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Abstract— The cops-and-robber (CR) game has been used
in mobile robotics as a discretized model of pursuit/evasion
problems. The “classical” CR version is a perfect information
game: the cop’s (pursuer’s) location is always known to the
robber (evader) and vice versa. More relevant to robotics are
versions where one (or both) player is invisible. In this paper we
study the extent to which the CR game becomes harder (for the
cop) when the robber is invisible. To this end we define the cost
of visibility (COV) and study its existence and mathematical
properties. We also compute COV analytically for particular
graph families (paths, cycles, trees, grids). Finally, we compute
COV numerically for several families of indoor environments; to
perform this computation we introduce the heuristic algorithm
Pruned Cop Search (PCS).

I. INTRODUCTION

Pursuit / evasion (PE) problems have been the subject of
extensive research in the last fifty years and much of this
research has been connected to robotics [6]. An important
subset of PE problems are cops-and-robber (CR) games [5]
played on graphs. In the current paper, inspired by Isler and
Karnad’s recent work [15], we study the role of information
in CR games.

By “information” we mean specifically the players’ loca-
tion. For example, we expect that when the cops know the
robber’s location (at every time t) they can do better than
when the robber is “invisible”. Our goal is to make the term
“better” precise.

Pursuit / evasion and related problems (search, tracking,
surveillance) often arise in mobile robotics; see the survey
[6]. A graph can be used to represent topologically the
environment (e.g., a building can be represented by a graph,
with vertices corresponding to rooms and edges correspond-
ing to doors). Hence the original problem is reduced to a
graph game played between the pursuers and the evader;
this approach has been utilized in several publications [3],
[4], [30], [31]. If it is further assumed that the evader is
not actively trying to avoid capture, the result is a one-
player graph game; this model has been used quite often
in mobile robotics [8], [11], [12], [20], [27] and especially
(when assuming random evader movement) in publications
such as [13], [19], [24], [28], [29], which utilize partially
observable Markov decision processes (POMDP, [10], [21],
[22]) .

Cops-and-robber variants form an important family of PE
graph games. Reviews of the graph theoretic CR literature
appear in [2], [5], [7]. In the “classical” CR variant [23] it is
assumed that the cops always know the robber’s location and
vice versa. The “invisible” variant, in which the cops cannot
see the robber (but the robber always sees the cops) has

received much less attention in the graph theoretic literature;
among the few papers which treat this case we mention
[14], [15], [16]; also [1] in which both cops and robber
are invisible. Both the visible and invisible CR variants
are natural models for discretized robotic PE problems; the
connection has been noted and exploited relatively recently
[14], [15], [31]. But the invisible drunk robber CR variant
is essentially identical to the POMDP model of PE which
has been used in several of the previously mentioned robotic
publications.

II. PRELIMINARIES

Let G = (V,E) be a fixed, finite, undirected, simple,
connected graph with n nodes. One robber and K cops (with
K ≥ 1) move along the edges of G in discrete time steps
t ∈ N0 = {0, 1, . . .}. The robber’s location is Yt and the
cops’ locations are Xt = (X1

t , X
2
t , . . . , X

K
t ) (t ∈ N0 and

k ∈ {1, 2, . . . ,K}). The game is played in turns; in every
turn first the cops choose Xt and then the robber chooses
Yt. For all t and k, {Xk

t−1, X
k
t } ∈ E or Xk

t−1 = Xk
t ;

similarly, {Yt−1, Yt} ∈ E or Yt−1 = Yt (i.e., only moves
along edges of G are allowed). Once the robber is caught
(which, in the adversarial version, can happen only after
the cops’ move; in the drunk version, it might also happen
after the robber’s move) he cannot move anymore. Given the
complete sequences of cops and robber moves, the capture
time is denoted by T and is defined as follows

T = min{t : ∃k such that Xk
t = Yt}

with T =∞ if no capture takes place. We assume the cops
are adversarial: they play optimally to capture the robber in
the smallest possible time. The robber can be in one of the
two modes.

1) Adversarial: he wants to avoid capture for as long as
possible and plays optimally toward this end.

2) Drunk: he performs a random walk on G such that,
for all ∀u, v ∈ V we have

Pr (Y0 = u) =
1

n
and (1)

Pr (Yt+1 = u|Yt = v) =

{ 1
|N(v)| iff u ∈ N(v)

0 otherwise
.

