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Abstract. In this note we consider the on-line Ramsey numbers
R(Pn, Pm) for paths. Using a high performance computing clus-
ters, we calculated the values for off-diagonal numbers for paths of
lengths at most 8. Also, we were able to check thatR(P9, P9) = 17,
thus solving the problem raised in [5].

1. Introduction, definitions, and main results

In this paper, we consider the following variant of the on-line Ramsey
game introduced independently by Beck [1] and Friedgut et al. [2]. Let
G,H be a fixed graphs. The game between two players, called the
Builder and the Painter, is played on an unbounded set of vertices. In
each of her moves the Builder draws a new edge which is immediately
coloured red or blue by the Painter. The goal of the Builder is to force
the Painter to create a red copy of G or a blue copy of H; the goal
of the Painter is the opposite, he is trying to avoid it for as long as
possible. The payoff to the Painter is the number of moves until this
happens. The Painter seeks the highest possible payoff. Since this is a
two-person, full information game with no ties, one of the players must
have a winning strategy. The on-line Ramsey number R(G,H) is the
smallest payoff over all possible strategies of the Builder, assuming the
Painter uses an optimal strategy.

Similar to the classical Ramsey numbers (see a dynamic survey of
Radziszowski [8] which includes all known nontrivial values and bounds
for Ramsey numbers), it is hard to compute the exact value of R(G,H)
unless G,H are trivial. In this relatively new area of small on-line
Ramsey numbers, very little is known.

Kurek and Ruciński considered in [4] the most interesting case where
G and H are cliques, but besides the trivialR(K2, Kk) =

(
k
2

)
, they were

able to determine only one more value, namely R(K3, K3) = 8, by
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mimicking the proof of the upper bound for classical Ramsey number
R(K3, K3). The author of this note, with computer support, showed
that R(K3, K4) = 17, provided a general upper bound for R(Kk, Kl),
and studied its asymptotic behaviour (see [6] for more details).

Grytczuk et al. [3], dealing with many labourious subcases, deter-
mined the on-line Ramsey numbers for a few symmetric short paths
(R(P2, P2) = 1,R(P3, P3) = 3,R(P4, P4) = 5,R(P5, P5) = 7,R(P6, P6) =
10). It is clear that R(Pn, Pm) ≥ n + m − 3 for n,m ≥ 2 since the
Painter may color safely the first n− 2 edges red, and the next m− 2
edges blue. Also it is not hard to prove that R(Pn, Pm) ≤ 2(n+m)−7
for n,m ≥ 2 (see [3] for more details) but it seems that determin-
ing the exact values for longer paths requires computer support. The
author of this paper was able to determine some new values, namely
R(P7, P7) = 12, R(P8, P8) = 15, and R(P9, P9) ≤ 17 (see [5] for more
details).

In this note, we determine missing values for off-diagonal on-line
Ramsey numbers for paths of lengths at most 8 and we show that
R(P9, P9) = 17, confirming the Conjecture 4.2 [5]. The results are
presented in Table 1.

2 3 4 5 6 7 8 9

2 1 [3]
3 2 3 [3]
4 3 4 5 [3]
5 4 5 6 7 [3]
6 5 7 8 9 10 [3]
7 6 8 9 10 11 12 [5]
8 7 9 11 12 13 14 15 [5]
9 8 10 12 13 14 15 16 17

Table 1. Values of R(Pn, Pm)

For a few small numbers, we provide proofs in Section 2, but for
larger values we have to be content with computer computations de-
scribed in Section 3.

2. Theoretical results

As we already mentioned in the Introduction, R(Pn, Pm) ≥ n+m−3,
for n, m ≥ 2. This lower bound is clearly attained for R(P2, Pm) (m ≥
2), but also for R(P3, P4), R(P3, P5), and R(P4, P5).
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Proposition 2.1. R(P3, P4) = 4, R(P3, P5) = 5, and R(P4, P5) = 6.

Proof. Let us start with a proof that R(P3, P4) = 4. After presenting
two edges of a path P3, there are only two possible patterns (up to
symmetry): rb and bb. Then the Builder creates a red path P3 or a
blue path P4 in the next two moves, as depicted in Figure 1. (The final
edge is drawn in two colours.)

Figure 1. Forcing red P3 or blue P4

In order to show that R(P3, P5) = 5 we consider the following strat-
egy of the Builder: present two edges of P3 and then extend the path
by adding an edge to vertex of degree 1. If a red colour has been used
in the first two moves, then next edge is incident to the red one (that
is, the Painter is forced to use blue to colour this edge). Thus, there are
only three possible patterns that can appear after first three rounds:
bbb, bbr, and brb. The Builder now is able to finish the game in the
next two moves, as shown in Figure 2.

