leaves.

Since all rounds are independent, the expected number of rounds needed to capture the robber
using this strategy is dL−1, and thus

cti ≤ dL−1(2L+ 2(d− 1))− L− (d− 1), (25)

since in the last round the cop does not have to return to the root (and so he saves L moves),
and he has to visit only half of the leaves (in expectation) before catching the robber (and so
he saves another 2(d− 1)− 2d

2
= d− 1 moves, in expectation).

For the lower bound, we provide a strategy for the robber against which any cop will need
at least a certain number of rounds, in expectation. The robber strategy depends on the cop’s
moves and can be briefly described as follows: the robber always tries to be (after his move)
at distance 2 from the cop. As a result, the distance between players is never larger than 3.
Moreover, the robber is trying to stay at the layer above the cop, if it is possible. Let us now
describe the robber strategy in more detail.

(1) For t = 0. After the cop decides to start at X0, the robber selects a vertex Y0 at distance
2 from the cop.
(a) If X0 is located at layer i ≥ 2, then Y0 is the unique vertex at the layer i− 2.
(b) If X0 is at the first layer, then the robber chooses (uniformly at random) a vertex

that is also at the first layer but is different from X0.
(c) Finally, if X0 is the root of Td,L, then the robber chooses (uniformly at random) any

vertex at the second layer.
(2) For t ≥ 1. The cop moves from Xt−1 to Xt, the robber is at Yt−1, and is about to move.

There are a number of possibilities to deal with.
(a) dist(Xt, Yt−1) = 0: the game ends.
(b) dist(Xt, Yt−1) = 1 and no neighbour of Yt−1 is at distance 2 from Xt (the robber is

at a leaf): the robber stays at the same vertex; that is, Yt = Yt−1.
(c) dist(Xt, Yt−1) = 1 and there is a neighbour of Yt−1 at distance 2 from Xt: the robber

chooses (uniformly at random) a vertex at distance 2 from Xt that is as close to the
root as possible.

(d) dist(Xt, Yt−1) = 2: the robber does nothing; that is, Yt = Yt−1.
(e) dist(Xt, Yt−1) = 3: there is a unique neighbour of Yt−1 at distance 2 from Xt; the

robber goes there.

It is easy to check that, under this strategy, the distance between the cop and the robber never
becomes greater than 3.

Assume that the robber uses the randomized strategy described above; we will show that,
even if the cop is aware of this, the capture time will be Ω(n log n) and so cti(G) will be of at
least the same order. Observe that the the robber will only be caught in a leaf. Moreover, any
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optimal cop strategy must start either at the root or at a neighbour of the root, as otherwise
the robber chooses a vertex above the cop and the cop is forced to move towards the root. If
the cop starts at the root, then he catches the robber on a leaf if, when in layers 0 ≤ i ≤ L− 2,
he chooses always the subtree of the robber. The advantage of starting at a neighbour of the
root is this: since the cop knows the strategy used by the robber, he infers that the robber is in
one of the d−1 other subtrees (not d, as before). This is a much bigger advantage comparing to
the additional step back to the root. Hence, this strategy is slightly better and we will consider
only this one. (Of course, this applies to the first round of moves only, so starting from the root
has exactly the same asymptotic expected capture time.) Note that the probability of choosing
the right subtree after going back to the root is 1

d−1
· (1

d
)L−2, since at consecutive layers there is

no possibility to obtain partial information about the position of the robber except by checking
leaves. The cop does not necessarily have to check all leaves (although this is clearly the best
strategy), and thus in order to get a lower bound we will not count the time it takes to check
these leaves (we count only the time it takes him to check one leaf). Also, after having exploited
all leaves of a preleaf (we can assume the cop did this, since we do not count these extra steps),
the cop has to turn back to the root to continue exploiting other subtrees, as otherwise the
robber will never be caught.

By the same argument, avoiding the subtree the cop comes from, the probability that in the
next sequence of steps from the root to a leaf the cop catches the robber is again 1

d−1
(1
d
)L−2.