(2)

The cops’ locations are always known to the robber but
he can be either visible (his location is known to the cops)
or invisible (his location is unknown). Hence we have four
different CR variants, as detailed in Table I.



Adversarial Visible Robber av-CR
Adversarial Invisible Robber ai-CR
Drunk Visible Robber dv-CR
Drunk Invisible Robber di-CR

TABLE I
FOUR VARIANTS OF THE CR GAME.

In av-CR and ai-CR we assume that player C controls
the cops and wants to minimize T ; and player R controls
the robber and wants to maximize T . Let R’s payoff be T
and C’s payoff be −T ; then av-CR and ai-CR are two-player,
zero-sum games. In contrast, dv-CR and di-CR are one-player
games (no strategy of R player is involved).

In the following sections we present several theorems;
because of space limitations proofs are omitted; they can
be found in [16], [17].

III. COP NUMBER AND CAPTURE TIMES

Our main goal in this section is to rigorously define the
(expected) capture time for the various CR variants.
The av-CR Game. Since both cops and robber are visible
and the players move sequentially, av-CR is a game of perfect
information [18]. In such a game C loses nothing by limiting
himself to pure (i.e., deterministic) strategies of the form
sC (x, y): when the current cop / robber configuration is
(x, y) and it is C’s turn to play, sC (x, y) gives the next cop
moves. Similarly R loses nothing by using pure strategies
of the form sR (x, y). A pair (sC , sR) determines the entire
course of the game; in other words, the capture time is a
(deterministic) function T (sC , sR). Since ai-CR is a game
of perfect information, there exist optimal strategies ŝC and
ŝR which satisfy

min
sC

max
sR

T (sC , sR) = T (ŝC , ŝR) = max
sR

min
sC

T (sC , sR) .

T (ŝC , ŝR) is the value of the game and also depends on K,
the number of cops. This dependence appears explicitly in
the notation of the following definition.

Definition 3.1: We denote by ct (G,K) the optimal cap-
ture time T (ŝC , ŝR) when CR is played on G by K
adversarial, visible cops and one adversarial, visible robber.

Definition 3.2: The cop number of G is denoted by c (G)
and defined by c (G) = min {K : ct (G,K) <∞}.

Definition 3.3: The visible capture time of G is denoted
by ct (G) and defined by ct (G) = ct (G, c (G)).

It has been shown in [9] that, giveen c (G), ct(G) and
the optimal search strategies ŝC , ŝR can be computed in
polynomial time using a game theoretic version of value
iteration [25]. We have presented an implementation of this
version (CAAR: Cops Against Adversarial Robber) in [17].
As shown in [9], the following holds.

Theorem 3.4: Given a graph G and a number K ∈ N. If
K ≥ c (G), the algorithm CAAR computes ct (G,K) and
the optimal search strategies ŝC , ŝR in time O

(
n2K+3

)
;

conversely, if CAAR does not terminate then K < c (G).
The dv-CR Game. Here the robber is visible and performs a
random walk on G as indicated by (1)-(2). In the absence of

cops, Yt is a Markov chain on V , with transition probability
matrix P . In the presence of one or more cops, {Yt}∞t=0

is a Markov decision process (MDP) [25] with state space
V ∪ {λ} (λ is the capture state) and transition probability
matrix P (Xt) (i.e., Xt is the control variable, selected by C).
It is shown in [17] how to obtain P (x) from P . Hence T is a
random variable depending on X0, X1, . . .which C selects so
as to minimize the expected capture time E (T |X0, X1, . . .).
In fact (using standard results from [25]) C loses noth-
ing by determining X0, X1, . . . through a strategy function
sC (x, y); hence we can write E (T |sC). For every K ≥ 1
and every sC , E (T |sC) is well defined and finite; there exists
an optimal strategy ŝC which minimizes E (T |sC). Hence
we have the following.

Definition 3.5: We denote by dct (G,K) the optimal ex-
pected capture time E (T |ŝC) when CR is played on G by
K adversarial cops and one drunk visible robber. The drunk
visible capture time of G is denoted by dct (G) and defined
by dct (G) = dct (G, c (G)).

For any given K, value iteration can be used to determine
both dct (G,K) and the optimal strategy ŝC (x, y); one
implementation is our CADR (Cops Against Drunk Robber)
algorithm [17], which has the following properties.

