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Abstract. We introduce a new geometric, rank-based model for the link
structure of on-line social networks (OSNs). In the geo-protean (GEO-P)
model for OSNs nodes are identified with points in Euclidean space, and
edges are stochastically generated by a mixture of the relative distance of
nodes and a ranking function. With high probability, the GEO-P model
generates graphs satisfying many observed properties of OSNs, such as
power law degree distributions, the small world property, densification
power law, and bad spectral expansion. We introduce the dimension of
an OSN based on our model, and examine this new parameter using
actual OSN data.

1 Introduction

On-line social networking sites such as Facebook, Flickr, LinkedIn, MySpace,
and Twitter are examples of large-scale, complex, real-world networks, with an
estimated total number of users that equals half of all Internet users [2]. We may
model an OSN by a graph with nodes representing users and edges corresponding
to friendship links. While OSNs gain increasing popularity among the general
public, there is a parallel increase in interest in the cataloguing and modelling
of their structure, function, and evolution. OSNs supply a vast and historically
unprecedented record of large-scale human social interactions over time.

The availability of large-scale social network data has led to numerous studies
that revealed emergent topological properties of OSNs. For example, the recent
study [15] crawled the entire Twitter site and obtained 41.7 million user profiles
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and 1.47 billion social relations. The next challenge is the design and rigorous
analysis of models simulating these properties. Graph models were successful in
simulating properties of other complex networks such as the web graph (see the
books [4, 8] for surveys of such models), and it is thus natural to propose models
for OSNs. Few rigorous models for OSNs have been posed and analyzed, and
there is no universal consensus of which properties such models should simulate.
Notable recent models are those of Kumar et al. [14], Lattanzi and Sivaku-
mar [16], and the Iterated Local Transitivity model [5].

Researchers are now in the enviable position of observing how OSNs evolve
over time, and as such, network analysis and models of OSNs typically incor-
porate time as a parameter. While by no means exhaustive, some of the main
observed properties of OSNs include the following.

(i) Large-scale. OSNs are examples of complex networks with number nodes
(which we write as n) often in the millions; further, some users have dispropor-
tionately high degrees. For example, each of the nodes of Twitter corresponding
to celebrities Ashton Kutcher, Ellen Degeneres, and Britney Spears have degree
over five million [23].

(ii) Small world property and shrinking distances. The small world property,
introduced by Watts and Strogatz [25], is a central notion in the study of complex
networks (see also [13]). The small world property demands a low diameter of
O(log n), and a higher clustering coefficient than found in a binomial random
graph with the same number of nodes and same average degree. Adamic et al. [1]
provided an early study of an OSN at Stanford University, and found that the
network has the small world property. Similar results were found in [2] which
studied Cyworld, MySpace, and Orkut, and in [21] which examined data collected
from Flickr, YouTube, LiveJournal, and Orkut. Low diameter (of 6) and high
clustering coefficient were reported in the Twitter by both Java et al. [12] and
Kwak et al. [15]. Kumar et al. [14] reported that in Flickr and Yahoo!360 the
diameter actually decreases over time. Similar results were reported for Cyworld
in [2]. Well-known models for complex networks such as preferential attachment
or copying models have logarithmically growing diameters with time. Various
models (see [17, 18]) were proposed simulating power law degree distributions
and decreasing distances.

(iii) Power law degree distributions. In a graph G of order n, let Nk be
the number of nodes of degree k. The degree distribution of G follows a power
law if Nk is proportional to k−b, for a fixed exponent b > 2. Power laws were
observed over a decade ago in subgraphs sampled from the web graph, and are
ubiquitous properties of complex networks (see Chapter 2 of [4]). Kumar, Novak,
and Tomkins [14] studied the evolution of Flickr and Yahoo!360, and found
that these networks exhibit power-law degree distributions. Power law degree
distributions for both the in- and out-degree distributions were documented in
Flickr, YouTube, LiveJournal, and Orkut [21], as well as in Twitter [12, 15].