Since one way to one leaf and back takes at least 2L steps, the expected capture time for any
cop strategy is at least

cti(G) ≥ 2L · (d− 1) · dL−2 − L, (26)

since in the last round the cop does not have to get back to the root. Thus, combining (25)
and (26), we see that cti(G) = Θ(LdL) = Θ(n log n). �

Proof of Theorem 6.5. We consider the drunken robber performing a random walk on G = Td,L,
starting from a vertex chosen uniformly at random. The lower bound follows from Lemma 5.1,
since ∆(G) = d+ 1, δ(G) = 1, and c(G) = 1. We have

dcti(G) ≥ n− 1

7e · (d+ 1)
= Ω(n). (27)

For an upper bound on dcti(G), we analyze the expected capture time of a cop standing still at
the root vertex. Denote by ej the expected capture time if the robber starts at level j (the root
is considered to be at level 0). By definition, e0 = 0, eL = 1 + eL−1 and

ej = 1 +
1

d+ 1
ej−1 +

d

d+ 1
ej+1

for 1 ≤ j ≤ L − 1. Since eL−1 = 1 + d
d+1

(1 + eL−1) + 1
d+1

eL−2, we have eL−1 = 2d + 1 + eL−2.

Similarly, eL−2 = 2d2 + 2d+ 1 + eL−3, and in general

ej = 2

L−j∑
k=0

dk − 1 + ej−1
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for 1 ≤ j ≤ L− 1. Thus,

e1 = 2
L−1∑
k=0

dk − 1,

e2 = 2
L−2∑
k=0

dk − 1 + 2
L−1∑
k=0

dk − 1,

eL−1 = 2
L−1∑
r=1

r∑
k=0

dk − (L− 1) = 2
L−1∑
r=1

dr+1 − 1

d− 1
− L+ 1

and,

eL = 2
L−1∑
r=1

dr+1 − 1

d− 1
− L+ 2 =

2

d− 1

L∑
r=2

dr − 2L− 2

d− 1
− L+ 2

=
2dL+1 − 2

(d− 1)2
− 2 + 2d

d− 1
− 2L− 2

d− 1
− L+ 2

=
2dL+1 − 2

(d− 1)2
− 2d+ 2L

d− 1
− L+ 2.

Since ei ≥ ei−1 for all 1 ≤ i ≤ L,

dcti(G) ≤ eL = O(n). (28)

Combining (27) with (28), we obtain dcti(G) = Θ(n), and the proof is complete. �

6.3. Grids. In this subsection, we investigate the square grid PN�PN . The result can be easily
generalized to rectangle grids. The adversarial robber case seems to be non-trivial. Our upper
bound follows from the general upper bound provided in Lemma 5.2. We have no good lower
bound so determining the order of cti(PN�PN) for a grid remains an open problem. We do
better in the drunk robber case, but this can also be improved.

Theorem 6.7. Let PN�PN be the square N ×N-grid with n = N2 vertices. Then

cti(PN�PN) = O(n3/25
√
n).

Proof. Since D = 2N , T̂ = N − 1, ∆ = 4, it follows from Lemma 5.2 that

cti(PN�PN) ≤ (3N − 1)n5N−1 = O(n3/25
√
n),

and the result holds. �

Theorem 6.8. Let PN�PN be the square N ×N-grid with n = N2 vertices. Then

Ω(n) = dcti(PN�PN) = O(n log n).

Proof. Since c(PN�PN) = 2, ∆ = 4, and δ = 2, it follows from Lemma 5.1 that dcti(PN�PN) ≥
n

28e
= Ω(n) and thus the lower bound follows.

