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ABSTRACT. We study a generalized version of the protean graph (a probabilistic
model of the World Wide Web) with a power law degree distribution, in which
the degree of a vertex depends on its age as well as its rank. The main aim of
this paper is to study the behaviour of the protean process near the connectivity
threshold. Since even above the connectivity threshold it is still possible that
the graph becomes disconnected, it is important to investigate the recovery time
for connectivity, that is, how long we have to wait to regain a connectivity.

1. INTRODUCTION

Recently many new random graphs models have been introduced and analyzed
by certain common features observed in many large-scale real-world networks such
as the ‘web graph’ (see, for instance, the book [1]). The web may be viewed as a
directed graph whose nodes correspond to static pages on the web, and whose arcs
correspond to links between these pages. One of the most characteristic features of
this graph is its degree sequence. Broder et al. [2] noticed that the distribution of
degrees follows a power law: the fraction of vertices with degree k is proportional to
k=7, where v is a constant independent of the size of the network (more precisely,
v & 2.1 for in-degrees, v &~ 2.7 for out-degrees). These observations suggest that
the web is not well modeled by traditional random graph models such as G,,, (see,
for instance [5]).

Luczak and the author of this paper introduced in [8] another random graph
model of the undirected ‘web graph’: the protean graph P, (d,n), which is con-
trolled by two additional parameters (d € N and 0 < n < 1). The major feature
of this model is that older vertices are preferred when joining a new vertex into
the graph. The author of this paper showed also in [10] that the protean graph
P,.(d,n) asymptotically almost surely (aas) has one giant component, containing a
positive fraction of all vertices, whose diameter is equal to ©(logn). (See also [12]
where the growing protean graphs are studied.)

Classic protean graphs can be viewed as a special case of the rank-based ap-
proach where vertices are ranked according to age. The general approach was first
proposed by Fortunato, Flammini and Menczer in [3], and the occurrence of a
power law was postulated based on simulations (Janssen and the author of this
paper provided rigorous proofs in [6, 7]). In this approach, the vertices are ranked
from 1 to n according to some ranking scheme (so the vertex with highest degree
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has rank 1, etc.), and the link probability of a given vertex is proportional to its
rank, raised to the power —n for some n € (0,1); we will refer to n as the at-
tachment strength. (Negative powers are chosen since a low value for rank should
result in a higher link probability.) It has been shown that protean graphs with
rank-based attachment lead to power law graphs (with the exponent 1+ 1/7) for
a variety of different ranking schemes [8, 10, 11].

In this paper, we study a ranking scheme where an external prestige label for
each vertex is given and vertices are ranked according to their prestige label.
Another approach is to assign an initial rank to each vertex according to a given
distribution. If the distribution is uniform, then the situation is very similar to
the one described previously, and vertices with initial rank R exhibit behaviour as
if they had received fitness R/n. We investigate how the threshold of connectivity
is affected by the dependence structure of the protean graph. We provide a precise
answer, even for d arbitrarily close to the connectivity threshold (see Theorem 3.2).

In the last section, we study the recovery time, the important and fascinating
property which does not have its counterpart for the classic random graph process.
We focus on range for the average degree d above the threshold for connectivity.
Even though we expect to have connected graphs during the protean process, the
graph becomes disconnected at some point. It is natural then to ask how long
it will take for the process to regain its natural property. It is clear that the
process will definitely come back on track after renewing all vertices at least once.
However, we show that the process recovers much faster (see Theorem 4.1).

Finally, let us mention that protean graphs are interesting not only as models
of the web graphs, but they are also attractive from a theoretical point of view:
they have a very rich dependence structure, and, unlike many other models of ran-
dom graphs, P, (d,n) can be viewed as the stationary distribution of the protean
process.

2. DEFINITIONS

In this section, we formally define the graph generation model based on rank-
based attachment. The model produces a sequence {G;}2, = {(V;, Ey)}2, of
undirected graphs on n vertices, where ¢t denotes time. Our model has two fixed
parameters: initial degree d € N, and attachment strength n € (0,1). At each
time t, each vertex v € V; has rank r(v,t) € [n] (we use [n] to denote the set
{1,2,...,n}). In order to obtain a proper ranking, the rank function r(-,¢) : V;, —
[n] is a bijection for all £, so every vertex has a unique rank. In agreement with the
common use of the word ‘rank’, high rank refers to a vertex v for which r(v,t) is
small: the highest ranked vertex is ranked number one, so has rank equal to 1; the
lowest ranked vertex has rank n. The initialization and update of the ranking is
done according to a ranking scheme. Various ranking schemes can be considered;
we first give the general model, and then list the ranking schemes.