(iv) Bad spectral expansion. Social networks often organize into separate clus-
ters in which the intra-cluster links are significantly higher than the number
of inter-cluster links. In particular, social networks contain communities (char-



acteristic of social organization), where tightly knit groups correspond to the
clusters [22]. As a result, it is reported in [9] that social networks, unlike other
complex networks, possess bad spectral expansion properties realized by small
gaps between the first and second eigenvalues of their adjacency matrices.

Our main contributions in the present work are twofold: to provide a model—
the geo-protean (GEO-P) model—which provably satisfies all five properties
above (see Section 3; note that the model does not generate graphs with shrink-
ing distances, the parameters can be adjusted to give constant diameter), and
second, to suggest a reverse engineering approach to OSNs. Given only the link
structure of OSNs, we ask whether it is possible to infer the hidden reality of
such networks. Can we group users with similar attributes from only the link
structure? For instance, a reasonable assumption is that out of the millions of
users on a typical OSN, if we could assign the users various attributes such as
age, sex, religion, geography, and so on, then we should be able to identify indi-
viduals or at least small sets of users by their set of attributes. Thus, if we can
infer a set of identifying attributes for each node from the link structure, then we
can use this information to recognize communities and understand connections
between users.

Characterizing users by a set of attributes leads naturally to a vector-based
or geometric approach to OSNs. In geometric graph models, nodes are identified
with points in a metric space, and edges are introduced by probabilistic rules
that depend on the proximity of the nodes in the space. We envision OSNs as em-
bedded in a social space, whose dimensions quantify user traits such as interests
or geography; for instance, nodes representing users from the same city or in the
same profession would likely be closer in social space. A first step in this direction
was given in [19], which introduced a rank-based model in an m-dimensional grid
for social networks (see also the notion of social distance provided in [24]). Such
an approach was taken in geometric preferential attachment models of Flaxman
et al. [10], and in the SPA geometric model for the web graph [3].

The geo-protean model incorporates a geometric view of OSNs, and also
exploits ranking to determine the link structure. Higher ranked nodes are more
likely to receive links. A formal description of the model is given in Section 2.
Results on the model are summarized in Section 3. We present a novel approach
to OSNs by assigning them a dimension; see the formula (4). Given certain OSN
statistics (order, power law exponent, average degree, and diameter), we can
assign each OSN a dimension based on our model. The dimension of an OSN
may be roughly defined as the least integer m such that we can accurately embed
the OSN in m-dimensional Euclidean space. Proofs of some of our results are
presented in Section 4; the full version of the paper will contain proofs of all the
results.

2 The GEO-P Model for OSNs

We now present our model for OSNs, which is based on both the notions of
embedding the nodes in a metric space (geometric), and a link probability based



on a ranking of the nodes (protean). We identify the users of an OSN with
points in m-dimensional Euclidean space. Each node has a region of influence,
and nodes may be joined with a certain probability if they land within each
others region of influence. Nodes are ranked by their popularity from 1 to n,
where n is the number of nodes, and 1 is the highest ranked node. Nodes that
are ranked higher have larger regions of influence, and so are more likely to
acquire links over time. For simplicity, we consider only undirected graphs. The
number of nodes n is fixed but the model is dynamic: at each time-step, a node is
born and one dies. A static number of nodes is more representative of the reality
of OSNs, as the number of users in an OSN would typically have a maximum
(an absolute maximum arises from roughly the number of users on the internet,
not counting multiple accounts). For a discussion of ranking models for complex
networks, see [11, 20].

We now formally define the GEO-P model. The model produces a sequence
(Gt : t ≥ 0) of undirected graphs on n nodes, where t denotes time. We write
Gt = (Vt, Et). There are four parameters: the attachment strength α ∈ (0, 1), the
density parameter β ∈ (0, 1− α), the dimension m ∈ N, and the link probability
p ∈ (0, 1]. Each node v ∈ Vt has rank r(v, t) ∈ [n] (we use [n] to denote the set
{1, 2, . . . , n}). The rank function r(·, t) : Vt → [n] is a bijection for all t, so every
node has a unique rank. The highest ranked node has rank equal to 1; the lowest
ranked node has rank n. The initialization and update of the ranking is done by
random initial rank. (Other ranking schemes may also be used.) In particular,
the node added at time t obtains an initial rank Rt which is randomly chosen
from [n] according to a prescribed distribution. Ranks of all nodes are adjusted
accordingly. Formally, for each v ∈ Vt−1 ∩ Vt,

r(v, t) = r(v, t− 1) + δ − γ,

where δ = 1 if r(v, t − 1) > Rt and 0 otherwise, and γ = 1 if the rank of the
node deleted in step t is smaller than r(v, t− 1), and 0 otherwise.