Theorem 3.6: Given a graph G and some K ∈ N, CADR
computes a sequence

{(
s
(i)
C , E

(
T |s(i)C

))}∞
i=1

such that:

limi→∞ s
(i)
C = ŝc and limi→∞E

(
T |s(i)C

)
= E (T |ŝC) =

dct (G,K).
The ai-CR Game. In this game C cannot see R’s
moves: it is not a perfect information game. Both C and
R must use mixed strategies σC , σR. A mixed strat-
egy σC specifies, for every t, a conditional probability
Pr (Xt|X0, . . . , Xt−1) according to which C selects his
t-th move; similarly σR specifies, for every t, a con-
ditional probability Pr (Yt|X0, Y0, . . . , Xt−1, Yt−1, Xt). A
strategy pair (σR, σC), specifies probabilities for all events
(X0 = x0, . . . , Xt = xt, Y0 = y0, . . . , Yt = yt) and these in-
duce a probability measure which in turn determines R’s gain
(and C’s loss), namely E (T |σC , σR).

Denote the ai-CR game on a given G by Γ; since the
game can last an infinite number of turns, it is not clear that
Γ has a value. C can guarantee that he loses no more than
supσR

infσC
E (T |σC , σR) and R can guarantee that he gains

no less than infσC
supσR

E (T |σC , σR). We always have

sup
σR

inf
σC

E (T |σC , σR) ≤ inf
σC

sup
σR

E (T |σC , σR) ; (3)

by definition, the game will have a value if and only if
equality is achieved in (3). We have shown in [16] that Γ
does have a value for every graph G. To this end we have
first proved that invisibility does not increase the cop number.
More precisely, we have the following.

Theorem 3.7: On any graph G let σC denote the strat-
egy by which c (G) cops random-walk on G. Then
E (T |σC , σR) <∞ for every robber strategy σR.

This is somewhat surprising because we expect that ai-CR
is harder (from C’s point of view) than av-CR. As we will



see in Section III, the increased difficulty is reflected in the
capture time, rather than in the number of cops.

Consider Γm, a “truncated” ai-CR game played exactly
as Γ, but lasting m turns; R receives one unit of payoff for
every turn in which the robber is not captured. The strategies
σR and σC can be used in any truncated game Γm: C and R
use them only until turn m. We denote the expected capture
time for Γm by Em (T |σR, σC). Because Γm is a finite, two-
person, zero-sum game, it has a value and optimal strategies.
I.e., there exist strategies σ̂(m)

C , σ̂(m)
R such that

sup
σR

inf
σC

Em (T |σC , σR) = Em

(
T |σ̂(m)

C , σ̂
(m)
R

)
= inf

σC

sup
σR

Em (T |σC , σR) . (4)

Hence the value of Γm is val (Γm) = Em

(
T |σ̂(m)

C , σ̂
(m)
R

)
,

which is finite, because of Theorem 3.7. We also define

val (Γ) = sup
σR

inf
σC

E (T |σR, σC) ,

val (Γ) = inf
σC

sup
σR

E (T |σR, σC) ;

val (Γ) ≤ val (Γ) is always true; if equality holds then
val (Γ) = val (Γ) = val (Γ) is the value of the game Γ.
The following theorem holds.

Theorem 3.8: Given any graph G and the corresponding
CiR game Γ played with c (G) cops, val (Γ) exists and
satisfies

val (Γ) = lim
m→∞

val (Γm) .

Furthermore, there exists a strategy σ̂C such that

sup
σR

E (T |σR, σ̂C) = val (Γ) (5)

and for every ε > 0 there exists an mε and a strategy σ̂εR
such that

∀m ≥ mε : val (Γ)− ε ≤ inf
σC

Em (T |σ̂εR, σC) . (6)

Hence val (Γ) can be approximated within any ε by using
strategies σ̂εR and σ̂C . Having established the existence of
val (Γ) we have the following.

Definition 3.9: Given a graph G, we define the adversar-
ial invisible capture time of G to be

cti (G) = val (Γ)

where the game Γ is played with c (G) cops.
The di-CR Game. Here Yt is unobservable and controlled by
Xt; hence Yt is a POMDP. We denote this one-player game
by Γ and the m-steps truncated version by Γm. C must select
a strategy σC which minimizes

E
(
T |σC ,Γ

)
= E

( ∞∑
t=0

1 (Xt 6= Yt) |σC

)
+ 1.

This is a typical infinite horizon, undiscounted POMDP
problem [25]. Em (T |σC) and E (T |σC) are well defined
for every σC . We define val

(
Γm
)

= infσC∈SC Em (T |σC),
val
(
Γ
)

= infσC∈SC E (T |σC); the following holds.