The upper bound will be obtained by the following cop strategy σ0: both cops start at the
lower left corner of the grid and stay there for the duration of the game. Capture will take place
when the drunk robber reaches the corner. Take any two vertices x, y ∈ V . Without loss of
generality we can assume that the grid is a subgrid of the integer lattice, each edge being of unit
length. For a random walk on this subgrid, the expected time to go from x to y and back to x
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is the commute time between x and y; we will denote it by φx,y. By Corollary 2.21 of [36], the
commute time for any vertices x, y is

φx,y = γR(x, y), (29)

where γ = 2|E| and R(x, y) is the effective resistance from x to y, i.e., the resistance of the grid
when it is considered as an electrical network with input vertex x, output vertex y and each
edge having resistance of one Ohm. Each vertex of the grid has degree at most 4; hence

γ ≤ 4N2 = 4n. (30)

Moreover, by Proposition 2.15 of [36], we have the following result: there exists a positive
constant c such that, for any vertices x, y of the integer grid which are at distance k, we have

1

c
log k ≤ R(x, y) ≤ c log k. (31)

Hence, for an
√
n ×
√
n grid, φx,y ≤ c′n log n for some constant c′ > 0. In particular, if we

denote by u the lower left corner, for any vertex z corresponding to the starting position of the
robber, φu,z = O(n log n). Since the commute time is an upper bound for the expected capture
time having both cops standing still at u, the upper bound follows. �

Remark. We showed an upper bound of O(n log n) but we conjecture that, in fact, the lower
bound is the right one; that is, dcti(PN�PN) = Θ(n). The cop’s strategy of standing still is not
good enough to achieve it but running on a grid (in a smart way) should do the job. Suppose
that both cops start at the right-upper corner. By an averaging argument, there is a row in the
grid such that the probability that the robber is there (provided that he is not caught yet) is at
least 1/

√
n. Both cops go down the grid, through this row, and down to the left-bottom corner.

The fact that the robber is not caught yet decreases the probability that he is close to the cops.
However, the propagation of that information has the same speed as the cops so it should be true
that they catch the bad guy with probability Ω(1/

√
n) before they reach the opposite corner.

If the robber is not caught, then they select another row (again, the one which maximizes the
probability of having the robber there) and run through this row back to the original corner.
They repeat this until the robber is finally caught. Since the length of each phase is 2

√
n, we

should get that the expected capture time is O(n). Unfortunately, we do not know how to
overcome some technical problems with this argument so we leave it as a conjecture.

6.4. Brooms. In this section we consider a family of graphs which we call brooms. The broom
graph B(c, n), with n vertices and a parameter c (0 < c ≤ 1) is illustrated in Fig. 2. It consists

Figure 2. The broom graph B(c, n).
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of a path with cn vertices, joined at one endpoint (the center of the broom) with a star of
(1− c)n vertices. The end of the broom is the other endpoint of the path.

Bounding cti(B(c, n)) and dcti(B(c, n)) is interesting as an illustration of the game-theoretic
approach. Perhaps more importantly, Corollary 6.11 shows that, for large n and appropriately
selected c, Fi(B(c, n)) can be arbitrarily close to any value in [2,∞). Note that Corollary 6.11
holds for every (sufficiently large) n, i.e., it is a property of the entire broom family.

Theorem 6.9. dcti(B(c, n)) = (1 + o(1)) c
2n
2

.

Theorem 6.10. cti(B(c, n)) = (1 + o(1))n.

Corollary 6.11. For any 0 < c ≤ 1,

Fi(B(c, n)) =
cti(B(c, n))

dcti(B(c, n))
= (1 + o(1))

2

c2
.

Hence, for every a ∈ [2,∞) there exists c ∈ (0, 1] such that Fi(B(c, n)) = (1 + o(1))a.

Proof of Theorem 6.9. One possible strategy for the cop is the following: start at the center of
the broom, wait there for one step, and then go to the end of the broom. Since the robber’s
position is distributed uniformly at random, and the robber has to move in every step, we have
the following cases.

(1) With probability 1− c the robber starts on a leaf of the star and is caught in O(1) steps.
(2) With probability c the robber starts on any vertex of the path and (starting at t ≥ 2)

the cop starts moving towards the end. In this case the problem is reduced to catching a
drunk robber on a path of cn vertices and this, by Theorem 6.1, takes (1 + o(1)) cn

2
steps

in expectation

Hence

dcti(B(c, n)) ≤ (1− c) ·O(1) + c · (1 + o(1))
cn

2
= (1 + o(1))

c2n

2
.

