
AN EDGE DELETION MODEL FOR COMPLEX NETWORKS
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Abstract. We propose a new random graph model—Edge Popularity—for the web graph
and other complex networks, where edges are deleted over time and an edge is chosen to be
deleted with probability inversely proportional to the in-degree of the destination. We show
that with probability tending to one as time tends to infinity, the model generates graphs
whose degree distribution follows a power law. Depending on the parameters of the model,
the exponent of the power law can be any number in (2,∞).

1. Introduction

Complex networks arise a large number of settings and disciplines, ranging from the web
graph, networks of social interactions, and to protein interaction networks in biology. One
of the central properties of complex networks are power law degree distributions. Several
models—such as preferential attachment—were proposed which simulate power laws and
other emergent properties of complex networks. For an overview of such models, see the
books [1, 2].

In most models, edges and vertices are added but never deleted. This is less realistic,
since complex networks often both add and delete edges over time. A natural mechanism
underlying such deletions is based on popularity measured by in-degree: edges pointing to
nodes with higher in-degree are less likely to be deleted. We propose a new model where
directed edges are deleted with probability inversely proportional to the in-degree of the
destination. We note that other random graph models which incorporate deletion were
considered independently by [3, 4].

We formally introduce the Edge Popularity (EP) model. Let α and β be two nonnegative
real numbers satisfying α + 2β < 1. (In order to get nontrivial sequence of graphs it is
required to assume that α + β < 1, and β < 1/2. We assume a little bit more here.) We
consider a random graph process which generates a sequence of digraphs Gt, t ∈ N. The
graph Gt = (Vt, Et) will have nt vertices and et edges. Note that nt and et are themselves
random variables. At t = 0 we start with any fixed initial digraph G0 with n0 vertices and
m0 edges. At time t, with probability 1 − α − β we add a new vertex vt to Gt−1, with a
directed loop. With probability α, if et−1 > 0, then we add a new directed edge uv to the
existing vertices, where the origin is chosen with probability proportional to its out-degree
and the destination is chosen with probability proportional to its in-degree; if et−1 = 0, then
we add a new directed edge to the existing vertices uniformly at random. With probability
β, if et−1 > 0, then we delete a directed edge, where an edge is chosen inversely proportional
to the in-degree of the destination; if et−1 = 0, then we do nothing.

We say that an event holds asymptotically almost surely (aas), if it holds with probability
tending to one as t → ∞. We will use the stronger notion of wep in favour of the more
commonly used aas, since it simplifies some of our proofs. We say that an event holds with
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extreme probability (wep), if it holds with probability at least 1− exp(−Θ(log2 t)) as t →∞.
Thus, if we consider a polynomial number of events that each holds wep, then wep all events
hold. To combine this notion with asymptotic notations such as O() and o(), we follow the
conventions in [8].

Finally, we will make use of the following standard result about the sum of independent
random variables, known as the Chernoff’s inequality:

Theorem 1 (Chernoff bound, see for example Theorem 2.8 [6]). Let X be a random variable
that can be expressed as a sum X =

∑n
i=1 Xi of independent random indicator variables where

Xi ∈ Be(pi) with (possibly) different pi = P(Xi = 1) = EXi. Then the following holds for
t ≥ 0:

P(X ≥ EX + t) ≤ exp

(
− t2

2(EX + t/3)

)
,

P(X ≤ EX − t) ≤ exp

(
− t2

2EX

)
.

In particular, if ε ≤ 3/2, then

P(|X − EX| ≥ εEx) ≤ 2 exp

(
−ε2EX

3

)
.

Moreover, if EX ≤ log2 n, then wep X = O(log2 n).

2. Expected degree distribution

Before we analyze the degree distribution, let us present a few simple properties of random
variables nt, et.

Lemma 2. For the EP model we have that

Ent = n0 + (1− α− β)t.

Moreover, wep

nt = (1− α− β)t + O
(√

t log t
)
.

Proof. It is clear that the expected number of vertices added at a given time-step is 1−α−β.
The concentration follows directly from the Chernoff’s inequality. ¤

Moreover, we can show that and the concentration follows from martingale method. Al-
ternatively we repeatedly use the Chernoff’s inequalities in the proof of the following lemma.

Lemma 3. For the EP model we have that

Emt = m0 + (1− 2β)t + O(1).

Moreover, wep

et = (1− 2β)t + O
(√

t log t
)
.