Let S be the unit hypercube in Rm, with the torus metric d(·, ·) derived from
the L∞ metric. In particular, for any two points x and y in Rm,

d(x, y) = min{||x− y + u||∞ : u ∈ {−1, 0, 1}m}.

The torus metric thus “wraps around” the boundaries of the unit cube, so every
point in S is equivalent. The torus metric is chosen so that there are no boundary
effects, and altering the metric will not significantly affect the main results.

To initialize the model, let G0 = (V0, E0) be any graph on n nodes that are
chosen from S. We define the influence region of node v at time t ≥ 0, written
R(v, t), to be the ball around v with volume

|R(v, t)| = r(v, t)−αn−β .

For t ≥ 1, we form Gt from Gt−1 according to the following rules.

1. Add a new node v that is chosen uniformly at random from S. Next, inde-
pendently, for each node u ∈ Vt−1 such that v ∈ R(u, t − 1), an edge vu is



created with probability p. Note that the probability that u receives an edge
is equal to p r(u, t− 1)−αn−β . The negative exponent (−α) guarantees that
nodes with higher ranks (r(u, t−1) close to 1) are more likely to receive new
edges than lower ranks.

2. Choose uniformly at random a node u ∈ Vt−1, delete u and all edges incident
to u.

3. Update the ranking function r(·, t) : Vt → [n].

Since the process is an ergodic Markov chain, it will converge to a stationary
distribution. The random graph corresponding to this distribution with given
parameters α, β,m, p is called the geo-protean (or GEO-P model) graph, and is
written GEO-P(α, β,m, p).

3 Results and Dimension

We now state the main theoretical results we discovered for the geo-protean
model, with proofs supplied in the next section. The model generates with high
probability graphs satisfying each of the properties (i) to (iv) in the introduction.
Proofs are presented in Section 4. Throughout, we will use the stronger notion
of wep in favour of the more commonly used aas, since it simplifies some of our
proofs. We say that an event holds with extreme probability (wep), if it holds
with probability at least 1− exp(−Θ(log2 n)) as n→∞. Thus, if we consider a
polynomial number of events that each holds wep, then wep all events hold.

Let Nk = Nk(n, p, α, β) denote the number of nodes of degree k, and N≥k =∑
l≥kNl. The following theorem demonstrates that the geo-protean model gen-

erates power law graphs with exponent

b = 1 + 1/α. (1)

Note that the variables N≥k represent the cumulative degree distribution, so the
degree distribution of these variables has power law exponent 1/α.

Theorem 1. Let α ∈ (0, 1), β ∈ (0, 1− α), m ∈ N, p ∈ (0, 1], and

n1−α−β log1/2 n ≤ k ≤ n1−α/2−β log−2α−1 n.

Then wep GEO-P(α, β,m, p) satisfies

N≥k =
(
1 +O(log−1/3 n)

) α

α+ 1
p1/αn(1−β)/αk−1/α.

For a graph G = (V,E) of order n, define the average degree of G by d = 2|E|
n .

Our next results shows that geo-protean graphs are dense.

Theorem 2. Wep the average degree of GEO-P(α, β,m, p) is

d = (1 + o(1))
p

1− α
n1−α−β . (2)



Note that the average degree tends to infinity with n; that is, the model generates
graphs satisfying a densification power law. In [17], densification power laws were
reported in several real-world networks such as the physics citation graph and
the internet graph at the level of autonomous systems.

Our next result describes the diameter of graphs sampled from the GEO-P
model. While the diameter is not shrinking, it can be made constant by allowing
the dimension to grow as a logarithmic function of n.