On the other hand, this is clearly the best strategy: with probability c the robber is on one
of the vertices of the path and, since the vertices of the star do not help, in this case, again
by Theorem 6.1, the expected time to be caught is (1 + o(1))cn/2. Hence, dcti(B(c, n)) =

(1 + o(1)) c
2n
2
. �

Proof of Theorem 6.10. For an upper bound we assign the following strategy for the cop. He
starts at the end of the broom, moves to the center and, once there, he cheks all leaves in random
order without repetitions. The robber’s best response is to start at a randomly selected leaf and
stay there until caught (actually he could move into a different leaf or even outside of the star
as long as the cop is “sufficiently distant”, but this will not change expected capture time). The
expected capture time under these strategies is the sum of two terms:

(1) the cop needs cn steps to go from the end to the center;
(2) once there, the cop will on the average need to check (1− c)n/2 leaves before he captures

the robber and every such check requires two steps (one from the center to the leaf and
one back), except the very last move which requires only one step.

Hence
cti (B (c, n)) ≤ cn+ 2 (1− c)n/2 = n.

A lower bound for cti(B(c, n)) can be established by describing a robber strategy and proving
that it is optimal. Before we describe such a strategy we need some additional notation. Let us
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assign the “coordinate” 0 to the end of the broom and the “coordinate” cn to the center. The
cop’s initial position X0 can then be written as bn, where b ∈ [0, c] (actually this excludes the
possibility that X0 is a leaf but, as we will soon see, we need not concern ourselves with this
case). Note that b is a parameter of the cop’s strategy; also, the robber will observe b before he
makes his first move.

Before the game starts, the robber announces that he will use the following strategy: he will
go to the end of the broom with probability q = q(b) = b, and to a randomly chosen leaf with
probability 1 − q. The cop is aware of this and his only reasonable responses (after having
started at bn) are the following.

(1) With probability p, the cop can go towards the end of the broom, and then back to the
center to sweep all leaves.

(2) With probability 1 − p he can go to the center, sweep a randomly chosen x-fraction of
the leaves (for some x ∈ [0, 1]), then move to the end of the broom, then go back to the
center, sweeping all leaves (of course, for x = 1, he will have captured the robber by the
time he reaches the end, at the latest; so he will not need to revisit the center).

We do not consider the possibility that the cop starts at a leaf because this does not influence
the asymptotic behavior of the expected capture time; this justifies our previous claim that the
cop’s initial position can be parametrized by bn.

It is easily seen that the above family of strategies (parametrized by (b, p, x)) guarantees
capture (of course capture may take place before the full schedule is executed). Note that if c is
exactly 1, we have a path, and cti(B(c, n)) = (1+o(1))n. Also, if b is exactly 0, the cop starts at
the end of the broom, and the robber’s only reasonable strategy is to hide at a randomly chosen
leaf. In this case, the expected capture time is also (1 + o(1))n. Excluding these cases from the
following analysis, we can break down the expected capture time into the following cases.

R starts at C moves towards Prob. Distance Travelled
end end bp bn
a leaf end (1− b) p (b+ c+ (1− c))n
end center b (1− p) ((c− b) + 2x(1− c) + c)n
a leaf center (1− b) (1− p)x ((c− b) + x(1− c))n
a leaf center (1− b) (1− p) (1− x) ((c− b) + (2x(1− c) + 2c+ (1− c))))n

Table 1. The possible ways in which the robber can be captured.

The case in which the robber hides in the leaves and the cop starts by moving towards the
center is broken down to two subcases (and hence requires two rows in the above table).

(1) In the first subcase, the cop checks an x-fraction of the leaves and captures the robber,
before visiting the end of the broom. This happens with probability x and the average
number of leaves checked is x · (1− c) · n/2.