Proof. Not that at time-step i an edge is added with probability α + (1 − α − β) = 1 − β
(with probability α an edge between two vertices is added; with probability 1−α−β a loop
is added) and we are trying to delete an edge with probability β.
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Let {Zi} be a sequence of t independent random variables each of which is equal to 1 with
probability 1− β and −1 with probability β. Then

et = m0 +
t∑

i=1

Zi + f
(
m0, {Zi}

)
,

where f = f(m0, {Zi}) is a deterministic function arising from the fact that an edge is not
deleted if ei is equal to 0. It is clear that Ef =

∑t
j=1 βP(ej = 0). From the Chernoff’s

inequality it follows that

P(ej = 0) ≤ P
( j∑

i=1

Zi ≤ 0
)
≤ exp

(
− (1− 2β)j

2

)
,

so

Ef ≤
t∑

j=1

β exp
(
− (1− 2β)j

2

)
= O(1).

Now, we will show the concentration for et. Since f is nonnegative, the random variable et

is stochastically bounded from below by m0 +
∑t

i=1 Zi. The lower tail of this variable has the

claimed sharp concentration, by the Chernoff’s inequality. Thus, for every ε = Θ
(
log t/

√
t
)
,

P
(
et < m0 + (1− ε)(1− 2β)t

)

≤ P
( t∑

i=1

Zi < (1− ε)E
t∑

i=1

Zi

)

≤ 2 exp
(
− ε2

3
E

t∑
i=1

Zi

)
= exp

(
−Θ(log2 t)

)
.

For the upper tail, we note first (again using Chernoff) that wep the random variable

Z(k) =
∑k

i=1 Zi is positive for every k in the range t1/4 ≤ k ≤ t. Hence, wep f < t1/4. The

upper tail bound again follows from Chernoff’s inequality. For every ε = Θ
(
log t/

√
t
)

P
(
et > m0 + (1 + ε)(1− 2β)t

)

= P
( t∑

i=1

Zi > (1 + ε) E
t∑

i=1

Zi − f
)

≤ P
( t∑

i=1

Zi > (1 +
ε

2
) E

t∑
i=1

Zi

)

≤ 2 exp
(
− ε2

12
E

t∑
i=1

Zi

)
= exp

(
−Θ(log2 t)

)
.

¤

We also need the following lemma on real sequences. The proof of this lemma is analogous
to Lemma 3.1 of [2], and so is omitted.
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Lemma 4. If a sequence {at} satisfies the following recursive formula

at+1 ≤
(
1− pt

t

)
at + xt,(2.1)

and

at+1 ≥
(
1− qt

t

)
at + yt,(2.2)

where {pt}, {qt}, {xt} and {yt} are real sequences satisfying that limt→∞ pt = limt→∞ qt =
b ≥ 0 and limt→∞ xt = limt→∞ yt = c, then

lim
t→∞

at

t
=

c

1 + b
.

We now state and prove the main result of this section. Let Nk,t be the number of vertices
with in-degree k at time t in the EP model. In the following theorem, we will show that
the expectation of Nk,t follows a power law. Note that we add an assumption that the
expectation has a linear behaviour. This is not justifiable (at least, at this point) but the
results presented in the next section imply that this is the right approach.

Theorem 5. We assume that E(Nk,t) = bkt + o(t). Then the expected in-degree distribution

follows a power law with exponent η = 1 + 1−2β
α

∈ (2,∞). More precisely, we have that

bk = C1(α, β)k−η(1 + O(k−1)),

and C1(α, β) is a constant.

Proof. Assume that there are et edges, nt vertices, and Nt = nt−N0,t vertices with in-degree
at least 1 at time t, for t ≥ 0. We abbreviate “with probability” by “w.p.”. It is not hard to
see that

N0,t+1 =

{
N0,t + 1 w.p. β N1,t

Nt
;

N0,t otherwise,

and

N1,t+1 =





N1,t + 1 w.p. 1− α− β + β N2,t

Nt
;

N1,t − 1 w.p. α
N1,t

et
+ β

N1,t

Nt
;

N1,t otherwise.

In general, for k > 1, we have that

Nk,t+1 =





Nk,t + 1 w.p. α
(k−1)Nk−1,t

et
+ β

Nk+1,t

Nt
;

Nk,t − 1 w.p. α
kNk,t

et
+ β

Nk,t

Nt
;

Nk,t otherwise.