Theorem 3. Let α ∈ (0, 1), β ∈ (0, 1 − α), m ∈ N, and p ∈ (0, 1]. Then wep
the diameter of GEO-P(α, β,m, p) is

O(n
β

(1−α)m log
2α

(1−α)m n). (3)

We note that in a geometric model where regions of influence have constant
volume and possessing the same average degree as the geo-protean model, the
diameter is Θ(n

α+β
m ). This is a larger diameter than in the GEO-P model. If

m = C log n, for some constant C > 0, then wep we obtain a diameter bounded
by a constant. We conjecture that wep the diameter is of order n

β
(1−α)m+o(1). In

the full version of the paper, we prove that wep the GEO-P model generates
graph with constant clustering coefficient.

The normalized Laplacian of a graph relates to important graph properties;
see [7]. Let A denote the adjacency matrix and D denote the diagonal degree ma-
trix of a graph G. Then the normalized Laplacian of G is L = I−D−1/2AD−1/2.
Let 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2 denote the eigenvalues of L. The spectral gap
of the normalized Laplacian is

λ = max{|λ1 − 1|, |λn−1 − 1|}.

A spectral gap bounded away from 0 is an indication of bad expansion properties,
which are characteristic of OSNs (see property (iv) in the introduction). The
next theorem represents a drastic departure from the good expansion found in
binomial random graphs, where λ = o(1) [7, 8].

Theorem 4. Let α ∈ (0, 1), β ∈ (0, 1 − α), m ∈ N, and p ∈ (0, 1]. Let λ(n) be
the spectral gap of the normalized Laplacian of GEO-P(α, β,m, p). Then wep

1. If m = m(n) = o(log n), then λ(n) = 1 + o(1).
2. If m = m(n) = C log n for some C > 0, then

λ(n) ≥ 1− exp
(
−α+ β

C

)
.

3.1 Dimension of OSNs

Given an OSN, we describe how we may estimate the corresponding dimension
parameter m if we assume the GEO-P model. In particular, if we know the order
n, power law exponent b, average degree d, and diameter D of an OSN, then we



can calculate m using our theoretical results. The formulas (1) gives an estimate
for α based on the power law exponent b. If d∗ = log d/ log n, then equation (2)
implies that, asymptotically, 1− α− β = d∗. If D∗ = logD/ log n, then (3) and
our conjecture about the diameter implies that, asymptotically, D∗ = β

(1−α)m .
Thus, an estimate for m is given by:

m =
1
D∗

(
1−

(
b− 1
b− 2

)
d∗
)
. (4)

Note that (4) suggests that the dimension depends on log n/ logD. If D
is constant, this means that m grows logarithmically with n. Recall that the
dimension of an OSN may be roughly defined as the least integer m such that we
can accurately embed the OSN in m-dimensional Euclidean space. Based on our
model we conjecture that the dimension of an OSN is best fit by approximately
log n.

The parameters b, d, and D have been determined for samples from OSNs in
various studies such as [2, 12, 15, 21]. The following chart summarizes this data
and gives the predicted dimension for each network. We round m up to the
nearest integer. Estimates of the total number of users n for Cyworld, Flickr,
and Twitter come from Wikipedia [26], and those from YouTube comes from
their website [27]. When the data consisted of directed graphs, we took b to
be the power law exponent for the in-degree distribution. As noted in [2], the
power law exponent of b = 5 for Cyworld holds only for users whose degree is
at most approximately 100. When taking a sample, we assume that some of the
neighbours of each node will be missing. Hence, when computing d∗, we used n
equalling the number of users in the sample. As we assume that the diameter of
the OSN is constant, we compute D∗ with n equalling the total number of users.

Parameter OSN
Cyworld Flickr Twitter YouTube

n 2.4× 107 3.2× 107 7.5× 107 3× 108

b 5 2.78 2.4 2.99
d∗ 0.22 0.17 0.17 0.1
D∗ 0.11 0.19 0.1 0.16
m 7 4 5 6

4 Proofs of results

We sketch the proofs of our results here, emphasizing those parts that give insight
into the model. Detailed proofs of all our results will appear in a full paper.

4.1 Degree distribution; proof of Theorem 1

Theorem 1 follows immediately from the following theorem which shows how
the degree of a given vertex depends precisely on its age rank and prestige label.