Let Gy = (W, Ep) be any graph on n vertices and ry = r(-,0) : Vj — [n]
any initial rank function. (For random labeling scheme we take any function
[: Vo — (0,1) and the initial rank function is a function of I.) For ¢ > 1 we form
G, from G;_; according to the following rules:
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e Add a new vertex v; together with d edges from v; to existing vertices
chosen randomly with weighted probabilities. The edges are added in d
substeps. In each substep, one edge is added, and the probability that v is
chosen as its endpoint (the link probability), equals

riv,t—1)""  1-n
S a4+ 0(1)
e Choose uniformly at random a vertex u € V;_4, then delete u together with
all edges incident to it.

e Update the ranking function r(-,¢) : V; — [n] according to the ranking
scheme.

r(v,t —1)7".

Our model allows for loops and multiple edges; there seems no reason to exclude
them. However, there will not in general be very many of these, so excluding them
can be shown not to affect our conclusions in any significant way.

We now define the different ranking schemes we consider in this paper (see [6]
for definitions of other ranking schemes).

e Ranking by age: The vertex added at time ¢ obtains an initial rank n;
its rank decreases by one each time a vertex with smaller rank is removed.

e Ranking by random labeling: The vertex added at time ¢ obtains
a label [(v;) € (0,1) chosen uniformly at random. Vertices are ranked
according to their labels: if [(v;) < I(v;), then r(v;, t) < r(vj,t). Ties are
broken by age.

e Random ranking: The vertex added at time ¢ obtains an initial rank R,
which is randomly chosen from [n] according to a prescribed distribution.
Formally, let F' : [0,1] — [0,1] be any cumulative distribution function.
Then for all k € [t],

PR, < k) = F(k/T).

The behaviour and state of a vertex clearly depends on its rank but also on its
age relative to the ages of the other vertices. We use a(+,t) to denote the rank of
the age of a vertex and r(+,t) for the ranking used in a given scheme.

We will use the stronger notion of wep in favour of the more commonly used
aas, since it simplifies some of our proofs. We say that an event holds with extreme
probability (wep), if it holds with probability at least 1 — exp(—©(log®n)) as
n — oo. Thus, if we consider a polynomial number of events that each holds
wep, then wep all events hold. To combine this notion with asymptotic notations
such as O() and o(), we follow the conventions in [13].

Since the process is an ergodic Markov chain, it will converge to a stationary
distribution which does not depend on the choice of GGy and 5. The random graph
G, corresponding to this distribution is called a protean graph P,(d,n). The
coupon collector problem can give us insight into when the stationary state will
be reached. Namely, let L = n(logn+w(n)), where w(n) is any function tending to
infinity with n. It is a well-known result that aas after L steps all original vertices
will have been deleted. In the case of random initial rank this implies that after
L steps, the stationary distribution has been reached. In the case of ranking by
prestige label, it is enough to wait at most L = 2n(logn + w(n)) steps for the
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process to converge: the first L/2 steps will remove the initial prestige labels,
and another L/2 steps will eliminate all vertices that were possibly influenced by
prestige labels of the initial vertices.

Ifn-l(v;) > log® n in the random labeling scheme, then the Chernoff’s inequality
(see, for example, Theorem 2.8 in [5]) can be used to show that wep

r(vi,1) = lvn + O(y/I{v)mlogn) = I(vs)n(1 + o(1))

during the whole period of length L = O(nlogn). If the rank of the new vertex v;,
R; = r(v;,1), is chosen uniformly at random from [n], we get similar behaviour to
the random labeling case with a label equal to R;/n. In [11] the supermartingale
method of Pittel et al. [9], as described in [14, Corollary 4.1] has been used to
show the following useful lemma:

Lemma 2.1 ([11]). Suppose that vertex v obtained an initial rank R > \/nlog®n.
Then, wep

r(v,t) = R+ O(v/nlog**n) = R(1 + o(1))
to the end of its life.