Hence,

E(N0,t+1 | Gt) = N0,t + β
N1,t

Nt

,(2.3)

E(N1,t+1 | Gt) = N1,t

(
1− α

et

− β

Nt

)
+ β

N2,t

Nt

+ 1− α− β,(2.4)

E(Nk,t+1 | Gt) = Nk,t

(
1− kα

et

− β

Nt

)
+ α

(k − 1)Nk−1,t

et

+ β
Nk+1,t

Nt

,(2.5)

for k > 1.



AN EDGE DELETION MODEL FOR COMPLEX NETWORKS 5

Define êt = m0 +(1−2β)t and N̂t = (1−α−β)t−E(N0,t). For a fixed real number ε > 0,

let At be the event that |et − êt| ≤ εt
2
3 , and let Bt be the event that |Nt − N̂t| ≤ εt

2
3 . Under

an assumption that

P
(
|Nt − E(Nt)| > εt

2
3

)
< 2 exp

(
−ε2t1/3

2

)
,

by Chernoff bound, we have that

P(At) ≥ 1− 2 exp

(
−ε2t1/3

2

)
− 2 exp

(
−1

2

(
1

2
− β

)2

t

)
,(2.6)

and

P(Bt) ≥ 1− 2 exp

(
−ε2t1/3

2

)
.(2.7)

By (2.6) and (2.7) we have that

P (At ∩Bt) = P (At) + P (Bt)− P (At ∪Bt)

≥ 1− 4e−
ε2t

1
3

2 − 2e−
1
2(

1
2
−β)

2
t.(2.8)

By (2.5) and (2.8), we know that if At and Bt hold, then

E(Nk,t+1|Gt) ≥ Nk,t

(
1− kα

êt − εt
2
3

− β

N̂t − εt
2
3

)
+ α

(k − 1)Nk−1,t

êt + εt
2
3

+ β
Nk+1,t

N̂t + εt
2
3

.

This occurs with probability P (At ∩Bt) ≥ 1− 4e−
ε2t

1
3

2 − 2e−
1
2(

1
2
−β)

2
t. It always holds that

E(Nk,t+1|Gt) ≥ Nk,t

(
1− kα

êt − εt
2
3

− β

N̂t − εt
2
3

)
+ α

(k − 1)Nk−1,t

êt + εt
2
3

+ β
Nk+1,t

N̂t + εt
2
3

−Mk1t,

where Mk1 > 0 is a constant. Thus,

E(Nk,t+1) ≥ E(Nk,t)

(
1− kα

êt − εt
2
3

− β

N̂t − εt
2
3

)
+ α

(k − 1)E(Nk−1,t)

êt + εt
2
3

+β
E(Nk+1,t)

N̂t + εt
2
3

−Mk1tP (At ∩Bt)

≥ E(Nk,t)

(
1− kα

êt − εt
2
3

− β

N̂t − εt
2
3

)
+ α

(k − 1)E(Nk−1,t)

êt + εt
2
3

+β
E(Nk+1,t)

N̂t + εt
2
3

−Mk1t

(
4e−

ε2t
1
3

2 + 2e−
1
2(

1
2
−β)

2
t

)
.(2.9)

Similarly, we have that

E(Nk,t+1) ≤ E(Nk,t)

(
1− kα

êt + εt
2
3

− β

N̂t + εt
2
3

)
+ α

(k − 1)E(Nk−1,t)

êt − εt
2
3

+β
E(Nk+1,t)

N̂t − εt
2
3

+ M ′
k1t

(
4e−

ε2t
1
3

2 + 2e−
1
2(

1
2
−β)

2
t

)
.(2.10)
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Let at = E(Nk,t),

pt =

(
kα

êt + εt
2
3

+
β

N̂t + εt
2
3

)
t,

qt =

(
kα

êt − εt
2
3

+
β

N̂t − εt
2
3

)
t,

xt = α
(k − 1)E(Nk−1,t)

êt − εt
2
3

+ β
E(Nk+1,t)

N̂t − εt
2
3

+ M ′
k1t

(
4e−

ε2t
1
3

2 + 2e−
1
2(

1
2
−β)

2
t

)
,

and

yt = α
(k − 1)E(Nk−1,t)

êt + εt
2
3

+ β
E(Nk+1,t)

N̂t + εt
2
3

−Mk1t

(
4e−

ε2t
1
3

2 + 2e−
1
2(

1
2
−β)

2
t

)
.

