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Abstract. We consider cop-win graphs in the binomial random graph G(n, 1/2). We
prove that almost all cop-win graphs contain a universal vertex. From this result, we
derive that the asymptotic number of labelled cop-win graphs of order n is equal to

(1 + o(1))n2n
2/2−3n/2+1.

1. Introduction

Cops and Robbers is vertex-pursuit game played on a reflexive graph. There are
two players consisting of a set of cops and a single robber. The game is played over a
sequence of discrete time-steps or rounds, with the cops going first in the first round
and then playing alternate time-steps. The cops and robber occupy vertices. When a
player is ready to move in a round they must move to a neighbouring vertex. Because
of the loops, players can pass, or remain on their own vertex. Observe that any subset
of cops may move in a given round. The cops win if after some finite number of rounds,
one of them can occupy the same vertex as the robber. This is called a capture. The
robber wins if he can evade capture indefinitely. A winning strategy for the cops is a set
of rules that if followed, result in a win for the cops. A winning strategy for the robber
is defined analogously.

If we place a cop at each vertex, then the cops are guaranteed to win. Therefore,
the minimum number of cops required to win in a graph G is a well-defined positive
integer, named the cop number (or copnumber) of the graph G. We write c(G) for the
cop number of a graph G. If c(G) = k, then we say G is k-cop-win. In the special
case k = 1, we say G is cop-win (or copwin). Nowakowski and Winkler [11], and
independently Quilliot [14], considered the game with one cop only; the introduction of
the cop number came in [1]. Many papers have now been written on cop number since
these three early works; see the surveys [2, 8, 9].

Since their introduction, the structure of cop-win graphs has been relatively well-
understood. In [11, 14, 15] a kind of ordering of the vertex set—now called a cop-win
or elimination ordering—was introduced which completely characterizes such graphs.
If u is a vertex, then the closed neighbour set of u, written N [u], consists of u along
with the neighbours of u. A vertex u is a corner if there is some vertex v, v 6= u, such
that N [u] ⊆ N [v]. We say that v is the parent of u, and that u is the child of v. A
graph is dismantlable if some sequence of deleting corners results in the graph with a
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single vertex. For example, each tree is dismantlable, and more generally, so are chordal
graphs (that is, graphs with no induced cycles of length more than three). To prove
the latter fact, note that a chordal graph contains a vertex whose neighbour set is a
clique; see, for example, [16].

The following theorem gives the main results characterizing cop-win graphs.

Theorem 1.1. [11, 14, 15]

(1) If u is a corner of a graph G, then G is cop-win if and only if G− u is cop-win.
(2) A graph is cop-win if and only if it is dismantlable.

From Theorem 1.1, cop-win (or dismantlable) graphs have a recursive structure,
made explicit in the following sense. A permutation v1, v2, . . . , vn of the vertices of G
is a cop-win ordering if there exist vertices w1, w2, . . . , wn such that, for all i ∈ [n] =
{1, 2, . . . , n}, N [vi] ⊆ N [wi] in V (G) \ {vj : j < i} and vi 6= wi. We use the notation v
for a cop-win ordering, and w for its parent sequence. Cop-win orderings are sometimes
called elimination orderings, as we delete the vertices from lower to higher index until
only vertex vn remains.

We say that an event holds asymptotically almost surely (a.a.s.), if it holds with
probability tending to one as n tends to infinity. The probability of an event A is
denoted by P(A).

Our goal is to investigate the structure of random cop-win graphs. The random
graph model we use is the familiar G(n, 1/2) probability space of all labelled graphs on
n vertices where each pair of vertices is joined with probability 1/2, independently on
the events for other pairs of vertices. Note that a given graph G on eG edges occurs
with probability

