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Abstract. Cops and Robbers is a pursuit and evasion game played on graphs that has
received much attention. We consider an extension of Cops and Robbers, distance k

Cops and Robbers, where the cops win if at least one of them is of distance at most
k from the robber in G. The cop number of a graph G is the minimum number of
cops needed to capture the robber in G. The distance k analogue of the cop number,
written ck(G), equals the minimum number of cops needed to win at a given distance k.
We study the parameter ck from algorithmic, structural, and probabilistic perspectives.
We supply a classification result for graphs with bounded ck(G) values and develop an
O(n2s+3) algorithm for determining if ck(G) ≤ s for s fixed. We prove that if s is not
fixed, then computing ck(G) is NP-hard. Upper and lower bounds are found for ck(G)
in terms of the order of G. We prove that
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where ck(n) is the maximum of ck(G) over all n-vertex connected graphs. The parameter
ck(G) is investigated asymptotically in random graphs G(n, p) for a wide range of p =
p(n). For each k ≥ 0, it is shown that ck(G) as a function of the average degree d(n) = pn

forms an intriguing zigzag shape.

1. Introduction and main results

Originating with the work of Nowakowski and Winkler [24], Quilliot [25], and Aigner
and Fromme [1] in the 1980’s on the game of Cops and Robbers, a large and diverse
corpus of research has now emerged on pursuit and evasion games on graphs. In pursuit
and evasion games, the usual setting is a discrete-time two-person game consisting of an
intruder who is loose on the vertices of a graph and trying to evade capture, and a set
of searchers whose goal is to capture the robber while minimizing resources. Networks
that require a smaller number of searchers may be viewed as more secure than those
where many searchers are needed. Variations allow for players to possess only imperfect
information, utilize only certain types of movements, allowing the players to move at
various speeds, or meet specified conditions to win the game. See [12] for a survey of such
variations. For example, as is the case in this work, a searcher need not occupy the vertex
of the robber to capture him, but must “see” or “shoot” the robber from some prescribed
distance away. For analogies from computer gaming, classic Cops and Robbers is akin
to a moving-target game where the intruder must be touched to lose (such as Pac-Man),
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while the scenarios we consider compare with first-person shooter games where weapons
hit targets at some prescribed distance. For recent surveys on pursuit and evasion games,
the reader is directed to [2, 12, 15].

We give a formal description of the game of distance k Cops and Robbers, by first
recalling how Cops and Robbers is played. In Cops and Robbers, there are two players, a
set of s cops (or searchers) C, where s > 0 is a fixed integer, and the robber R. The cops
begin the game by occupying a set of s vertices of an undirected, and finite graph G. We
take G to be reflexive: there are loops on each vertex. While the game may be played on
a disconnected graph, without loss of generality, assume that G is connected (since the
game is played independently on each component and the number of cops required is the
sum over all components). The cops and robber move in rounds indexed by nonnegative
integers. Each round consists movements by one or more cops, followed by a move by
the robber. More than one cop is allowed to occupy a vertex, and the players may pass ;
that is, remain on their current vertices. A move in a given round for a cop or the robber
consists of a pass or moving to an adjacent vertex; each cop may move or pass in a round.
The players know each other’s current locations; that is, the game is played with perfect
information. The cops win and the game ends if at least one of the cops can eventually
occupy the same vertex as the robber; otherwise, R wins. Note that if s cops win the
game so that in round 0 they occupy a set of vertices S, then they may win by occupying
any set of vertices in round 0 (simply move the cops to the vertices of S, and then play
as if starting the game at S). As placing a cop on each vertex guarantees that the cops
win, we may define the cop number, written c(G), which is the minimum cardinality of
the set of cops needed to win on G. While this vertex pursuit game played with one cop
was introduced in [24, 25], the cop number was first introduced in [1].

We study a variation of the game of Cops and Robbers in which cops have the ability
of catching the robber if he is sufficiently close. More precisely, fix a nonnegative integer
parameter k. The game of distance k Cops and Robbers is played in a way analogous to
Cops and Robbers, except that the cops win if a cop is within distance at most k from the
robber (for simplicity, we identify the players with the vertices they occupy). If k = 0,
then distance k Cops and Robbers reduces to the classical Cops and Robbers game.