By hypothesis that the limit limt→∞
E(Nk,t)

t
= bk exists for all k ≥ 0, (2.9), (2.10) and

Lemma 4, we obtain that, for k > 1,

(β − 2β2)bk+1 + [(α + b0 − 1)(1− 2β)− α(1− α− β − b0)k]bk

+α(1− α− β − b0)(k − 1)bk−1 = 0.

In the following we will solve (2.11) by using the Laplace Method. This method was first
used in the study of the web graph models by [4]. Replacing k by k + 1 in (2.11), we have
that

(β − 2β2)bk+2 + [(α + b0 − 1)(1− 2β)− α(1− α− β − b0)(k + 1)]bk+1

+α(1− α− β − b0)kbk = 0,

which is of the form

(A2(k + 2) + B2) bk+2 + (A1(k + 1) + B1) bk+1 + (A0k + B0) bk = 0,(2.11)

where A2 = 0, B2 = β − 2β2, A1 = −α(1 − α − β − b0), B1 = (α + b0 − 1)(1 − 2β), A0 =
α(1− α− β − b0) and B0 = 0. We make the substitution

(2.12) bk =

∫ b

a

tk−1v(t)dt,

where a, b are constants, and v(t) is a function of t to be determined.
Integrating by parts, we obtain that

kbk = [tkv(t)]ba −
∫ b

a

tkv′(t)dt.

Let φ1(t) = A2t
2 + A1t + A0 and φ0(t) = B2t

2 + B1t + B0. Substituting (2.12) into (2.11),
we obtain that

[tkφ1(t)v(t)]ba −
∫ b

a

tkφ1(t)v
′(t)dt +

∫ b

a

tk−1φ0(t)v(t)dt = 0.

If we ensure that
v′(t)
v(t)

=
φ0(t)

tφ1(t)
,

and

(2.13) [tkv(t)φ1(t)]
b
a = 0,
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then (2.11) will be satisfied. Now (2.13) can be satisfied by choosing a = 0 and b equal to a
root of v(t)φ1(t) = 0. Moreover, since A2 = 0, B2 = β − 2β2, A1 = −α(1− α− β − b0), B1 =
(α + b0 − 1)(1− 2β), A0 = α(1− α− β − b0) and B0 = 0, we can obtain that

φ1(t) = A2t
2 + A1t + A0 = α(1− α− β − b0)(1− t),

and

φ0(t) = B2t
2 + B1t + B0 = (1− 2β)

(
βt2 + (α + b0 − 1)t

)
.

Thus, we have the following differential equation

(2.14)
v′(t)
v(t)

=
φ0(t)

tφ1(t)
=

(1− 2β)(βt + α + b0 − 1)

α(1− α− β − b0)(1− t)
.

Integrating (2.14), we obtain that

v(t) = Ce−ρt(1− t)γ,

where ρ = β(1−2β)
α(1−α−β−b0)

, γ = 1−2β
α

and C is a constant. For convenience, we choose C = 1.

With this choice of v(t), we can choose b = 1 and (2.13) is satisfied. So, we have a = 0, b = 1
and v(t) = e−ρt(1− t)γ.

Now we go back to (2.12) and determine bk as follows.

bk =

∫ 1

0

tk−1v(t)dt

=

∫ 1

0

tk−1e−ρt(1− t)γdt

=

∫ 1

0

tk−1(1− t)γ

∞∑
j=0

(−ρt)j

j!
dt

=
∞∑

j=0

(−ρ)jΓ(γ + 1)

j!

Γ(k + j)

Γ(k + j + γ + 1)
.

Using Stirling’s formula for Γ(k + j) and Γ(k + j + γ + 1), and assuming that k is large,
we have that

bk =
(
1 + O(k−1)

) ∞∑
j=0

e2+γ(−ρ)jΓ(γ + 1)

j!
(k + γ + j + 1)−γ−1

= C1(α, β)k−γ−1
(
1 + O(k−1)

)
,

where C1(α, β) is a constant. ¤

3. Concentration

One may attempt to use the differential equation method [9] to show the concentration for
Nk,t, the number of vertices of degree k at time t. It provides some insight if we define real
function zk(x) to model the behaviour of the scaled random variable 1

n
Nk,xt, n(x) to model

1
n
nxt, and e(x) to model 1

n
ext. If we presume that the changes in the function correspond
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to the expected changes of the random variable (see (2.3, 2.4, 2.5)), then we obtain the
following set of differential equations:

e′(x) = 1− 2β

n′(x) = 1− α− β

z′0(x) = β
z1(x)

n(x)− z0(x)
(3.1)

z′1(x) = 1− α− β + β
z2(x)− z1(x)

n(x)− z0(x)
− α

z1(x)

e(x)
(3.2)

z′k(x) = β
zk+1(x)− zk(x)

n(x)− z0(x)
− α

kzk(x)− (k − 1)zk−1(x)

e(x)
(3.3)