P(G ∈ G(n, 1/2)) =

(
1

2

)eG (
1− 1

2

)(n
2)−eG

=

(
1

2

)(n
2)
,

which does not depend on G. Thus, G(n, 1/2) is in fact a uniform probability space
over all labelled graphs on n vertices. We heavily use this interpretation of G(n, 1/2) in
the proof of our main result, Theorem 2.1, stated below. We expect results analogous
to Theorem 2.1 (that is, with 2 replaced by 1/p) for other constants p ∈ (0, 1) and
p = p(n) tending to zero with n. (The argument for p = p(n) tending to one needs to
be modified when the expected number of universal vertices is Ω(1); see [12].) However,
this seems not to be an interesting research direction in the theory of random graphs
where we usually focus on investigating typical properties that hold a.a.s. in G(n, p).
Therefore, studying bounds for the cop number that hold a.a.s. are of interest, and a
number of papers have been published on this topic (see, for example [3, 5, 10, 13] and
the recent monograph [6]). We focus on G(n, 1/2) in this paper since it gives the typical
structure of a cop-win graph. Therefore, from now on our probability space is always
taken to be G(n, 1/2).

2. Main results

A vertex is universal if it is joined to all others. Let cop-win be the event that the
graph is cop-win and let universal be the event that there is a universal vertex. If
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a graph has a universal vertex w, then it is cop-win; in a certain sense, graphs with
universal vertices are the simplest cop-win graphs. The probability that a random
graph is cop-win can be estimated as follows:

P(cop-win) ≥ P(universal) = n2−n+1 −O(n22−2n+3)

= (1 + o(1))n2−n+1. (2.1)

Surprisingly, this lower bound is in fact the correct asymptotic value for P(cop-win).
Our main result is the following theorem.

Theorem 2.1. In G(n, 1/2), we have that

P(cop-win) = (1 + o(1))n2−n+1.

Using Theorem 2.1, we derive the asymptotic number of labelled cop-win graphs.

Corollary 2.2. The number of cop-win graphs on n labelled vertices is

(1 + o(1))2(n
2)n2−n+1 = (1 + o(1))n2n

2/2−3n/2+1.

It also follows that almost all cop-win graphs contain a universal vertex, a fact not
obvious a priori.

Corollary 2.3.
P(universal | cop-win) = 1− o(1).

We prove Theorem 2.1 in the next section. We finish this section with some notation
that will be used in the proof. The degree of a vertex u is written deg(u). We let ∆(G)
denote the maximum degree of G (or just ∆ if G is clear from context). The co-degree
of a vertex u in a graph of order n is n− 1− deg(u).

3. Proofs of main results

To prove Theorem 2.1 we bound the probability of cop-win for graphs of maximum
degree at most n − 2. Since the proof for ∆ = n − 2 has a different flavour than the
one for ∆ ≤ n− 3, we prove it independently.

Theorem 3.1.

(a) For some ε > 0 we have that

P(cop-win and ∆ ≤ n− 3) ≤ 2−(1+ε)n.

(b) P(cop-win and ∆ = n− 2) ≤ 2−(3−log2 3)n+o(n).

Theorem 2.1 follows immediately from Theorem 3.1 and (2.1).

Proof of Theorem 3.1(a). Let G be a random graph drawn from the G(n, 1/2) distri-
bution. We study the probability that ∆ ≤ n− 3, and that there exists a permutation
v = (v1, v2, . . . , vn) and a sequence of vertices w = (w1, w2, . . . , wn) which are a cop-win
ordering and associated parent sequence for G, respectively. We show that this event
holds with extreme probability (wep) which means that the probability it holds is at
most 2−(1+ε)n for some ε > 0. Observe that if we can show that a polynomial number
of events holds wep, then the same is true for a union of these events.
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We partition the set of all such pairs (v,w) into a four groups, and show that for
each group the property holds wep. Actually, we refine some of the groups to specify
the degree sequence of the parents. Moreover, we usually focus on the initial segments
of v and w of length cn, where c ∈ (0, 1) is a constant. We state the partition we
consider before moving to the proof that each group yields an event that holds wep.

(1) There exist v and w having

s =
∣∣∣{wi : i ≤ 0.05n}

∣∣∣ > s0 = 17.

In other words, there is a cop-win ordering whose vertices in their initial seg-
ments of length 0.05n have more than 17 parents.

(2) There exist v and w having s ≤ s0 and wi with co-degree di > n2/3 for all
i ≤ 0.05n. That is, there is a cop-win ordering whose vertices in their initial
segments of length 0.05n have at most 17 parents, each of which has co-degree
more than n2/3.