The minimum number of cops which possess a winning strategy in G playing distance k
Cops and Robbers is denoted by ck(G). Hence, c0(G) is just the usual cop number c(G).
For example, for the 4-cycle, c0(C4) = 2, while ck(C4) = 1 for all k ≥ 1. Note that for G
connected, ck(G) = 1 if k ≥ diam(G)− 1, where diam(G) is the diameter of G. Further,
for all k ≥ 1, ck(G) ≤ ck−1(G).

We observe that for given integers k,m ≥ 1, there are examples of graphs with the
property that ck(G) = 1 but c(G) = m. To see this, we consider random graphs. The
random graph G(n, p) consists of the probability space (Ω,F ,P), where Ω is the set of
all graphs with vertex set [n] = {1, 2, . . . , n}, F is the family of all subsets of Ω, and for
every G ∈ Ω

P(G) = p|E(G)|(1− p)(n2)−|E(G)| .

This space may be viewed as
(

n
2

)

independent coin flips, one for each pair of vertices, where
the probability of success (that is, drawing an edge) is equal to p. Note that p = p(n)
can tend to zero with n. We say that an event holds asymptotically almost surely (a.a.s.)
if it holds with probability tending to 1 as n → ∞. Now, if p ∈ (0, 1) is constant,
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then the random graph G(n, p) a.a.s. satisfies c(G(n, p)) = Θ(logn) (see [7]), but a.a.s.
ck(G(n, p)) = 1 for all k > 0 since a.a.s. it has diameter 2.

In the case k = 0, polynomial-time algorithms were given in [4, 14, 16] for recognizing
if G satisfies c0(G) ≤ s, where s is a fixed positive integer. In particular, it is implicit in
the work of [16] that their algorithm runs in time O(n2s+3), where n = |V (G)|.

A difficult open problem in graph searching is Meyniel’s conjecture (communicated by
Frankl [13]), which states that c0(G) = O(

√
n). Up until recently, the best known upper

bound for general graphs was given in [9] where it was proved that c0(n) = O( n
logn

). Recent

work of from [22] proved using the probabilistic method that c0(n) = n2−(1−o(1))
√
logn.

Meyniel’s conjecture has been essentially verified for G(n, p) random graphs for several
cases when p is a function of n; see [6, 7, 8, 23].

We study the parameter ck from algorithmic, structural, and probabilistic perspectives.
In particular, we consider both algorithms and bounds for ck(G), as well as the game
played on G(n, p). In Section 2, we analyze the complexity of computing ck(G) for a
given graph G. We give a polynomial-time algorithm for determining whether ck(G) is
equal to s, assuming that s is fixed. Our algorithm runs in time O(n2s+3) (see Theorem 3),
regardless of the value of k. For any two integers s and k, Theorem 1 gives a classification
of the family of graphs with ck(G) > s using the strong product of graphs. Despite
Theorem 3, we prove in Corollary 10 that for any integer k ≥ 0 there is no polynomial-
time algorithm to compute ck(G), unless P=NP.

In Sections 3 and 4, we supply upper and lower bounds for ck(G) in terms of the order
of G; see Theorems 4 and 11, respectively. We let ck(n) denote the maximum of ck(G)
over all n-vertex connected graphs. It is shown that

(n

k

)1/2+o(1)

≤ ck(n) = O

(

n

log
(

2n
k+1

)

log(k + 2)

k + 1

)

.

These bounds generalize known bounds for the cop number, but require new techniques
which are of interest in their own right. In Theorem 12, we present asymptotic results
for ck(G(n, p)), where p = p(n). In particular, for each k ≥ 0, the graph of the function
ck(G(n, p)) follows a characteristic zigzag shape (see Figure 3). Theorem 12 and the
results of Section 5 generalize the results of [23] which considered the case k = 0.