One particular solution is the following:

e(x) = (1− 2β)x, n(x) = (1− α− β)x, zi(x) = bix,

where bi is defined recursively as in the previous section. The general solution, and so the
behaviour of the process, might be slightly different but the numerical solutions suggest that
the process is self-correcting, and the process do converge to the stationary distribution, that
is, aas Nk,t = (1 + o(1))bkt for any k ∈ N ∪ {0}. Before we discuss the concentration issues,
let us look at the number of isolated vertices.

3.1. The number of isolated vertices. As before, we assume that Nk,t = (1 + o(1))bkt.
This is a reasonable assumption based on the discussion in the next subsection. It seems
that it should be easy to find a sequence (bi)i≥0 explicitly, that is, one can get from (3.1)
that

b1 = b0
1− α− β − b0

β
,

then find b2 as a function of b0 (from (3.2)), and finally find bk’s as functions of b0 (one by
one, from (3.3)). Unfortunately, this approach does not work (with tedious details omitted).
However, for given α and β, one can solve this numerically by calculating bk for a relatively
large value of k (for example, k = 5) as a function f(b0) (polynomial of order k + 1). The
solutions of f(b1) = 0 and f(b2) = 1 should give a very good approximation (upper and
lower bound) for b0.

In order to illustrate this technique, let us consider the following example: let α = 0.4 and
β = 0.05. We get that

b5 ≈ −1.0707075884773662551 · 105 + 4.0060341197988111568 · 106 · b0

−3.0761538911751257430 · 107 · b2
0 + 1.0418253955189757659 · 108 · b3

0

−1.8135354366712391403 · 108 · b4
0 + 1.5969397347965249199 · 108 · b5

0

−5.6588934613625971649 · 107 · b6
0,

so

0.035154140737645644868 ≤ b0 ≤ 0.035154595454535434252

(the length of the interval is 4.54716889789384·10−7). After performing a few more steps, one
can get much better precision (for example, 1.77168067 · 10−13 for k = 9). Below (Figure 2),
we present a graph of bi, i ∈ [5] as a function of b0.
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Figure 1. bi = bi(b0) as a function of b0.

Let us also mention that the sequence (bk)k≥0 is not monotonic. Since we do have power
law distribution, it is the case for k sufficiently large but certainly not for small values of k.
For example, if α = 0.4 and β = 0.05 as before, then we get the following:

k = bk ≈
0 0.0351541443
1 0.3619793105
2 0.0825107242
3 0.0307573540
4 0.0145324331
5 0.0079224760

This behaviour is what one should expect. Since with probability 1 − α − β we add a new
vertex with a directed loop, a large fraction of vertices have in-degree 1.

3.2. Concentration. In order to show the concentration for random variables Nk,t’s, one
can use the differential equations method introduced by Wormald [9]. Unfortunately, since
we delete edges in our model, this method cannot be directly applied. We do have a few
issues that prevent us from doing this. We discuss them independently pointing out the
solution.

3.2.1. Issue I (infinite number of variables). We would like to claim something for an infinite
number of variables (the number of variables being a function of n). The general theorem
presented in [9] does not apply to this situation. However, the proof method can also work
for infinitely many variables but one has to go through the proof for the specific case: smaller
and smaller error bounds on the variables are required, as the degree increases. This approach
would work, but we do the following instead in order to be able to use the general purpose
theorem. This gives us slightly weaker result but with much simpler argument.

We consider random variables up to degree K (very large, but constant) and use a trivial
upper/lower bound for NK,t, namely,

0 ≤ NK,t ≤ nt −
K−1∑
i=0

Ni,t.
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An upper bound for will yield an upper bounds for Ni,t’s (say, coefficients ci’s). A lower
bound will yield a lower bounds as well (say, coefficients ai’s). The DEs method can be used
to show that a.a.s. for any i, 0 ≤ i ≤ K − 1,

ait(1 + o(1)) ≤ Ni,t ≤ cit(1 + o(1)).

The recurrence relations for all three sequences are the same (of course, a0, b0, c0 are slightly
different). Since ai and ci can be as close to bi as we want by taking K = K(i) sufficiently
large, we finally get that a.a.s.