(3) There exist v and w having 2 ≤ s ≤ s0 and at least one parent has co-degree
di ≤ n2/3 for some i ≤ 0.05n. That is, there is a cop-win ordering whose initial
segments of length 0.05n have between 2 and 17 parents, and at least one parent
has co-degree at most n2/3.

(4) There exist v and w having s = 1. In other words, there exists w ∈ V (G) with
co-degree between 2 and n2/3, such that wi = w for i ≤ 0.05n.

Group (1). Set c = 0.05, and suppose that there exist v and w with the property we
consider in this group. Let wa1 , wa2 , . . . , was (where wai ∈ [n] for i ∈ [s]) be s > s0

distinct parents of corresponding children va1 , va2 , . . . , vas (where vai ∈ [cn] for i ∈ [s]).
We would like to have the set of all of those vertices (both parents and children) distinct.
All parents and all children are different but, of course, it can happen that vai = waj
for some i 6= j. However, since each parent can be a child only once (recall that all
children are distinct), we must have at least ds/2e disjoint parent/child pairs. Let

X = V (G) \
(
{vi : i ∈ [cn]} ∪ {wi : i ∈ [cn]}

)
.

Note thatX contains at least (1−2c)n vertices. SinceN [vi] ⊆ N [wi] inG\{v1, v2, . . . , vi−1},
the following event Q(vi, wi, X) holds: no vertex x ∈ X is adjacent to vi but not adja-
cent to wi.

Thus, it implies that there exist s (where s0 < s ≤ n), a set C of cn vertices, a
function p : C → V (we interpret p(v) as telling us the parent of v), ds/2e mutually
disjoint pairs (zi, p(zi)) such that Q(zi, p(zi), X) holds for i ∈ {1, 2, . . . , ds/2e}, with

X = V (G) \
(
C ∪

{
p(zi) : i ∈ {1, 2, . . . , ds/2e}

})
.

The number of configurations we need to consider is at most

n

(
n

cn

)(
n

s

)
scn ≤ n2n2n2cn log2 s = 2(2+c log2 s)n+o(n). (3.1)
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For each configuration, we need to estimate the probability that the corresponding
event holds. The probability that for a given i, the event Q(zi, p(zi), X) holds is at
most (

3

4

)n−2cn

= 2− log2(4/3)(1−2c)n.

Moreover, since parent/child pairs are mutually disjoint, the events Q(zi, p(zi), X) are
mutually independent. Hence, the probability in question can be estimated from above
by

2− log2(4/3)(1−2c)(s/2)n+o(n). (3.2)

Thus, by (3.1) and (3.2) the property holds wep if, say, s is chosen such that

2 + c log2 s− log2(4/3)(1− 2c)(s/2) < −1.1;

that is, s is a sufficiently large constant that depends on c but does not depend on n.
In particular, if c = 0.05, then s ≥ 18 works.

Group (2). As we mentioned above, a polynomial multiplicative term is not going to
affect a result that holds wep. Thus, there is no problem at this point to introduce
co-degrees of all parents for the initial segment under consideration in this group.

We estimate the number of configurations we consider in this group. Fix parents
for the initial segment of length 0.05n (O(ns0)-many) and their degrees and neighbour-
hoods (O((2n)s0)-many). Fix the initial segment of v of length 0.05n (O(n!)-many) and
assignment of parents (O(sn0 )-many). The total number of configurations is therefore,

2O(n log2 n). (3.3)

Since every parent has co-degree larger than n2/3, v1 cannot be adjacent to at least
n2/3 non-neighbours of w1, v2 has to avoid n2/3 − 1 non-neighbours of w2 (note that v1

is perhaps a non-neighbour of w2), v3 avoids n2/3 − 2 vertices, and so on. Note that
edges of all parents are exposed at this point, so we should focus on children in the first
segment that are not parents for any other child in this segment. Since there are at
most s0 = O(1) parents, this causes no problem; we do not consider these vertices. For
a given configuration, the probability is at most

2−(n2/3−s0)−(n2/3−s0−1)−(n2/3−s0−2)−...−2−1 = 2−Ω(n4/3),

which tends to zero fast enough when compared to (3.3) so that the property we consider
holds wep.