All graphs we consider are undirected, finite, connected, and reflexive (that is, all
vertices contain one loop), unless otherwise stated. The kth closed neighbourhood of a
vertex x in G, written NG

k[x], consists of all vertices of distance at most k from x in G,
including the vertex x itself; in the case k = 1, we write simply NG[x]. The kth closed
neighbourhood of a set X ⊆ V (G) is written NG

k[X ], and is defined in the analogous
way. For X ⊆ V (G), we write G[X ] for the subgraph induced by X. For two vertices
x, y ∈ V (G), dG(x, y) denotes the distance between x and y in G; we omit the subscript if
G is clear from context. A homomorphism from G to H is a function f : V (G)→ V (H)
such that xy ∈ E(G) implies that f(x)f(y) ∈ E(H). A retraction f is a homomorphism
from G to an induced subgraph H such that f(x) = x for all x ∈ V (H); the induced
subgraph H is called a retract of G. For more on homomorphisms and retracts, the reader
is directed to [17]. For references on graph theory, the reader is directed to [10, 27]. For
background on random graphs see [5, 19]. For a set X and a positive integer s, let Xs

denote the sth Cartesian power of X. For an ordered s-tuple T in V (G)s and an integer
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1 ≤ i ≤ s, we use Ti to denote the ith element of T . The set of all subsets of a set X is
denoted by 2X .

2. Algorithms for distance k-cop number

We first investigate the complexity of computing ck(G) for a given graph G. In par-
ticular, we show that there is a polynomial-time algorithm that can determine whether
ck(G) ≤ s assuming that s is fixed (that is, not a function of |V (G)| or k). Our algorithm
relies heavily on the following theorem which gives a classification using strong products
of the family of graphs with ck(G) > s, for any two integers k and s. Given graphs G and
H , their strong product, written G⊠H, has vertices V (G)×V (H), with (u1, u2) adjacent
to (v1, v2) if for each i = 1, 2, ui is adjacent or equal to vi. We may iterate this product
in the obvious way so there are more than two factors. Given a graph G, define the sth
strong power of G, written ⊠

sG, to be the strong product of G with itself s times. See
[18] for additional background on strong products of graphs. Using the strong products of
graphs for computing the cop number is also implicitly mentioned in [16]; however, their
use of strong products is different from ours.

Theorem 1. Suppose that k ≥ 0, and s ≥ 1 are integers. Then ck(G) > s if and only if
there is a mapping ψ : V (⊠sG)→ 2V (G) with the following properties.

(1) For every T ∈ V (⊠sG),

∅ 6= ψ(T ) ⊆ V (G) \Nk+1
G [T ].

(2) For every TT ′ ∈ E(⊠sG),

ψ(T ) ⊆ NG[ψ(T
′)].

Proof. Let s cops play onG. IfR has a winning strategy, then define ψ(T ) for T ∈ V (⊠sG)
to be the set of all vertices r ∈ V (G) such that if the cops start from the initial position
T , then robber can start from r and win the game. Since R has a winning strategy, ψ(T )
is non-empty for every T ∈ V (⊠sG). To show that ψ(T ) ⊆ V (G) \ Nk+1

G [T ], assume r
is in ψ(T ). Then r cannot be in Nk+1

G [T ]; otherwise, C can capture the robber, which
contradicts the fact that R can win the game starting from this configuration.

To prove the second property, let TT ′ be an edge in E(⊠sG) and r ∈ ψ(T ). Then, the
robber can win if the cops are on T and the robber is on r. Since TT ′ ∈ E(⊠sG), C can
move the cops from T to T ′ in round t + 1. Since R has a winning strategy, R must be
able to move the robber from r to a vertex r′ that is adjacent or equal to r. Therefore,
r′ ∈ ψ(T ′). Since every vertex r of ψ(T ) is either in ψ(T ′) or has a neighbour r′ ∈ ψ(T ′),
we have ψ(T ) ⊆ NG[ψ(T

′)].
Suppose now that a mapping ψ exists with properties 1 and 2. We show that R has a

strategy to avoid capture. Let T (0) ∈ V (⊠sG) be the positions of the k cops in round 0;

that is, T
(0)
i ∈ V (G) is the position of the ith cop, for all 1 ≤ i ≤ s. In round 0, the robber

R moves to an arbitrary vertex in ψ(T (0)). This is possible, because the first property of
ψ says that ψ(T (0)) 6= ∅. In round 0 the cops cannot capture the robber since by the first
property of ψ, the vertices of ψ(T (0)) have distance at least k + 2 from any cop in T (0).