Note that there is no difference between these two approaches from the point
of view of this paper. Therefore, in the rest of the note, {G;}:°, is assumed
to be a graph sequence generated by the rank-based attachment model, with
random ranking scheme with uniform distribution. Since the random labeling
scheme has a good concentration property even for initial ranks at least log®n
(the corresponding threshold for the uniform random ranking is v/nlog®n), all
results apply to this scenario as well. Parameters d and 7 are assumed to be the
initial degree and attachment strength parameters of the model as defined above.

3. THRESHOLD FOR CONNECTIVITY

In this section we study the connectivity of P,(d,n) to illustrate similarities and
differences both in results and methods between protean graphs and the standard
binomial random graph model G, .

Let p,(d,n) denote the probability that P,(d,n) is connected. Before we move
to new results let us first discuss the simplest case n = 0. Then, all vertices
have the same weight and, since the ranking scheme does not matter, the model
is equivalent to the classic protean graph. The probability that two vertices are
connected by an edge is given by

pi,j) = p(n) =1 (1= 1/n)" = d/n+ O(d®/n*).

Thus, one should expect that the threshold function for connectivity is the same
as in the binomial random graph model G(n,p). Theorem 3.1 proved in [8] shows
that it is roughly the case but the dependence structure of P,(d,0) influences the
second term of the threshold function.
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Theorem 3.1 ([8]). Let d = d(n) =logn — loglogn + ¢(n), ¢(n) = o(loglogn).
Then

1 if ¢(n) — oo
1i_>m pn(d,0) = S exp (— /7/2e7°) if ¢(n) —c
0 if ¢(n) —» —o00.

In the case n € (0,1) the threshold for the connectivity is affected by a constant
factor.

Theorem 3.2. Letn € (0,1), d = d(n) = 82 _2loaloan o) ¢(n) = o(loglogn).

1—n 1-n
Then
1 if ¢(n) = o0
lim p,(d,n) = < exp (—1—;76_5(1_7’)) if ¢(n) —c
n—oo
0 if ¢(n) —» —o0.

Before we move to the proof of this theorem, let us mention that the assumption
c(n) = o(loglogn) can be removed. The only reason to add this is to make sure
that this term does not affect the main terms of d(n).

Proof. Recall that we use a(-,t) to denote the rank of the age of a vertex at time
t. Let v; denote a vertex with a(v;,n) =i = xn and ¢*(v;) (¢ (v;)) denote the
probability that v; has no neighbour v with a(u,n) > i (a(u,n) < i, respectively).
Suppose that v; obtained an initial rank R > n®*. Then using Lemma 2.1, the
probability in question is equal to

o) = 1 (1= e ot n) )

1-n
n
j=i+1

= H exp (—dl%n(R/n + O(n Y2 log®? n))‘”)

j=it1
= exp (—d(l — n)%(fi/n + O(nY?1log?/? n))_”)

= exp (—d(l —n)(1 —z)(R/n+ O(n~Y?log*? n))_”) .

Note that we cannot control vertices with very small initial ranks but this does
not cause a problem since for those vertices the probability of being isolated is
negligible. Using Lemma 2.1 one more time, we get that

¢" (v | R) < q"(vi | (1+0(1))n*"),
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provided R < n3/%. Since R is taken uniformly at random from [n], we get

¢ (v) = /Oq+(vi|l-n) dl

n—1/4
/0
1

= 0w g | (L o) + [ gt 1w d

n—1/4

1 1
= 0(/ q+(Ui|l'”)dl)+/ g (v | 1-n)dl
n—1/4 n—1/4

= (1+0(1)) // exp (—d(l —n)(1—2)( 4+ O(n""/?1og*”? n))_"> dl

1

= (1+o0(1)) / exp (—d(1 —n)(1 —z)l7"(1 + O(n_1/5))) dl

—1/4

1

q (v | 1-n) dl—l—/ g (v; | 1-n)dl

n—1/4

— (14 0(1)) /0 exp (—d(1 — n)(1 — 2)I"(1 + O(n~/))) dL.