Group (3). Set c = 0.05, and suppose that there exist v and w with the property
we consider in this group. This implies that there exists a vertex wi ∈ V with small
co-degree (di ≤ n2/3). Moreover, there exists a set of vertices C with |C| = cn, vj ∈ C,
and wj ∈ V (G) \ {vj, wi} such that the event Q(vj, wj, V (G) \ (C ∪ {wj, wi})) holds.
(See the argument for Group (1) for the definition of Q(·, ·, ·).) There are only two
differences between the argument here and the one used in Group (1). Firstly, this
time the size of X is (1 − c)n + O(1), not (1 − 2c)n as before. Secondly, we only
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investigate neighbourhoods of vertices vj, wj, wi in order to estimate the probability
that the event in question holds, not ds/2e pairs as before.

Using the Stirling formula (which states that n! ∼
√

2πn(n/e)n), we find that the
number of configurations is at most

nn2/3

(
n

n2/3

)(
n

cn

)
n2 = 2− log2(cc(1−c)1−c)n+o(n). (3.4)

Suppose first that vj 6= wi (that is, all the vertices vj, wj, wi are distinct). Hence, the
desired probability can be estimated from above by

2−n+12− log2(4/3)(1−c)n+O(1), (3.5)

where 2−n+1 corresponds to the edges incident with the vertex wi. Observe that the
term in (3.5) tends to zero fast enough when compared to (3.4) for the event to hold
wep. (Note that not every c ∈ (0, 1) works this time. However, one can check that it is
the case for, say, c < 0.07.) If vj = wi, then the situation is even better. Since wj has
to be adjacent to all neighbours of vj = wi in V (G)\ (C ∪{wj, wi}) (that is, all vertices
in V (G) \ (C ∪ {wj, wi}) but, perhaps, O(n2/3) of them), we estimate the probability
by

2−n+12−(1−c)n+O(n2/3) < 2−n+12− log2(4/3)(1−c)n+O(1),

and the assertion holds in this case.

Group (4). Suppose that wi = w for i ≤ cn(1 + o(1)) for some c ∈ [0.05, 1], and the
first child v̄ with parent w̄ = wj 6= w occurs if j = cn(1 + o(1)). (Note that we cannot
have one parent only, since ∆ 6= n − 1.) Moreover, we can insist that w is used as
a parent for as long as possible; that is, until we get the property that all remaining
vertices that are in N [w] are adjacent to at least one of the non-neighbours N̄ [w] of w,
so that the new parent, w̄, has to be introduced.

This implies that there exist a set C of cn(1 + o(1)) vertices and vertices w, v̄, w̄ ∈
V (G) \ C (possibly, v̄ = w) such that the following events hold. The co-degree of w is
d, 2 ≤ d ≤ n2/3, every vertex in C is adjacent to w but not to any of co-neighbours of
w, every vertex in V (G) \ (C ∪ N̄ [w]∪ {v̄, w̄})) is adjacent to at least one co-neighbour
of w. Moreover, the event Q(v̄, w̄, V (G) \ (C ∪{w, v̄, w̄})) holds. (See the argument for
Group (1) for the definition of Q(·, ·, ·).) The number of configurations to consider can
be bounded from above by

2− log2(cc(1−c)1−c)n+o(n). (3.6)

Suppose first that v̄ 6= w. The probability can be bounded from above by

2−n2−dcn(1+o(1))2− log2(4/3)(1−c)n+o(n),

which is enough when compared to (3.6) for the event to hold wep for any c ∈
(0.05, 0.25) ∪ (0.25, 1] or d ≥ 3. (Note that for c = 1/4 and d = 2 we get that the
event holds with probability at most 2−n+o(n) only, not wep.) Similarly as in Group (3),
the situation is better if v̄ = w, since then w̄ has to be adjacent to almost all vertices
in V (G) \ (C ∪ {w, v̄, w̄})).
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It remains to consider the case c = 1/4 and d = 2. Using our extra knowledge that
every vertex in V (G) \ (C ∪ N̄ [w] ∪ {v̄, w̄})) is adjacent to at least one of the two
co-neighbours of w, we obtain the extra multiplicative factor of (3/4)3n/4+o(n) which is
enough for the event to hold wep. �

Now, we are ready to prove the second part of Theorem 3.1.