We argue that for all t ≥ 0 the robber can go to ψ(T (t)) in round t, where T (t) is the
position of the s cops in round t. Suppose this claim is true for t ≤ a. We prove that the
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claim is true for a+ 1. In each round a cop can move to an adjacent vertex, so

T (a)T (a+1) ∈ E(⊠sG).

Therefore, by the second property of ψ, ψ(T (a+1)) ⊆ NG[ψ(T
(a))]. Hence, the robber at

ψ(T (a)) can move to a vertex in ψ(T (a+1)) in round a+ 1 and avoid capture. �

We now consider a polynomial-time algorithm for determining whether ck(G) ≤ s.

Algorithm 1 Check-Distance-Cop-Number-s

Require: G = (V,E), s ≥ 0
1: initialize ψ(T ) to V (G) \Nk+1

G [T ], for all T ∈ V (⊠sG)
2: repeat

3: for all TT ′ ∈ E(⊠sG) do
4: ψ(T )← ψ(T ) ∩NG[ψ(T

′)]
5: ψ(T ′)← ψ(T ′) ∩NG[ψ(T )]
6: end for

7: until the value of ψ is unchanged
8: if there exists T ∈ V (⊠sG) such that ψ(T ) = ∅ then
9: return ck(G) ≤ s

10: else

11: return ck(G) > s
12: end if

Theorem 2. Algorithm 1 runs in time O(n3s+3).

Proof. We may determine if there exists a mapping ψ with properties stated in Theorem 1
using Algorithm 1. It is clear that if the algorithm terminates, it will answer correctly;
either it finds a ψ with properties stated in Theorem 1, or no such ψ exists because nothing
from ψ(T ) will be removed unless it is necessary. In other words, for any mapping ψ′ with
properties stated in Theorem 1 we will have ψ′(T ) ⊆ ψ(T ), for all T ∈ V (⊠sG), where ψ
is the mapping found by Algorithm 1. Hence, if ψ(T ) = ∅ for some T , there is no mapping
with the stated properties. The running-time of Algorithm 1 is at most O(n3s+3), since
the repeat loop in lines 2–7 iterates at most O(ns+1) times. This is because at each
iteration, except the last one, the cardinality of ψ(T ) will be decreased for at least one
T . �

We may implement Algorithm 1 in a more efficient way to reduce the running time.
Algorithm 2 determines if there exists a mapping ψ with properties stated in Theorem 1
in time O(n2s+3). We prove this claim in Theorem 3. Algorithm 2 is more general than
previously known algorithms for answering c0(G) ≤ s, since it can determine ck(G) ≤ s
for any k. Note that the algorithm in [16] for answering c0(G) ≤ s also runs in time
O(n2s+3).

Theorem 3. Algorithm 2 runs in time O(n2s+3).

Proof. There are some details that are left out in the algorithm, such as computing set
intersections and neighbourhoods. Set intersection and difference can be done in time
O(n) if the sets are of cardinality at most n. We assume that the algorithm computes
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Algorithm 2 Check-Distance-Cop-Number-s

Require: G = (V,E), s ≥ 0
1: initialize ψ(T ) to V (G) \Nk+1

G [T ], for all T ∈ V (⊠sG)
2: initialize the queue Q to contain V (⊠sG)
3: while Q is not empty do

4: pop T from the head of Q
5: for all neighbours T ′ of T do

6: ψ(T ′)← ψ(T ′) ∩NG[ψ(T )]
7: if ψ(T ′) is changed then

8: add T ′ to the end of Q
9: end if

10: end for

11: end while

12: if there exists T ∈ V (⊠sG) such that ψ(T ) = ∅ then
13: return ck(G) ≤ s
14: else

15: return ck(G) > s
16: end if

NG[v] and Nk+1
G [v] for each vertex v ∈ V (G) in a one-time preprocessing. This will

not affect the total running time of the algorithm. In this way, computing NG[T ] and
Nk+1