Now putting A = d(1 —n)(1 — z) and then u = Al™" we obtain

1/n oo 1/n
q (v;) = (14—0(1))1477 /A ey Y dy, = (1+0<1))A77 ['(=1/n,A),

where I'(+, -) denotes the upper incomplete gamma function. Using an asymptotic
formula for the gamma function (see, for example, [4]) we get

) = o ﬂe—A —1/n—-1 _ o exp (—d(1 —n)(1 — 1))
G = (o) e At = (1 o(1) SR

(Note that an error term of (1+O(n~'/%)) in the exponent is absorbed in (140(1)).)

In order to calculate ¢~ (v;) we use the fact that from the time v; was born
exactly n — ¢ vertices that were already in the graph at that time have been
deleted. (Note that a(v;,n) = ¢ so only ¢ vertices have not been removed up to
this point of the process, including v;.) In order for v; to be isolated, it is required
that all of its initial d neighbours are deleted. Since vertices are being removed
uniformly at random we get

() = (ni;iid):(n_i—d—l—l)(n—i—d—l—Q)...(n_Z’)
B () m—d+1)(n—d+2) -n

n—i

= (14+0(1)(1—i/n)?=(1+0(1))(1—2z).

Note that both the process of deleting vertices as well as the process of updating
the rank function do not depend on the degree sequence. Thus, events associated
with ¢~ (v;) and ¢*(v;) are independent. Therefore, for the expectation of the
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number Y,, of isolated vertices in P,(d,n) we have

EY, = u+ou»nlzr@mmw%mm:

_ (1+0(1))M/0 (1= 2) " exp (—d(1 — n)(1 — 2)) da.
Substituting u = d(1 — n)(1 — z) we get
EY, = (1+o(l - T g
o g [ e
= <1+0(1))W v(d, d(1 —n)),

where (-, ) denotes the lower incomplete gamma function. Using the following as-
ymptotic expansion for the incomplete gamma function (so the error of truncation
at N terms is of order at most the (N + 1)st term)

Ya,z) = —(1+o(1)z"e™ > %

k=0
where x = Aa and a goes to infinity, 0 < A < 1; the bi(\)’s satisfy by = 1,0, =
A by = A2A+1) and by = A(1 = A\)b)_; + (2k — 1) Abg_1 (see, for example, Section
8.11(iii) in [15]) we obtain
n fd( e
[d1—=n)*n  dl—n)—d

= 1+ 0(1))med<ln>

1 —
= (1+o0(1))—Leeti=m,
U]

EY, = (1+o0(1))

One can also check that, for a given integer r > 2, the rth factorial moment of
Y,, tends to (kT”e*C(l*”)y. (The rth factorial moment of Y,, is defined as E((Y},),),
where (z), = z(x — 1)(z —2)--- (x — r + 1) is the falling factorial.) This implies
that the random variable Y,, tends to a Poisson distribution and, in particular, the
probability that P, (d,n) contains no isolated vertex tends to exp <—%e*6(1*”)>

as n goes to infinity.

Not surprisingly, similarly to the G),, model, the threshold for disappearing
isolated vertices is also the threshold for connectivity. In other words, the graph
becomes connected at the same time when the last isolated vertex disappears.
Therefore, in order to finish the proof it is enough to show that if, say, d(n) =
% — % (that is, still below the threshold for disappearing isolated vertices),
the protean graph consists of one giant component and, perhaps, some number of
isolated vertices.

It is not easy to calculate the probability that there is a component of a given
size k. In order to estimate this probability from above we focus on two necessary
conditions for this to happen: there is a tree that spans the component and there
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is no edge from this component to the other component. It is clear that at most
2k/ V/d vertices from a spanning tree of a component of size k have degree more
than v/d. Hence, we can estimate the probability that the vertices from a tree
have no neighbours outside this component by

- ”)d(k_%/mn_k) = exp (—(1 +o(1))d(1 — n)k <1 - 5))

n n

(1 ~ (14 0(1))

(note that the probability that there is an edge between v; and v; (i < j) is
minimized if v; had rank n when v; was introduced). The probability that P, (d,n)
contains a component of size k, where 2 < k < (1 —n)n/4, is bounded from above
by

(1§/4(Z> k2 exp (-(1 +o(1))d(1 — )k (1 - S)) ((1 + 0(1))nfl_n>k_1

k=2

(1—m)n/4

< ¥ (%)kk’ﬂ exp (—(1 +o(1)) (d(l )k (1 - %) T (=) (k- 1)10gn)>
< (1§/4exp <_(1 +o(1)) ((1 _ %) ket (1—q)(k—1) — k) logn>