(2) In the second subcase, the cop checks x-fraction of the leaves, fails to capture the robber,
visits the end of the broom and then returns to check all the leaves (and so capture the
robber with certainty). This happens with probability 1 − x and the number of leaves
checked is x · (1 − c) · n during the first visit and (1 − c) · n/2 (on the average) during
the second visit.

The expected capture time for a given value of c is E(T ) = (1 + o(1))fc(p, b, x) · n and
fc(p, b, x) · n is obtained by multiplying the entries of the last two columns of Table 1, adding
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and performing some algebra. We finally get

fc (b, p, x) = (−1 + b+ c+ p− bc− bp− cp+ bcp)x2 +

(1 + b− 3c− p+ bc− bp+ 3cp− bcp)x+ (2c− 2b+ 2bp− 2cp+ 1) .

Hence fc(b, p, x) is a quadratic function in x, and (after some factorizations) can be rewritten
as follows: fc(b, p, x) = a2x

2 + a1x+ a0, with

a2 = −(1− p)(1− b)(1− c)
a1 = (1− p)(1− 3c+ bc+ b)
a0 = 2(1− p)(c− b) + 1.

Since a2 is negative (unless p = 1, where the whole function is zero), the parabola is downward
concave, and thus it achieves its minimum either at x = 0 or at x = 1. If x = 0, fc(b, p, x) =
a0 = 1 + 2(1 − p)(c − b) ≥ 1. If x = 1, fc(b, p, x) = a2 + a1 + a0 = 1, and thus the minimum
is achieved there. Thus, cti(B(c, n)) ≥ (1− o(1))n; this, together with the upper bound, shows
that the robber strategy is optimal and that cti(B(c, n)) = (1 + o(1))n. �

Remark. The broom B(c, n) is a combination of the path Pn and the star SN : high c values
make B(c, n) more like a path and low values more like a star. Accordingly, high c values
bring Fi(B(c, n)) closer to Fi(Pn) = 2 and low values increase Fi(B(c, n)) unboundedly, which
is similar to the behavior of Fi(SN) for large N .

7. The “Infinite Speed”Robber

In this section we change the rules of the game slightly. Suppose the robber is still invisible
but now is endowed with “infinite speed”. We remark that in the classic game of cops and
(visible) robber the cop number can have unbounded increase, if the robber is given additional
(finite) speed: in [21] it is proved that for an n × n-grid the cop number is Ω(

√
log n) (and, of

course, O(n)) if the robber has speed s = 2.
Here we are interested in iCOD for an “infinite-speed robber”, where we use the term “infinite

speed”for brevity. What we actually assume is that the robber has speed s ∈ N, i.e., during his
turn he can traverse at most s edges (as long as he does not go through a vertex containing a
cop) and we examine what happens in the limit when s tends to infinity. Let us note that the
adversarial robber can choose to traverse fewer edges or even stay in place. As for the drunk
robber, he simply performs s steps of a random walk on G; if during one of these steps he runs
into a cop, he is captured. Finally, the cops will still have unit speed.

Let us denote by c(G, s) the minimum number of unit-speed cops required to capture on G
(G is still assumed to be connected) the visible adversarial robber moving at speed s. By the
argument used in the proof of Theorem 2.1, c(G, s) is also the minimum required number of cops
for the invisible robber. Let us use cti (G, s) to denote the expected capture time given that
c(G, s) unit-speed cops chase an invisible, adversarial robber of speed s; dcti (G, s) and Fi (G, s)
are defined similarly. Obviously we have c (G, 1) = c (G), cti (G, 1) = cti (G), dcti (G, 1) =
dcti (G), Fi (G, 1) = Fi (G). We are interested in the limits

lim
s→∞

cti (G, s) , lim
s→∞

dcti (G, s) , lim
s→∞

Fi (G, s) .