G [T ] can be done in O(n2). As a one-time preprocessing, the algorithm keeps a list of
all neighbors of T in ⊠

sG, for each T ∈ V (⊠sG). This will take at most time O(n2s+1).
We now analyze the running-time of Algorithm 2: lines 1–2, and 12–16 take time at

most O(ns+2). Lines 6–9 take O(n2), and thus, the for loop in lines 5–10 takes time
O(ns+2). Line 4 can be done in constant time. Hence, the total running-time of the
algorithm is O(ns+2x+n2s+1), where x is the maximum number of iterations of the while
loop. Note that after each iteration of the while loop, the value of |Q|+∑T∈V (⊠sG) ψ(T )

will be decreased by at least one. Consequently, x is at most O(ns+1) and the theorem
follows. �

3. Upper bounds for ck(n)

Meyniel’s conjecture states that c0(G) = O(
√
n). This conjecture is one of the most

difficult unsolved problems regarding the cop number. Finding upper bounds to the cop
number is therefore of principal importance, and we address this matter in this section.
Our main result in this section is the following upper bound on ck(n).

Theorem 4. For integers n > 0 and k ≥ 0 (where k can be a function of n)

ck(n) = O

(

n

log
(

2n
k+1

)

log(k + 2)

k + 1

)

.

From Theorem 4, c0(n) = O
(

n
logn

)

, which was proven in [9]. We note that recent work

of from [22] proved that c0(n) = O
(

n√
logn

)

.
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Before we give the proof of Theorem 4, we consider various lemmas. Fix m a positive
integer. We let N i

G[T ] denote N
i
G[{Tj : 1 ≤ j ≤ m}], for any T ∈ V (⊠tG). A homomor-

phism ϕ from G to ⊠
mH , where H is an induced subgraph of G, is called an m-guarding

function from G to H if

V (H) ⊆
⋂

y∈NG[x]

NH [ϕ(y)].

Note that ϕ(x) corresponds to an m tuple of vertices of G. Moreover, a subgraph H of G
is called m-guardable if there is an m-guarding function from G to H .

We note that an induced subgraph H of G is 1-guardable if and only if it is a retract
(recall that all the graphs in this paper are assumed to be reflexive). To see this, suppose
that ϕ is a retraction from G to H . Since ϕ is a homomorphism, ϕ(x) is a neighbour of
ϕ(y) if y is a neighbour of x. Therefore,

ϕ(x) ∈
⋂

y∈NG[x]

NH [ϕ(y)].

Since ϕ is a retraction, we have that x = ϕ(x) for all x ∈ V (H), and hence,

x ∈
⋂

y∈NG[x]

NH [ϕ(y)]

for all x ∈ V (H). Therefore, H is 1-guardable. Conversely, suppose that ϕ is a 1-guardable
function from G to H. Then ϕ′, defined below, is a retraction from G to H :

ϕ′(v) =

{

v v ∈ V (H),
ϕ(v) v 6∈ V (H).

We may therefore view m-guarding functions as generalizations of retractions. The proof
of the following lemma is immediate.

Lemma 5. Suppose ϕ is an m-guarding function from G to H, x ∈ V (H), and y ∈ V (G)
is a vertex of distance k ≥ 1 from x. Then there is at least one vertex in ϕ(y) whose
distance from x in H is at most k; that is, x ∈ Nk

H [ϕ(y)].

For any integer k ≥ 0 and any m-guardable subgraph H of G, define the integer

Λ(k,G,H) = ck

(

G
[

V (G) \N ⌊k/2⌋
G [V (H)]

])

.

Lemma 6. For any integer k ≥ 0 and any m-guardable subgraph H of G,

ck(G) ≤ m+max {Λ(k,G,H), c(H)− 1} .
Proof. Let ϕ be an m-guarding function from G to H . The strategy for C is the following:
using c(H) +m − 1 cops, C can eventually move, say at round t0, m cops to the image
of the robber in H ; that is, ϕ(r), where r is the position of the robber. This is possible
because C can chase ϕ1(r) in H using c(H) cops and eventually put the first cop at ϕ1(r).
Then C keeps one cop at ϕ1(r) and starts to chase ϕ2(r) using c(H) unused cops, and so
on. The above-mentioned m cops will remain at ϕ(r) at all the times t ≥ t0, unless they
can capture the robber in one move, in which case they do so instead of going to ϕ(r).