Figure 2. Forcing red P3 or blue P5

To prove that R(P4, P5) = 6 one have to analyze more subcases.
Similarly as before, the Builder shows a path P4 in the first three steps
but she has to avoid the pattern rbr (otherwise, the Painter has a
strategy to ‘survive’ to the end of sixth round). In order to do that, the
Builder can use the same strategy as for the R(P3, P5) case. Therefore,
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essentially one of the four possible color patterns appears: bbb, bbr,
brb, and rrb. Then she obtains a red P4 or a blue P5 in the next three
moves, as shown in Figure 3. (A circled number means that the Painter
had a choice in that move, which led to a branching into subcases.)

Figure 3. Forcing red P4 or blue P5

¤
Our next on-line Ramsey number that we are going to establish is

larger than the trivial lower bound we used so far.

Proposition 2.2. R(P3, P6) = 7.

Proof. For the lower bound, consider a natural strategy for the Painter:
colour an edge red if it does not create a red copy of P3, otherwise use
blue. The game is finished when a blue copy of P6 is created. The first
edge is coloured red and if the Painter is able to use the color red in
one of the next moves, we are done. Thus, the only way for the Builder
to finish the game in the total of six rounds is to create in the next five
rounds a blue P6. This is possible only by using both ends of the red
edge, making the last winning move impossible.

For the upper bound, suppose that the first edge is coloured red.
Then the Builder can force the Painter to create a blue P5 in the next
four moves, as shown in Figure 4. Next edge extending the blue path
must be coloured red but the Builder can finish a game in the very
next move.
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Figure 4. Forcing red P3 or blue P6

If the first edge is coloured blue, the Builder can continue extending
a path until red is used and similar winning strategy can be applied.
(It is even possible to prove that the Builder can win in the next five
moves, that is, the Painter must use red in the first round, assuming
he uses an optimal strategy.) ¤

3. Computer computations

We implemented and ran programs written in C/C++ using back-
tracking algorithms. (The programs can be downloaded from [7].)
Backtracking is a refinement of the brute force approach, which sys-
tematically searches for a solution to a problem among all available
options. Since it is not possible to examine all possibilities, we used
many advanced validity criteria to determine which portion of the so-
lution space needed to be searched. For example, one can look at the
coloured graph in every round and try to estimate the number of red
(and blue) edges needed to create desired structure. This knowledge
can be used to avoid considering the whole branch in the searching tree.
If the Painter can use red colour and ‘survive’ additional k rounds, then
there is no point to check whether using blue colour forces him to finish
the game earlier.

Using a set of clusters (see Section 4 for more details), we were able
to run (independently) the program from different initial graphs with
given colouring of edges. In the table below we present the numbers of
nonisomorphic coloured graphs with k edges that have been found by
computer. Since the game we play is nonsymmetric we have to consider
more initial graphs than in the symmetric version (see [5] where the
symmetric game for paths was considered). If the number of edges is
odd, we have exactly two times more graphs to consider. For the even
case, this number is a little bit smaller than double.

Having results from computer computations starting from different
initial graphs (even partial ones!) we are able to determine the exact
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k # of symmetric graphs # of nonsymmetric graphs

1 1 2
2 4 6
3 12 24
4 51 93
5 203 406
6 1, 004 1, 959
7 5, 117 10, 234
8 29, 153 58, 013
9 176, 778 353, 556
10 1, 150, 164 2, 298, 303

Table 2. Number of nonisomorphic coloured graphs
with k edges

value of the on-line Ramsey numbers. The relations between the par-
tial results in different levels are complicated but can be found using a
computer. The relations between levels 1 – 2, and 2 – 3 are described
below. For simplicity, we present the symmetric case; the nonsymmet-
ric one is studied in the same way.

Figure 5. Coloured graphs with two edges

There is only one possible coloured graph G1
1 with one edge (up

to isomorphism). Graphs with two and three edges are presented in
Figure 5 and Figure 6, respectively. Let xm

i = xm
i (Gm

i , k, l) denote
the number of moves in a winning strategy of the Builder in the on-
line Ramsey game, provided that after m moves a coloured graph is
isomorphic to Gm

i . Using the notation

x1 ∨ x2 = max{x1, x2}
x1 ∧ x2 ∧ · · · ∧ xk = min{x1, x2, . . . , xk} ,

it is not hard to see that

x1
1 = (x2

1 ∨ x2
2) ∧ (x2

3 ∨ x2
4) ,
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Figure 6. Coloured graphs with three edges

and

x2
1 = (x3

1 ∨ x3
2) ∧ (x3

8 ∨ x3
9) ∧ (x3

4 ∨ x3
5) ∧ (x3

6 ∨ x3
7)

x2
2 = (x3

3 ∨ x3
2) ∧ x3

10 ∧ x3
5 ∧ x3

7

x2
3 = (x3

1 ∨ x3
3) ∧ (x3

8 ∨ x3
10) ∧ (x3

11 ∨ x3
12)

x2
4 = x3

2 ∧ (x3
9 ∨ x3

10) ∧ x3
12 .