In the case of drunk robber, it is actually quite easy to find lims→∞ dcti (G, s). Suppose C
has c(G, s) cops, and he keeps them stationary at some vertices u1, u2, . . . , uc(G,s). As s becomes
large, the robber essentially performs a random walk on G with ui (i ∈ [c(G, s)]) being absorbing
vertices. Since a random walker visits every vertex of G in finite expected time, the probability
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that the robber will hit an absorbing state during the first turn (conditional on not starting at

absorbing state) approaches 1 as s→∞. Hence lims→∞ dcti (G, s) = n−c(G,n)
n

.
Next let us note that, for the adversarial robber, s does not need to increase all the way to

infinity. With s = |V | = n, the robber can in one turn reach any vertex in G. In other words
lims→∞ cti (G, s) = cti (G, n). In short,

lim
s→∞

Fi (G, s) =
lims→∞ cti (G, s)

lims→∞ dcti (G, s)
=
cti (G, n)
n−c(G,n)

n

=
n

n− c(G, n)
cti (G, n) .

Hence we now must study cti (G, n). Let us first establish that cti (G, n) exists. The game
theoretic analysis of Section 4 holds for any value of s; a feasible robber strategy now specifies
(probabilities on) moves which traverse at most s edges without crossing a cop-occupied vertex.
Hence cti (G, n) is well defined.

It is easy to see that lims→∞ Fi (G, s) can take any value in N. For example, for the path Pn we
see immediately that lims→∞ Fi (Pn, s) = lims→∞

n
n−1

cti (Pn, s) = n. As an additional example,
let us consider lims→∞ Fi (SN , s) on the star SN . When CiR is played on SN , the adversarial
infinite-speed robber can move to any leaf in his turn; hence he has more options than the
unit-speed robber, who must remain in his original vertex for the entire game. However, let C
control a single cop, who starts at vertex 0, searches a randomly selected leaf (with repetitions)
at odd times and returns to 0 at even times. It is easy to see that this strategy is optimal and
its expected capture time (i.e., cti (G, s)) is (for any s ≥ 2):

cti (G, s) =
( ∞∑
t=1

(
N − 1

N

)t−1
1

N
(2t− 1)

)
− 1 = 2N − 1.

(One time step is subtracted because after capture the cop does not need to return to vertex 0.)
For the drunk robber we will have (for all s): dcti (G, s) = N

N+1
. Hence, recalling that n = N+1,

lim
s→∞

Fi (SN , s) =
(2N − 1) · (N + 1)

N
= Θ(n).

The example of the infinite speed robber on SN illustrates an additional interesting point.
Recall the graph search (GS) game [46]. Similarly to CiR, GS involves a team of searchers (cops)
and a fugitive (robber) who is invisible, adversarial and infinitely fast [22]. GS and CiR differ
in one respect: in GS the fugitive is assumed to reside in the edges, not the vertices of G. But
there are GS versions of node search and mixed search. Furthermore, in “classical”GS the cops
are not restricted to move along edges; but there is a variant of GS, called internal search, in
which this restriction is imposed. Let us simply state, without giving details, that the capture
mechanism of CiR is equivalent to that of internal mixed GS (the interested reader can check
this fact using [22] and the references therein).

We denote by c∞i (G) the minimum number of cops required to capture the invisible, adver-
sarial and infinitely fast robber on G; we denote by s (G) the minimum number of searchers
required to guarantee capture of the fugitive in G, using internal mixed search. One would
assume that these two games are equivalent and that s (G) = c∞i (G). However this is not the
case: in the SN example we have c∞i (SN) = 1 < 2 = s (SN). Hence, at least for some graphs,
we can have c∞i (G) < s (G). The reason for this is that in GS the fugitive is assumed to know
in advance the entire itinerary of the searchers (i.e., he is omniscient), while in CiR the robber
only knows the past cop moves (and it suffices that the cops have a strategy that guarantees
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capture in finite time with probability one, not to have a strategy that catches the robber in
finite number of steps.)