Now, suppose the robber moves to a vertex r ∈ N⌊
k
2⌋

G [V (H)] at round t > t0. Then
there is a vertex x ∈ V (H) of distance ℓ ≤

⌊

k
2

⌋

from r. If ℓ ≥ 1, by Lemma 5, x is in
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N ℓ
H [ϕ(r)], and thus, r ∈ N2ℓ

G [ϕ(r)] ⊆ Nk
G[ϕ(r)]. Therefore, since the distance of r and

ϕ(r) is at most k, and there are cops at all the vertices of ϕ(r) at round t+1, the robber
is captured at round t+ 1.

In the case that k = 0, that is, x = r, let r′ be the position of the robber at round
t− 1. We know that r′ ∈ NG[r] = NG[x]. Then by the definition of m-guarding function,
r = x ∈ NH [ϕ(r

′)] and since there are cops in all the vertices of ϕ(r′) in round t, one cop
in ϕ(r′) can move to r and capture the robber at round t + 1.

The above argument shows that the robber cannot move to any vertex in N
⌊ k2⌋
G [V (H)]

after round t0. But then C can capture the robber in the induced subgraph

G[V (G) \N ⌊k/2⌋
G [V (H)]]

using max{Λ(k,G,H), c(H)− 1}-many cops. �

Lemma 6 says that we can remove the vertices of
⌊

k
2

⌋

-neighbourhood of H from G at

the cost of at most m cops, that is, N
⌊ k2⌋
G [H ] can be “guarded” by m cops. For a given

m and k, how large can the closed
⌊

k
2

⌋

-neighbourhood of an m-guardable subgraph be?
The following lemma answers this question and was implicit in [9].

Lemma 7. If P is a shortest path in G, then a subgraph H containing P such that
V (H) ⊆ NG[P ] is 5-guardable.

Proof. Let the vertices of P be p1, p2, . . . , pℓ. For all 1 ≤ i ≤ 5 define the homomorphism

ϕi(v) =







p0 d(v, p1) + i < 4,
pℓ d(v, p1) + i− 3 > ℓ,
pd(v,p1)+i−3 otherwise.

Then ϕ s a 5-guarding function from G to H . �

We use Lemma 7 together with the following lemma to obtain 5-guardable subgraphs
with large neighbourhoods.

Lemma 8. For any two integers n, d ≥ 1 and any rooted n-vertex tree T , T has a root-
to-leaf path P such that

∣

∣Nd
T [P ]

∣

∣ ≥ d log(1 + n
d
)

1 + log d
.

Proof. Let τ(n, d) be the largest number such that any rooted n-vertex tree T has a
root-to-leaf path P such that |Nd

T [P ]| ≥ τ(n, d). We use induction on n to prove that
τ(n, d) ≥ d

1+log d
log(1 + n

d
). As for the base case, it is clear that for all 1 ≤ n ≤ 2d,

τ(n, d) = n ≥ d
1+log d

log(1 + n
d
).

We assume that the hypothesis is true for all integers up to n ≥ 2d and we prove
that τ(n + 1) ≥ d

1+log d
log(1 + n+1

d
). So, let T be an n + 1-vertex tree in which all

root-to-leaf paths P have |Nd
T [P ]| ≤ τ(n + 1, d), r be the root of T , Bi be the set of

vertices of distance at most i from r, and bi = |Bi|. We can assume that bd − bd−1 > 0,
otherwise, if bd = bd−1, all the vertices of T are at distance at most d − 1 of r, and thus,
τ(n + 1, d) ≥ |Nd

T [r]| = n + 1 ≥ d
1+log d

log(1 + n+1
d
). Since any path of length d − 1 has

d vertices, bd−1 ≥ d. Let v ∈ Bd \ Bd−1 be the vertex that maximized the number of
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vertices in Tv, the subtree of T rooted at v. Clearly, |V (Tv)| ≥ n+1−bd−1

bd−bd−1
. Therefore, there

is a path Pv in Tv from v to a leaf such that |Nd
Tv
[Pv]| ≥ τ(

n+1−bd−1

bd−bd−1
, d). Let Pr,v denote

the path from r to v in T from which v is removed. By joining Pr,v and Pv we obtain a
root-to-leaf path P in T , and have that