< o= B0y
< p|—(1+o0o(1)) 7 k= (1= )logn
< n_(1+°(1))(1_”)/2,

and tends to zero as n — oco. Here we use the fact that there are k*~2 spanning
trees on k vertices (Cayley’s formula) and that (}) < (ne/k)*. Note also that the
probability that there is an edge between v; and v; (i < j) is maximized if v; had
rank 1 when v; was introduced. It is also clear that there are no two components
each containing a positive fraction of all vertices. Indeed, the expected number of
pairs of vertex sets, each of size (1 —n)n/4, with no edge between them is bounded
from above by

(o —77>n/4)2 (1-tromyt

Thus, by the Markov’s inequality, aas the protean graph consists of a giant com-
ponent and some number of isolated vertices, which completes the proof of the
theorem. U

d((1-n)n/4)?
) = exp(O(n)—Q(nlogn)) = o(1).

4. RECOVERY TIME

In this section we would like to come back to the protean process {G:}2, =
{PL(d,n)}, and study an interesting (from both theoretical and application point
of view) property which does not have its counterpart for the classic random graph
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process {G(n,p)}o<p<1. Let A be a graph property such that A holds for P,(d,n)
aas but for 7(A), defined as

7(A) = min{t : P!(d,n) has not A},

we have P(7(A) < oo) = 1, that is, with probability one at some stage of the
protean process {P}(d,n)}2, the property A disappears for some time. Then,
the recovery time rec(.A) for property A is defined as

rec(A) = min{t > 7(A) : P!(d,n) has A} — 7(A),

that is, rec(A) tells us how long it takes for the protean process to regain a typical
property A. Note that since A holds aas, and aas after O(n logn) steps each vertex
of P,(d,n) is renewed at least once, rec(A) = O(nlogn) aas. However, typically,
the recovery time is smaller than the above universal upper bound implied by the
coupon collector problem. The following theorem estimates rec(C), the recovery
time for connectivity. We adapt the proof of Theorem 5.3 of [8] to prove a better
bound than the coupon collector one for the generalized model of protean graphs.

Theorem 4.1. Let n € (0,1) and d = 1% logn, where a > 1. Then

alogn

rec(C) - 2.7,

where the random wvariable Z has the exponential distribution, that is, for every
2>0,P(Z>z2)=e".

Proof. The main part of the proof is to show that aas at time 7(C), the protean
graph consists of a giant component and a single isolated vertex v of rank w =
(1 4+ o(1))n (note that such a rank maximizes the probability of being isolated).
Then, in order to finish the proof it will be enough to show that aas graph becomes
connected again when a new vertex creates an edge to v.

Let us focus on any period of nlog?n steps of the protean process. The proba-
bilities that during that time in the process we get

e an isolated vertex of rank w, where (w/n)™" <1+¢,
e an isolated vertex of rank w, where (w/n)™" > 1+ ¢,
e a component of size k, 2 < k < 2n/3,

we denote by pi(g), p2(€), and ps, respectively. To estimate these probabilities, let
us first compute the probability p(i, j,t) that a vertex v; = v,, becomes isolated
at time ¢ due to the fact that in this step we chose the only neighbour v; of v; in
the preceding graph to be deleted. Let w; and w; denote the ranks in P.~1(d,n)
of v; and vj, respectively. Then, arguing as in the proof of Theorem 3.2, we may
estimate p(i, j,t) by

11—
(14 0(1))—d-p (w4 O/ 1og** m))

(1 - 2) exp (—d(l ) —1) (% + O(n~210g*? n))_") (1)

for i < j. (With probability 1/n we delete v; at time t; with probability (1 +
0(1))d-% (w; + O(n/?1og*?n))~" there is an edge v;v; at time ¢ — 1; the last
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term corresponds to the fact that there is no other neighbour of v; at time ¢ — 1.)
Similarly, for ¢ > j we get similar estimation for p(i, 7, ), namely,

1 1-—
(1+ 0(1))ﬁ'dn1—_:]7(wj + O(n'?1og®?n))™"

(1= )" exp (—d(l —n)(1 =) (S + O log™” n))_"> - (2)