Each “∨” sign corresponds to the Painter’s move, “∧” corresponds to
the Builder’s one. He tries to play as long as possible, choosing the
maximum value, but she would like to win as soon as possible.

We describe the approach to determine the value of R(P9, P9) with a
little bit more details below. The values for other cases are ‘calculated’
the same way and thus we present the results of computer computations
in Tables 4 – 8 only.

Proposition 3.1. R(P9, P9) = 17

Proof. It follows from Theorem 2.3 [5] that R(P9, P9) ≤ 17. In order to
show thatR(P9, P9) > 16 we examined 1, 150, 164 initial configurations
with 10 edges. Exactly 1, 352 graphs contain a monochromatic P9 so
we put x10

i ≤ 10 for these graphs. For the rest, we run the program to
check whether x10

i ≤ 16. The results are presented below.
Next we verified that the Painter has a strategy to reach one of the

‘good’ configurations that allow him to survive the next six moves. ¤
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# of initial configurations

x10
i ≤ 10 1, 352

11 ≤ x10
i ≤ 16 47, 011

17 ≤ x10
i < ∞ 1, 101, 801

total 1, 150, 164

Table 3. Results for a game for symmetric paths of
length 8

R(P4, P6) = 8

x1
i = 8 2

total 2

R(P5, P6) = 9

x1
i = 9 2

total 2

R(P3, P7) = 8

x1
i = 8 2

total 2

R(P4, P7) = 9

x1
i = 9 2

total 2

Table 4. Results of computer computations I

R(P5, P7) = 10

x5
i ≤ 5 16

x5
i = 9 36

x5
i = 10 255

x5
i ≥ 11 99

total 406

R(P6, P7) = 11

x6
i ≤ 6 21

x6
i = 10 82

x6
i = 11 1, 107

x6
i ≥ 12 749

total 1, 959

R(P3, P8) = 9

x1
i = 9 2

total 2

Table 5. Results of computer computations II

R(P4, P8) = 11

x5
i ≤ 5 76

x5
i = 9 23

x5
i = 10 140

x5
i = 11 141

x5
i ≥ 12 26

total 406

R(P5, P8) = 12

x7
i ≤ 7 1385

x7
i = 10 269

x7
i = 11 2, 737

x7
i = 12 4, 272

x7
i ≥ 13 1, 571

total 10, 234

R(P6, P8) = 13

x7
i ≤ 7 283

x7
i = 11 162

x7
i = 12 3, 358

x7
i = 13 4, 823

x7
i ≥ 13 156

x7
i ≥ 14 1, 452

total 10, 234

Table 6. Results of computer computations III
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R(P7, P8) = 14

x8
i ≤ 8 546

x8
i = 12 422

x8
i = 13 13, 967

x8
i = 14 28, 002

x8
i ≥ 14 5, 581

x8
i ≥ 15 9, 495

total 58, 013

R(P3, P9) = 10

x1
i = 10 2

total 2

R(P4, P9) = 12

x8
i ≤ 8 26, 048

x8
i = 10 260

x8
i = 11 3, 596

x8
i = 12 13, 347

x8
i ≥ 13 14, 762

total 58, 013

Table 7. Results of computer computations IV

R(P5, P9) = 13

x8
i ≤ 8 11, 450

x8
i = 11 459

x8
i = 12 6, 868

x8
i = 13 21, 234

x8
i ≥ 14 18, 002

total 58, 013

R(P6, P9) = 14

x8
i ≤ 8 3, 213

x8
i = 12 309

x8
i = 13 8, 818

x8
i = 14 21, 062

x8
i ≥ 14 10, 641

x8
i ≥ 15 13, 970

total 58, 013

R(P7, P9) = 15

x9
i ≤ 9 7, 465

x9
i = 13 935

x9
i = 14 39, 389

x9
i = 15 134, 652

x9
i ≥ 15 71, 456

x9
i ≥ 16 99, 659

total 353, 556

Table 8. Results of computer computations V

• the Atlantic Computational Excellence Network ACEnet (www.ace-
net.ca): 480 CPUs,

• the Department of Combinatorics and Optimization, University
of Waterloo (www.math.uwaterloo.ca/CandO Dept): 80 CPUs.

In order to find new on-line Ramsey numbers we checked (indepen-
dently) millions initial configurations. A running time of one serial
program varied between a few seconds and 10 hour. We can estimate
the total computational requirements to be around 250, 000 CPU hours
(28.5 years).
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