τ(n + 1, b) ≥
∣

∣Nd
T [P ]

∣

∣

≥ τ

(

n+ 1− bd−1

bd − bd−1
, d

)

+ bd − 1

≥ τ

(

n+ 1− d
bd − d

, d

)

+ bd − 1

≥ d log
(

1− 1
bd−d

+ n+1
d(bd−d)

)

1+log d
+ bd − 1

=
d log







(

1− 1
bd−d

)

(2d)

bd−1
d +

(2d)

bd−1
d

bd−d
n+1
d







1+log d

≥ d log
(

1 + n+1
d

)

1 + log d
.

�

The lower bound of
d log(1+n

d
)

1+log d
is not necessarily tight; however, it cannot be larger than

2d log(1 + n
d
), as it can been verified in a complete binary tree in which all the edges are

subdivided d− 1 times; see Figure 1.

Figure 1. A rooted tree showing that τ(n, d) ≤ 2d log(1+n
d
), where n = 29

and d = 2.

With Lemma 8 and Lemma 7 we now may prove Theorem 4.

Proof of Theorem 4. Let G be an n-vertex connected graph and T be a rooted spanning
BFS tree of G (see [21] for the definition of BFS trees). By Lemma 8, T has a root-to-leaf

path P , such that |Nd
T [P ]| ≥

d log(1+n
d
)

1+log d
, where d = 1 +

⌊

k
2

⌋

. Since T is a BFS tree, P is a

shortest path in G. Let T ′ be any spanning tree of G[NG[P ]] that contains P . Now T ′ is
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5-guardable, due to Lemma 7. Since c(T ′) = 1, we can use Lemma 6 to obtain that

ck(n) ≤ ck

(

G[V (G) \N1+⌊k2⌋
G [P ]]

)

+ 5

≤ ck

(

n− d log
(

1 + n
d

)

1 + log d

)

+ 5.

Therefore,

ck(n) = O

(

n (1 + log d)

d log
(

1 + n
d

)

)

= O

(

n

log
(

2n
k+1

)

log(k + 2)

k + 1

)

.

�

4. Lower bounds for ck(n)

By considering graphs arising from projective planes it was noted in [26] that

c0(n) = Ω(
√
n).

With this fact and with our notation, Meyniel’s conjecture may be rephrased as

c0(n) = Θ(
√
n).

We conjecture that for all k ≥ 1 (where k may tend to infinity with n)

(4.1) ck(n) = Θ

(

(n

k

)1/2
)

.

In this section, we establish a lower bound for ck(n) in terms of n and k, which supports
the conjectured lower bound in (4.1). We note that few lower bounds are known for the
cop number in terms of familiar graph parameters. One such lower bound was found by
Frankl, who gave lower bounds on c(G) in the case of large girth graphs; see [13].

Given a graph G and a positive integer ℓ, form Gℓ by replacing each edge of G by a
path with ℓ edges. For example, K2

4 is illustrated in Figure 2. For simplicity, we identify
vertices of G with corresponding vertices in Gℓ; in particular, V (G) ⊆ V (Gℓ). Vertices of
Gℓ that are not in G are called internal vertices.

Figure 2. The graph K2
4 .



COPS AND ROBBERS FROM A DISTANCE 11

Lemma 9. For any graph G and any integer k ≥ 0,

c(G) ≤ ck(G
(2k+1)) ≤ c(G) + 1.

Lemma 9 sets up a relationship between c(G) and ck(G). We note that either of the two
values bounding ck(G

(2k+1)) in the lemma may be realized. For example, c1((K3)
3) = 2

with c(K3) = 1, while c(G) = ck(G
(2k+1)) if G is a tree.

Proof. Joret et al. [20] proved that c(G(2k+1)) ≤ c(G) + 1. Since ck(G
(2k+1)) ≤ c(G(2k+1)),

it remains to prove that c(G) ≤ ck(G
(2k+1)).