Graph Family Node Num. c (G) H (G) Hd (G)
n node path n 1 2 + o (1) 2 + o (1)
n node cycle n 2 2 + o (1) 2 + o (1)
n node clique n 1 n− 1 (1 + o(1))n/2

depth L d-ary tree n = dL−1
d−1

1 Θ (n) Θ
(

n
lnn

)
N ×N grid n = N2 2 O

(
5
√
n√n

)
O

(√
n · logn

)
TABLE II

THE ADVERSARIAL AND DRUNK COST OF VISIBILITY FOR SEVERAL

GRAPH FAMILIES.

Theorem 3.10: Given any graph G and the corresponding
CiR game Γ, we have

val
(
Γ
)

= lim
m→∞

val
(
Γm
)
.

Furthermore, there exists a strategy σ̂C such that

E
(
T |σ̂C ,Γ

)
= val

(
Γ
)
.

Hence we can introduce the following definition.
Definition 3.11: Given a graph G, we define the drunk

invisible capture time of G to be dcti (G) = val
(
Γ
)
.

Computation of Capture Times and Optimal Strategies.
For graphs of relatively simple structure (e.g., paths, cycles,
full trees, grids) capture times and optimal strategies can
be computed exactly by analytical arguments. For more
complicated graphs, certain optimality equations must be
solved, which requires the use of computer algorithms such
as CAAR and CADR. For details see [16], [17].

IV. THE COST OF VISIBILITY: RIGOROUS RESULTS

As already remarked, we expect that ai-CR is harder than
av-CR (from C’s point of view). We quantify this statement
by introducing the cost of visibility.

Definition 4.1: For every G, the adversarial cost of visi-
bility is H(G) = cti(G)

ct(G) .
Obviously we have H(G) ≥ 1 (capturing the invisible

robber is at least as hard as capturing the visible one). The
following theorem shows that H (G) can be arbitrarily large
and, in fact, can approximate any real number a ∈ [2,∞).

Theorem 4.2: For every a ∈ [2,∞) there exists a family
of graphs {Gn}∞n=1 such that: (a) ∀n : Gn has n nodes; (b)
limn→∞H (Gn) = a.

We define the drunk cost of visibility analogously.
Definition 4.3: The drunk cost of visibility is defined as

Hd(G) = dcti(G)
dct(G) .

Hd (G), similarly to H (G), can be arbitrarily large and can
approximate any real number in [1,∞).

Theorem 4.4: For every a ∈ [1,∞) there exists a family
of graphs {Gn}∞n=1 such that: (a) ∀n : Gn has n nodes; (b)
limn→∞Hd (Gn) = a.
Note that in Theorem 4.4 the range of attainable Hd values
is [1,∞) while in Theorem 4.2 the range of attainable H
values is [2,∞). We have not been able to find a graph G
with two or more nodes and H (G) ∈ (1, 2). We refer to this
as a COV gap; we conjecture that there exists no graph G
such that |V (G)| ≥ 2 and H (G) ∈ (1, 2). From previously



obtained [16], [17] capture time results, we can determine
analytically the (adversarial / drunk) COV for various graph
families, as seen in Table II.

V. THE COST OF VISIBILITY: EXPERIMENTAL RESULTS

We now present numerical computations of Hd (G) (the
drunk cost of visibility) for graphs G which are not amenable
to analytical computation. Since Hd (G) = dcti(G)

dct(G) , we use
CADR to compute dct (G) and PCS (an algorithm presented
in the Appendix) to compute dcti (G)1. We use graphs
obtained from indoor environments, which we represent by
their floorplans. In Fig. 1 we present a floorplan and its graph
representation. The graph is obtained by decomposing the
floorplan into convex cells, corresponding each cell to a node
and connecting nodes by edges whenever the respective cells
are connected by an open space.

Fig. 1. Reducing a floorplan to a graph.