8. Conclusion

We have examined CiR, the invisible-robber version of the CR game. Our main interest was
in the cost of drunkenness Fi (G) which, as we have shown, exists for every graph G and can
get arbitrarily close to any value in [2,∞). To establish these results we have used concepts
from game theory and the theory of partially observable Markov decision processes. For several
families of graphs including stars, d-regular trees and grids we found (almost) exact bounds, and
moreover we gave general upper and lower bounds. Finally, we have briefly examined the CiR
variant in which the robber is infinitely fast and we have found, somewhat surprisingly, that the
corresponding cop number ci (G) can be smaller than the (internal mixed) search number s (G).

Our work can be extended in several ways. We first state some open problems.

(1) For a general graph G prove: |V (G)| ≥ 2⇒ Fi(G) ≥ 2. We would like to know whether
this is true because we have not found any graph G with both |V (G)| ≥ 2 and Fi(G) < 2.

(2) We want to characterize graphs by their c(G) and Fi(G) values. For instance: given
n ∈ N and a, b ∈ R characterize the set

{G : c (G) = n and Fi (G) ∈ [a, b]} .

This can be seen as a refinement of the well known characterization of graphs with
c(G) = 1.

(3) For the square grid, find asymptotically exact values of cti(PN�PN) and dcti(PN�PN).
We have obtained a subexponential upper bound on cti(PN�PN) but we have not been
able to find a nontrivial lower bound. For dcti(PN�PN) we showed the upper bound
of O(n log n) but we conjecture that, in fact, dcti(PN�PN) = Θ(n), as discussed in the
Remark right after the proof of Theorem 6.8.

(4) Characterize the set

{a : ∃G such that Fi(G) = a}.
As mentioned, Fi (G) can get arbitrarily close to any value in [2,∞). On the other hand,
there are values in [2,∞) which cannot be actually achieved by Fi(G) (for example Fi(G)
cannot equal an irrational number).

(5) Find necessary and sufficient conditions for c (G) = c∞i (G). The equality holds for
paths, stars and cliques; for what other types of graphs does it hold?

(6) Find necessary and sufficient conditions for c∞i (G) = s (G), where s(G) is the internal
mixed search number of G.

Finally, we list several future research directions.

(1) We have obtained tight bounds on Fi(G) for paths, cycles, cliques, trees and grids. Can
similar bounds be obtained for additional graph families (e.g., planar, bipartite, series-
parallel, chordal, high girth, geometric)? What about random graphs?

(2) The use of algorithms becomes necessary for graphs which cannot be treated analytically.
We want to develop tractable algorithms for the computation of cti (G), dcti (G),Fi (G)
and also of optimal search strategies. It is well established in the literature that exact
algorithms are computationally intractable; hence we intend to develop approximate
algorithms, along with performance guarantees.
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(3) In the drunk case, even a single immovable cop is enough to catch the robber on any
graph. Using either analytical methods or the algorithms mentioned in the previous
item, it will be interesting to compare cti(G) to the time needed by one cop to catch the
drunk robber on G, for various families of G.

(4) We have studied the cost of drunkenness under the “standard” random walk assumption
which (in our opinion) is a good description of “drunk” and unpredictable behavior. An
alternative is the “lazy” random walk (the robber can move to any neighboring vertex
or stay in his current vertex, all with equal probability). We expect that results under
this assumption will generally be similar to the ones we have obtained for the standard
random walk; however, we have also noticed certain differences which require careful
and, perhaps, lengthy analysis. Hence we defer this study to a future paper.

(5) Another assumption which we have used is that the drunk robber’s initial position is
uniformly distributed on the graph vertices. This assumption models the situation where
the cops and the robber enter the graph at the same time. Alternatively, one can assume
that the robber has been random-walking in the graph a long time before the cops
entered; hence his initial position follows the equilibrium distribution. Once again, we
believe that (a) this assumption will not change radically the nature of the problem, but
(b) the required analysis is sufficiently different to merit further research.

(6) Finally, while we have studied the cost of drunkenness, our results can also be used to
initiate a study (for both the adversarial and drunk variants) of the cost of invisibility.

This can be expressed by the ratios cti(G)
ct(G)

, dcti(G)
dct(G)

, the behaviour of which we will study

in the future.
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