A vertex v has age rank a(v, t) = i at time t if it is the i-th oldest vertex of all
vertices existing at time t. The result below refers to the degree of a vertex at a
time L, when the steady state of the GEO-P model has been reached.

The proof of the theorem follows standard methods, and is omitted here.

Theorem 5. Let i = i(n) ∈ [n]. Let vi be the vertex in GEO-P(α, β,m, p) whose
age rank at time L equals a(vi, L) = i, and let Ri be the initial rank of vi.

If Ri ≥
√
n log2 n, then wep

deg(vi, L) = (1 +O(log−1/2 n))p

(
i

(1− α)n
+
(
Ri
n

)−α
n− i
n

)
n1−α−β .

Otherwise, that is if Ri <
√
n log2 n, wep

deg(vi, L) ≥ (1 +O(log−1/2 n))p
(

i

(1− α)n
+ nα/2 log−2α n

n− i
n

)
n1−α−β .

The proof of Theorem 1 is now a consequence of Theorem 5. One can show
by an omitted calculation that wep each vertex vi that has the initial rank
Ri ≥

√
n log2 n such that

Ri
n
≥
(
1 + log−1/3 n

)(
pn1−α−β n− i

n
k−1

)1/α

has fewer than k neighbours, and each vertex vi for which

Ri
n
≤
(
1− log−1/3 n

)(
pn1−α−β n− i

n
k−1

)1/α

has more than k neighbours.
Let i0 be the largest value of i such that(

pn1−α−β n− i
n

k−1

)1/α

≥ 2 log2 n√
n

.

This guarantees that the equations above do not contradict the requirement that
Ri ≥ log2 n

√
n. Note that i0 = n−O(n/ log n), since k ≤ n1−α/2−β log−2α−1 n.

Using this result, we can compute the expected value of N≥k.

EN≥k =
i0∑
i=1

(
1 +O(log−1/3 n)

)(
pn1−α−β n− i

n
k−1

)1/α

+O

(
n∑

i=i0+1

log2 n√
n

)
=
(
1 +O(log−1/3 n)

) α

α+ 1
p1/αn(1−β)/αk−1/α.

The concentration follows from the well-known Chernoff bound. ut



4.2 Bad expansion: proof of Theorem 4

For the proof of Theorem 4 we show that there are sparse cuts in the GEO-P
model. For sets X and Y we use the notation e(X,Y ) for the number of edges
with one end in each of X and Y . Suppose that the unit hypercube S = [0, 1]m

is partitioned into two sets of the same volume,

S1 = {x = (x1, x2, . . . , xm) ∈ S : x1 ≤ 1/2},

and S2 = S \ S1. Both S1 and S2 contain (1 + o(1))n/2 vertices wep. In a good
expander (for instance, the binomial random graph G(n, p)), wep there would
be

(1 + o(1))
|E|
2

= (1 + o(1))
p

4(1− α)
n2−α−β

edges between S1 and S2. Below we show that it is not the case in our model.
The proof of the following theorem is omitted.

Theorem 6. Let α ∈ (0, 1), β ∈ (0, 1 − α), m ∈ N, and p ∈ (0, 1]. Then wep
GEO-P(α, β,m, p) has the following properties.

1. If m = m(n) = o(log n), then e(S1, S2) = o(n2−α−β).
2. If m = m(n) = C log n for some C > 0, then

e(S1, S2) ≤ (1 + o(1))
p

4(1− α)
n2−α−β exp

(
−α+ β

C

)
.

To finish the proof of Theorem 4, we use the expander mixing lemma for the
normalized Laplacian (see [7] for its proof). For sets of nodes X and Y we use
the notation vol(X) for the volume of the subgraph induced by X, X̄ for the
complement of X, and, as introduced before, e(X,Y ) for the number of edges
with one end in each of X and Y. (Note that X ∩ Y does not have to be empty;
in general, e(X,Y ) is defined to be the number of edges between X \ Y to Y
plus twice the number of edges that contain only vertices of X ∩ Y .)

Lemma 1. For all sets X ⊆ G,∣∣∣∣e(X,X)− (vol(X))2

vol(G)

∣∣∣∣ ≤ λvol(X)vol(X̄)
vol(G)

.