Setup. We have written a Matlab script which, given some
parameters, generates random floorplans and their graphs.
Every floorplan consists of a rectangle divided into orthog-
onal “rooms”. If each room were connected to each four
nearest neighbors we would get an M×N grid G′. However,
we randomly generate a spanning tree T of G′ and initially
introduce doors only between rooms which are connected
in T . Our final graph G is obtained from T by iterating
over all missing edges and adding each one with probability
p0 ∈ [0, 1]. Hence each floorplan is characterized by three
parameters: M , N and p0.
Experiment. We vary the ratio M/N . Namely we use the
following pairs of (M,N) values: (1,30), (2,15), (3,10),
(4,7), (5,6). All of these pairs give a total of 30 nodes (except
that M = 4, N = 7 gives n = 28) and as M/N increases,
we progress from a path to a nearly square grid. For each
(M,N) pair we use three p0 values: {0.0, 0.5, 1.0}; note the
progression from a tree (p0 = 0.0) to a full grid (p0 = 1.0).

1While we can compute ct (G) with the CAAR algorithm, we do not
have an efficient algorithm to compute cti (G); hence we cannot perform
experiments on H (G). The difficulty with cti (G) is that ai-CR is a
stochastic game of imperfect information; even for very small graphs, one
cop and one robber, ai-CR involves a state space with size far beyond the
capabilities of currently available stochastic games algorithms (see [26]).

For each triple (M,N, p0) we generate 100 floorplans, obtain
their graphs and for each graph G we compute dct(G) using
CADR, dcti (G) using PCS and Hd (G) = dcti(G)

dct(G) ; finally
we average Hd (G) over the 100 graphs. In Fig. 2 we plot
dct(G) as a function of the ratio c = M/N ; each curve
corresponds to a different value of p0. At the minimum value
c = 1

30 the graph is a path with capture time dct(G) = N
8

(recall that the problem involves two cops). At the maximum
value c = 5

6 the graph is a nearly square grid and capture
time is close to 3M

8 for the full grid (it appears that the p0
value does not significantly influence capture time). Similar
results can be observed in Fig. 3, in which dcti(G) is plotted.
In Fig. 4 we plot the COV Hd(G). We see that Hd(G) is an

Fig. 2. dct(G) curves for floorplans with n = 30 cells. Each curve
corresponds to a fixed p0 value. The horizontal axis corresponds to the
ratio c = M/N of horizontal to vertical dimension.

Fig. 3. dcti(G) curves for floorplans with n = 30 cells. Each curve
corresponds to a fixed p0 value. The horizontal axis corresponds to the
ratio c = M/N of horizontal to vertical dimension.

increasing function of c = M/N .

VI. CONCLUSION

In this paper we have studied four variants of the cops-
and-robber game, obtained by changing the visibility and
adversariality assumptions regarding the robber. For each



Fig. 4. Hd(G) curves for floorplans with n = 30 cells. Each curve
corresponds to a fixed p0 value. The horizontal axis corresponds to the
ratio c = M/N of horizontal to vertical dimension.

variant we have rigorously defined the corresponding optimal
capture time, using game theoretic and probabilistic tools.
Then we have introduced the adversarial cost of visibility
H (G) = cti(G)

ct(G) and the drunk cost of visibility Hd (G) =
dcti(G)
dct(G) . These ratios quantify the increase in difficulty of

the CR game when the cop is no longer aware of the robber’s
position. This situation occurs often in mobile robotics.

We have studied Hd (G), the drunk COV, analytically and
computationally. On the analytical side we have shown that it
can become arbitrarily large. In fact, Hd (G) can approximate
(by appropriate selection of G) any real number in [1,∞).
This result emphasizes the importance of information about
target location: the pursuit of a mobile target can become
arbitrarily harder when the target’s location is unknown.
We have complemented our analytical study with numerical
experiments on graphs obtained from artificially generated
floorplans.

We have also studied H (G), the adversarial COV, ana-
lytically and have established that it too can get arbitrarily
large and can approximate any number in the interval [2,∞).
We have not been able to find a graph for which H (G)
takes a value in [1, 2]. It appears then that a “COV gap”
exists, which merits further study. It is possible that some
G with H (G) ∈ [1, 2] exists but it is hard to find; however
we conjecture that this is not the case. More precisely, our
conjecture is:

∀G = (V,E) with |V | > 1 we have H (G) ≥ 2.

We intend to further research this conjecture.

REFERENCES

[1] M. Adler, H. Racke, N. Sivadasan, C. Sohler, and B. Vocking,
Randomized pursuit-evasion in graphs, Lecture Notes in Computer
Science 2380 (2002), 901–912.

[2] B. Alspach, Searching and sweeping graphs: a brief survey, Le
Matematiche 59 (2006), no. 1–2, 5–37.