Proof of Theorem 3.1(b). First we deduce from Theorem 3.1(a) a rough upper bound
for the probability that the graph is cop-win: there exists ε > 0 such that

P(cop-win) ≤ P(cop-win and ∆ ≤ n− 3) + P(∆ ≥ n− 2)

≤ 2−(1+ε)n + n22−n+1

≤ 2−n+o(n). (3.7)

The vertex set of every cop-win graph with ∆ = n− 2 can be partitioned as follows: it
must have a vertex w of degree n− 2, a (unique) vertex v which is not adjacent to w,
a set B of vertices adjacent to v (and also to w), and a set A of vertices that are not
adjacent to v (but adjacent to w). We claim that the graph induced by B is cop-win.

By Theorem 1.1 we can dismantle all vertices in A (using w as a parent), leaving us
with the cop-win subgraph H induced by v, w, and B. If B contains one vertex only,
then the graph induced by B is clearly cop-win. Otherwise, either B has a universal
vertex in G (and so the graph induced by B is cop-win and we can dismantle all
remaining vertices of B), or B must have a corner (since if there is no universal vertex
in B, you cannot dismantle either v nor w but H is cop-win). In either case, we can
dismantle some vertex x in B, so that the following properties hold.

(1) H − x is a cop-win subgraph induced by v, w, and B \ {x},
(2) v and w are joined to all of B \ {x}.

Hence, by (1) and (2) we may use induction to dismantle B starting from the subgraph
H. Moreover, the same sequence of vertices can be used to dismantle the graph induced
by the set B, since all the parents were in B. Therefore, B is cop-win.

Finally, we estimate the number of labelled cop-win graphs with ∆ = n − 2. There
are n choices for w, n − 1 choices for v, and 2n−2 =

∑n−2
i=0

(
n−2
i

)
choices for A. The

probability that w and v have the correct neighbourhoods is 2−n+12−n+1. If |A| = i,
then the probability that the graph induced by B is cop-win is at most 2−n+2+i+o(n)

using (3.7) (note that |B| = n− 2− i and there are no other restrictions on B except
that the subgraph it induces is cop-win). Thus,

P(cop-win and ∆ = n− 2) ≤ n2

n−2∑
i=0

(
n− 2

i

)
2−n+12−n+12−n+2+i+o(n)

= 2−3n+o(n)

n−2∑
i=0

(
n− 2

i

)
2i

= 2−3n+o(n)(1 + 2)n−2

= 2−(3−log2 3)n+o(n). �
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4. Discussion

For an integer k > 1, determining the asymptotic behaviour of the function Fk(n),
the number of labelled k-cop-win graphs of order n, remains an open problem. The
limited current understanding of graphs with cop number two or higher is the main
stumbling block. For example, there are no elementary analogues of cop-win orderings
for higher k. An elimination ordering characterization of k-cop-win graphs for k > 1
was given in [7], although it becomes exponentially more complex as k increases (in
particular, an ordering is given of vertices in the (k + 1)th strong power of the graph).
Nevertheless, we may conjecture that almost all k-cop-win graphs have a dominating
set of cardinality k, which would generalize our Theorem 2.1, and imply that

Fk(n) = 2o(n)
(
2k − 1

)n−k
2(n−k

2 ) = 2n
2/2−(1/2−log2(1−2−k))n+o(n).

In [4, 5], it has been shown that the cop number of G ∈ G(n, 1/2) is a.a.s. equal to (1+

o(1)) log2 n. Hence, we have that Fk(n) = o(2(n
2)) unless k = (1 + o(1)) log2 n. Another

problem is whether Fk(n) is unimodal : is there a function K = K(n) = (1+o(1)) log2 n
such that for n large enough Fk(n) ≤ Fk+1(n) for k ≤ K, and Fk(n) ≥ Fk+1(n) for
k > K?
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