It follows from (2) and the Chernoff bound that wep

vol(GL) = (1 + o(1))
p

1− α
n2−α−β

vol(S1) = (1 + o(1))
p

2(1− α)
n2−α−β = (1 + o(1))vol(S2).

Suppose first that m = o(log n). From Theorem 6 we get that wep

e(S1, S1) = vol(S1)− e(S1, S2) = (1 + o(1))vol(S1)

= (1 + o(1))
p

2(1− α)
n2−α−β ,



and Lemma 1 implies that wep λn ≥ 1 + o(1). By definition, λn ≤ 1 so λn =
1 + o(1).

Suppose now that m = C log n for some constant C > 0. By Theorem 6, we
obtain that wep

e(S1, S1) = (1 + o(1))
p

1− α
n2−α−β

1
2
−

exp
(
−α+β

C

)
4

 .

The assertion follows directly from Lemma 1. ut

4.3 Diameter; proof of Theorem 3.

In order to show that the graph has a relatively small diameter, we will first
show that wep there exists a “backbone” of vertices with a large influence region
(which allow for long links), and that all vertices are within at most graph
distance two from this backbone.

To find the backbone, fix A, and partition the hypercube into 1/A hyper-
cubes. Fix R, and consider nodes with initial rank at most R and age at most
n/2; we call these the influential nodes. We now choose A and R so that (i) in
each small hypercube, wep there are log2 n influential nodes, and (ii) the influ-
ence region of each influential node from its birth until the end of the process
contains the whole hypercube in which it is located, and also all neighbouring
hypercubes.

It can be shown that (ii) holds wep if the initial influence region of each
influential node is at least 5mA. Therefore, we obtain that

R−αn−β = 5mA. (5)

Property (i) holds if the expected number of influential nodes in each hypercube
is at least 2 log2 n (Chernoff bound). Hence, we require that

n

2
A
R

n
= 2 log2 n. (6)

Combining (5) and (6) we obtain that the number of hypercubes is equal to

1
A

= 5
m+α
1−α n

β
1−α log

2α
1−α n.

Now, since wep there are log2 n nodes in each hypercube to choose from, wep we
can select exactly one node from each hypercube so that each node is adjacent
to the chosen nodes from all neighbouring hypercubes (the younger node falls
into the region of influence of the older neighbours, and creates an edge with
probability p). This subgraph then forms the backbone. It is clear that the
diameter of the backbone is(

1
A

)1/m

= O(n
β

(1−α)m log
2α

(1−α)m n)



We now show that wep a node v that is not in the backbone is distance at
most two from some node in the backbone. Since wep the minimum degree is
Ω(n1−α−β), wep Ω(n1−α−β) neighbours of v have age rank at least n/2. Since
each such neighbour falls into the region of influence of some node in the back-
bone, wep at least one neighbour of v must be connected the backbone. ut

5 Conclusion and Discussion

We introduced the geo-protean (GEO-P) geometric model for OSNs, and showed
that with high probability, the model generates graphs satisfying each of the
properties (i) to (iv) in the introduction. We introduce the dimension of an OSN
based on our model, and examine this new parameter using actual OSN data.
We observed that the dimension of various OSNs ranges from four to 7. It may
therefore, be possible to group users via a relatively small number of attributes,
although this remains unproven. The Logarithmic Dimension Hypothesis (or
LDH) conjectures the dimension of an OSN is best fit by log n, where n is the
number of users in the OSN.

The ideas of using geometry and dimension to explore OSNs deserves to be
more thoroughly investigated. Given the availability of OSN data, it may be
possible to fit the data to the model to determine the dimension of a given OSN.
Initial estimates from actual OSN data indicate that the spectral gap found in
OSNs correlates with the spectral gap found in the GEO-P model when the
dimension is approximately log n, giving some credence to the LDH. Another
interesting direction would be to generalize the GEO-P to a wider array of
ranking schemes (such as ranking by age or degree), and determine when similar
properties (such as power laws and bad spectral expansion) provably hold.

We finish by mentioning that recent work [6] indicates that social networks
lack high compressibility, especially in contrast to the web graph. We propose
to study the relationship between the GEO-P model and the incompressibility
of OSNs in future work.
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