[3] A. Antoniades, H.J. Kim, and S. Sastry, Pursuit-evasion strategies for
teams of multiple agents with incomplete information, Decision and
Control, 2003. Proceedings. 42nd IEEE Conference on, vol. 1, IEEE,
2003, pp. 756–761.

[4] N. Basilico, N. Gatti, and F. Amigoni, Leader-follower strategies
for robotic patrolling in environments with arbitrary topologies,
Proceedings of The 8th International Conference on Autonomous
Agents and Multiagent Systems-Volume 1, International Foundation
for Autonomous Agents and Multiagent Systems, 2009, pp. 57–64.

[5] A. Bonato and R. Nowakowski, The game of cops and robbers on
graphs, AMS, 2011.

[6] T.H. Chung, G.A. Hollinger, and V. Isler, Search and pursuit-evasion
in mobile robotics, Autonomous Robots 31 (2011), no. 4, 299–316.

[7] F.V. Fomin and D.M. Thilikos, An annotated bibliography on guar-
anteed graph searching, Theoretical Computer Science 399 (2008),
no. 3, 236–245.

[8] B. Gerkey, S. Thrun, and G. Gordon, Parallel stochastic hill-climbing
with small teams, Multi-Robot Systems. From Swarms to Intelligent
Automata Volume III (2005), 65–77.

[9] G. Hahn and G. MacGillivray, A note on k-cop, l-robber games on
graphs, Discrete mathematics 306 (2006), no. 19-20, 2492–2497.

[10] M. Hauskrecht, Value-function approximations for partially observable
Markov decision processes, Arxiv preprint arXiv:1106.0234 (2011).

[11] G. Hollinger, S. Singh, J. Djugash, and A. Kehagias, Efficient multi-
robot search for a moving target, The International Journal of Robotics
Research 28 (2009), no. 2, 201.

[12] G. Hollinger, S. Singh, and A. Kehagias, Improving the efficiency of
clearing with multi-agent teams, The International Journal of Robotics
Research 29 (2010), no. 8, 1088–1105.

[13] D. Hsu, W.S. Lee, and N. Rong, A point-based POMDP planner for
target tracking, Robotics and Automation, 2008. ICRA 2008. IEEE
International Conference on, IEEE, 2008, pp. 2644–2650.

[14] V. Isler, S. Kannan, and S. Khanna, Randomized pursuit-evasion with
local visibility, SIAM Journal on Discrete Mathematics 20 (2007),
no. 1, 26–41.

[15] V. Isler and N. Karnad, The role of information in the cop-robber
game, Theoretical Computer Science 399 (2008), no. 3, 179–190.

[16] A. Kehagias, D. Mitsche, and P. Prałat, Cops and invisible robbers:
the cost of drunkenness, Arxiv preprint arXiv:1201.0946 (2012).

[17] A. Kehagias and P. Prałat, Some remarks on cops and drunk robbers,
Arxiv preprint arXiv:1106.2414 (2011).

[18] H.W. Kuhn, Extensive games, Proceedings of the National Academy
of Sciences of the United States of America 36 (1950), no. 10, 570.

[19] H. Kurniawati, D. Hsu, and W.S. Lee, Sarsop: Efficient point-based
POMDP planning by approximating optimally reachable belief spaces,
Proc. Robotics: Science and Systems, 2008.

[20] H. Lau, S. Huang, and G. Dissanayake, Probabilistic search for
a moving target in an indoor environment, Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference on, IEEE, 2006,
pp. 3393–3398.

[21] M.L. Littman, A.R. Cassandra, and L.P. Kaelbling, Efficient dynamic-
programming updates in partially observable Markov decision pro-
cesses, Tech. Report CS-95-19, Comp. Science Dep., Brown Univer-
sity, 1996.

[22] G.E. Monahan, A survey of partially observable Markov decision
processes: Theory, models, and algorithms, Management Science 28
(1982), no. 1, 1–16.

[23] R. Nowakowski and P. Winkler, Vertex-to-vertex pursuit in a graph,
Discrete Mathematics 43 (1983), no. 2-3, 235–239.

[24] J. Pineau and G. Gordon, POMDP planning for robust robot control,
Robotics Research (2007), 69–82.

[25] M.L. Puterman, Markov decision processes: Discrete stochastic dy-
namic programming, John Wiley & Sons, Inc., 1994.

[26] T.E.S. Raghavan and J.A. Filar, Algorithms for stochastic games -
a survey, Mathematical Methods of Operations Research 35 (1991),
no. 6, 437–472.