(Note that this time in order to get an edge between v; and v;, v; has to choose
v; as a neighbour. As a consequence both w; and w; appears in the formula.)
Let € > 0 be a positive constant. Let us denote by A4(i) an event that a vertex

v; of the rank w; becomes isolated at step ¢ of the process and (w;/n)™" < 14¢/4;
moreover, let Ay = |J;_; A4(i). Events B;(i) and B(i) are defined in a similar way,
but this time we would like to have (w;/n)™" > 1+ ¢. From (1) and (2) we get

P(A,(7) > n W1 4+ z)%exp (—d(1 —n)(1 —z)(1 +/4))

P(A,(1) < n W14 2) exp (—d(1 —n)(1 - 2)),
while

P(B.(3)) < n~ (1 4 ) exp (~d(1 —m)(1 —2)(1+)).

Using the same argument as in the proof of Theorem 3.2, we get
> P(Bu(i))
i=1

nW exp (—d(1 - n)(1+¢))
n7(1+0(1))a(1+5) ) (3)

P(B)

IN

<
<

In order to estimate the probability that A; holds, we can bound the probability
p(i, i, j,t) that v; and vy become isolated at time ¢ because the only their neighbour
v; is removed from the graph. It is clear (and so is omitted) that for i # ¢’ the
events Ay(7) and A4(i') are, in a way, ‘weakly dependent’, that is,

P(A(1) N A(i") = P(A(0) P(A()n.

Thus, Bonferroni’s inequality gives
P(Ay) = P(UAt(i)>
i=1

> ZP(AM)— Z P(A, (i) N Ay(i'))
> 0 exp (—d(1 - n)(1 + £/3))
> pa(i2/5)

From (3) we get immediately

nlog?n

P2<5) < Z ]P’(Bt) < pl—(+o(D)a(l+e) (4)

t=1
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Creating an isolated vertex at time t; affects the probability of creating another
isolated vertex at time ¢y (t; < t2). But, since ranks are well concentrated by the
Chernoft’s bound, it can be shown that

]P)<At1 N At2) = P(Ah)P(Atz)nO(l) )
Using Bonferroni’s inequality one more time, we get

nlog?n

p1(€) > ]P)( U At) > nlfa(1+€/2)' (5)
t=1

Moreover, it can also be proved that
ps < n'TOP(A)]? < pole) (6)

(since the argument is fairly standard we omit details; see the proof of Theorem 5.3
of [8] for more).

Now, let us consider the first n®*3/4) log? n steps of the protean process. From
(4), (5) and (6) it follows that if the graph becomes disconnected during this
period, then aas it is due to the appearance of a single isolated vertex of rank w
with (w/n)™" <1+ ¢e. We will show that this is indeed the case, but in order to
do that we split the time interval into a number of smaller subintervals to avoid
dependent events.

Let Dy, k = 0,1,..., ko, where kg = n®13/9=1/3 he an event that between
time-step 2knlog?n and time-step (2k + 1)nlog2 n an isolated vertex of the rank
w appears with (w/n)™ < 1+ e. Let F be an event that every vertex was
at least one time renewed in the time period ((2k — 1)nlog®n,2knlog®n)), for
each k = 1,...,ky. By the coupon collector problem, F holds wep. Moreover,
P(Dx) = pi1(e) and, conditioned on F, all events Dy’s are independent. Thus,
since kop1(g) tends to infinity as n — 0o, aas at least one of Dy’s holds by the
Chernoff’s bound. Consequently, aas 7(C) = n®!t°(1) and at the time 7(C), the
protean graph consists of a giant component and a single isolated vertex v of rank
(1+0(1))n.

The rest of the proof is straightforward. Let us consider the first O(n/logn)
steps after the moment when the graph became disconnected. The probability
that we renew vertex v at that time tends to zero as n — oo and, by the argument
similar to one we used to estimate p; (), p2(€), ps above, so is the probability that
we create an additional small component. Thus, the graph becomes connected if
one of the renewed vertices will choose v as a neighbour. Since the rank of v can
change only slightly during O(n/logn) steps, the probability that for some z > 0,

n n
> =
rec(C) _Zalogn Z(l—n)d’
is given by
d _ 17ama .
1= (L o)1 =)™ 7 = (14 o(1))e

and the assertion follows. O
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