Ni,t = bit(1 + o(1))

for any i ∈ N ∪ {0}.
3.2.2. Issue II (early phase of the process). The standard approach to show the concentration
of Nk,t would be to consider the whole process (up to time t) and re-scale all random variables
to get the system of differential equations (3.1, 3.2, 3.3). The solution to the system describes
the behaviour of the process; we get that a.a.s.

Nk,i = tzk(i/t) + o(t)

for 0 ≤ i ≤ t so, in particular, that a.a.s Nk,t = (1 + o(1))tzk(1).
Unfortunately, after scaling the denominators in the system of DEs we have can be equal

to zero, and this prevents us to use the method from the very beginning of the process.
To overcome this problem we can start using it from time T (say, T =

√
t), for which we

are sure that a.a.s. nT > (1 + o(1))(1 − α − β)T and N0,T < (1 + o(1))βT (see Lemmas 2
and 3). Now if we scale all random variables by T , we get Ω(x) in the denominator. The
only problem is that we do not know the initial values of random variables we deal with, and
so we do not know the initial value problem we should consider. However, if we suppose that
the initial graph (that is, graph at time T ) is known, then we can run the process up to time
2T , solve corresponding initial value problem to get that a.a.s. Nk,i = (1 + o(1))Tzk(i/T )
for T ≤ i ≤ 2T . In particular, we get that a.a.s Nk,2T = (1 + o(1))Tzk(2). We repeat the
argument to cover the time interval from 2T to 4T , using the final values from the phase
one as the initial ones for the phase two. Next, we consider the time interval from 4T to
8T , etc. We get a concentration for every single phase, to discover a self-correcting property
based on the solutions of the DEs. In other words, all initial conditions for the first phase
should lead to approximately the same solutions once we have chained together arbitrarily
many time intervals.

3.2.3. Issue III (exact solution). We have solved two issues discussed before but, unfortu-
nately, the third one remains still open. We still do not know how to prove the self-correcting
property of the general solution to the system of DEs associated with the problem we con-
sider. However, we tested a number of different initial graphs (which generated a number
of different initial value problems to consider), including some extreme cases, to convince
ourselves that the general solution tends to the equilibrium point regardless of the initial
value vector. Numerical results support our intuition based on the observation that we are
getting a new vertices of degree one at a constant rate during the whole process. So if we
have too many vertices of degree one, the probability that we remove (or add) an arc to
a vertex of degree one is higher comparing to the corresponding value at the equilibrium
point. This, we will see the relative number of such vertices dropping down. Similarly, if
the number of vertices of degree one is much smaller comparing to the expected value, the
probability of this event is smaller comparing to its equilibrium counterpart and, since we
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get new vertices of degree one at a constant rate, this random variable is going to be cor-
rected. When the number of vertices of degree one is close to its equilibrium, then degree
zero vertices as well as degree two vertices are stabilizing as well, etc. We do converge to the
stationary distribution.

In order to illustrate this technique, we consider the system of 6 differential equations. For
the last equation (involving z′5(x)) we consider two possibilities to get lower and upper bounds
for coefficients: ai, ci (see Issue I ). We test the behaviour of the process for different (in some
sense, extreme) initial conditions. We start the process with 2-regular graph (collection of
cycles), 5-regular graph, and the graph with the degree distribution we expect from the
process, that is, the number of vertices of degree k is proportional to bk. Clearly, for the
last case, the property is preserved, and the number of vertices of degree k will remain
proportional to bk. However, it seems that if we start from any other initial value, the
distribution stabilizes quickly, and after a while we obtain the desired property. It is certainly
the case for a few cases we investigated. The conclusion is that no nice behaviour can be
expected at the beginning of the process but, at some point when the number of vertices
and edges are well concentrated around its expectations, the process becomes self-correcting
and the initial condition does not matter.

The bounds we get are surprisingly close to each other, even for small number of equations.
For K = 6, we get the following bounds, regardless of which initial values are used.

k ak bk ck

b0 0.0351541442 0.0351541443 0.351541445
b1 0.3619793098 0.3619793105 0.361979313
b2 0.0825107143 0.0825107242 0.082510750
b3 0.0307571553 0.0307573540 0.030757856
b4 0.0145275514 0.0145324331 0.014544765
b5 0.0077806939 0.0079224760 0.008280641

The computations presented in the paper were performed by using MapleTM [7]. The
worksheets can be found at the following address: “http://www.math.wvu.edu/~pralat/”.
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