[27] A. Sarmiento, R. Murrieta, and S.A. Hutchinson, An efficient strategy
for rapidly finding an object in a polygonal world, Intelligent Robots
and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ Inter-
national Conference on, vol. 2, IEEE, 2003, pp. 1153–1158.

[28] T. Smith and R. Simmons, Heuristic search value iteration for
POMDPs, Proceedings of the 20th conference on Uncertainty in
artificial intelligence, AUAI Press, 2004, pp. 520–527.

[29] M.T.J. Spaan and N. Vlassis, Perseus: Randomized point-based value
iteration for POMDPs, Journal of artificial intelligence research 24
(2005), no. 1, 195–220.

[30] R. Vidal, O. Shakernia, H.J. Kim, D.H. Shim, and S. Sastry, Prob-
abilistic pursuit-evasion games: theory, implementation, and experi-



mental evaluation, IEEE Transactions on Robotics and Automation
18 (2002), no. 5, 662–669.

[31] M. Vieira, R. Govindan, and G.S. Sukhatme, Scalable and practi-
cal pursuit-evasion, Robot Communication and Coordination, 2009.
ROBOCOMM’09. Second International Conference on, IEEE, 2009,
pp. 1–6.

APPENDIX

In this appendix we briefly present Pruned Cop Search
(PCS), an algorithm which computes dcti(G) heuristically.
We give below the algorithm in pseudocode, denoting
E(T |X) by UC (X).

Algorithm 1 The Pruned Cop Search (PCS) Algorithm
Input: Graph G = (V,E), initial cop position X0, max.
size of schedules list Jmax, termination criterion ε
t = 0
S.X = X0, S.p = Pr(Y0|X0), S.UC = 0
S = {S}
ÛoldC = 0
Continue=TRUE
while Continue do

S′ = ∅
for all S ∈ S do
X = S.X , p = S.p, UC = S.UC
u = Xt

for all v ∈ N+(u) do
X ′ = X|v
p′ = pP (v)
U ′C = Cost(X ′, p′, UC)
S′.X = X ′, S′.p = p′, S′.UC = U ′C
S = S ∪ {S′}

end for
end for
S = Prune(S′, Jmax)
[X̂, ÛC ] = Best(S)
if |ÛC − ÛoldC | < ε then

Continue=FALSE
else
ÛoldC = ÛC
t← t+ 1

end if
end while
Output: Best Schedule X̂ , Best Cost ÛC .

Here is a brief description of the algorithm rationale. PCS
computes walks X which optimize E(T |X) by a simple
heuristic. A list of candidate search schedules is maintained;
at the end of the (t − 1)-st iteration each schedule in the
list has length t − 1; at the t-th iteration, each schedule is
extended by one step and the value of the target function
is approximated using the t-long search schedule. To avoid
an exponential increase of the candidate search schedules, at
the end of each iteration, the Jmax best walks are retained
and the remaining walks are removed.

The algorithm works because E (T |X) can be approxi-

mated from a finite part of X , as explained below. We have

UC (X) = E (T |X)

=

∞∑
t=0

t · Pr (T = t|X) =

∞∑
t=0

Pr (T > t|X) . (7)

X in the conditioning is the infinite walk X . However, for
every t we have

Pr (T > t|X) = 1−Pr (T ≤ t|X) = 1−Pr (T ≤ t|X0, . . . , Xt) .

Let us define

U
(t)
C (X0 . . . Xt) =

t∑
τ=0

(1− Pr (T ≤ τ |X0, . . . , Xτ ))

=

t∑
τ=0

(1− pn+1 (τ)) ,

where pn+1 (τ) is the probability that the robber is in the cap-
ture state n+ 1 at time τ (the dependence on X0X1, ..., Xτ

is suppressed, for simplicity of notation ). Then we have

U
(t)
C (X0 . . . Xτ ) = U

(t−1)
C (X0 . . . Xt−1) + (1− pn+1 (t)) .

(8)
Update (8) can be computed by the subroutine
Cost

(
X(t), p, U

(t−1)
C

)
using only the previous cost

U
(t−1)
C (X0 . . . Xt−1) and the (already computed) probability

vector p (t). While U
(t)
C (X0 . . . Xt) ≤ UC (X), we

hope that (at least for the “good” walks) we have
limt→∞ U

(t)
C (X0 . . . Xt) = UC (X). This actually works

well in practice.