Let c = c(G) − 1. The robber R has a winning strategy in Cops and Robbers played
on G if there are only c cops. We will show that R has a winning strategy in distance k
Cops and Robbers played on G(2k+1) if there are only c cops.

For each internal vertex x ∈ V (G(2k+1)) there is exactly one vertex in V (G) whose
distance from x is at most k; name this vertex xk. Define a function f from the vertices of
G(2k+1) to vertices of G that is the identity on V (G), so that if x is internal vertex, then
f(x) = xk. The robber R simulates the winning strategy for Cops and Robbers played
on G in distance k Cops and Robbers played on G(2k+1) by using the function f , and will
play in a way that the robber will always be in V (G) in rounds

2k, 4k + 1, . . . , 2ik + i− 1, . . .

for all i ≥ 1.
In round 0, C puts c cops in v1, v2, . . . , vc. In round 0, R assumes that the cops are

at f(v1), f(v2), . . . , f(vc) and puts the robber in a vertex r ∈ V (G) pretending that the
game is being played in G. Since the robber would not be captured in G, neither of f(vi)’s
are adjacent to r in G, and hence, vi’s are of distance at least 3k + 2 from r in G(2k+1).
Therefore, the cops cannot capture the robber in rounds 0 ≤ t ≤ 2k + 1, if the robber
stays at r in rounds 0 ≤ t ≤ 2k.

Let v′1, v
′
2, . . . , v

′
c be the positions of cops in round 2k + 1. In 2k + 1 rounds, for each

1 ≤ i ≤ c we will have either f(vi) = f(v′i) or f(vi) is adjacent to f(v
′
i) in G. Thus, R can

assume that C has moved the cops from f(v1), f(v2), . . . , f(vc) to f(v′1), f(v
′
2), . . . , f(v

′
c)

in G in one round. Let r′ be the vertex to which C would move the robber if the game
was being played in G. The strategy of R in G(2k+1) is to move the robber from r to r′

in the next 2k+1 rounds. The cops cannot capture the robber in the next 2k+1 rounds
and, in round 4k + 2, the robber can decide the next 2k + 1 rounds. The rest follows by
induction. �

A result of Fomin et al. [11] states that there is a constant c > 0 such that there is
no polynomial-time algorithm to approximate c(G) within ratio c logn, unless P=NP.
Combining this fact with Lemma 9 gives the following corollary.

Corollary 10. For any integer k ≥ 0, computing ck(G) is NP-hard.

Proof. Assume that there is an integer k and a polynomial-time algorithm A such that
A(G) = ck(G), for all graphs G. Let B be a polynomial-time algorithm such that B(G) =
G(2k+1), for all graphs G. By Lemma 9, it follows that the composition of the algorithms
A and B is a polynomial-time 2-approximation algorithm for computing c(G). �

Lemma 9 gives us a tool for transferring lower bounds on c(n) to lower bounds on ck(n).
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Theorem 11. For all k ≥ 1 and n ≥ 1 integers, we have that

ck(n) ≥
(n

k

)1/2+o(1)

.

Proof. Consider a random graph G = G(n, p) with average degree np = 3 logn. Then
a.a.s. G is connected, and by a result from [6] (restated at the beginning of Section 5
below) c(G) = n1/2+o(1) a.a.s. Now by Lemma 9 a.a.s.

ck(G
(2k+1)) ≥ c(G) = n1/2+o(1).

Since a.a.s. N = |V (G(2k+1))| = Θ(k|E(G)|) = kn1+o(1), the proof follows since a.a.s.

ck(G
(2k+1)) ≥

(

N

k

)1/2+o(1)

.

�

5. Random graphs

From [8] it follows that if p = o(1) and np = nα+o(1), where 1/2 < α ≤ 1, then a.a.s.

c(G(n, p)) = Θ(logn/p) = n1−α+o(1),

a.a.s. c(G(n, p)) = (1 + o(1)) log1/(1−p) n for a constant p < 1, and a.a.s.

c(G(n, n−1/2+o(1))) = n1/2+o(1).

On the other hand, it was proved in [6] that the cop number of G(n, p) is always bounded
from above by n1/2+o(1) and this bound is achieved at the other end of the spectrum; that is,
for sparse random graphs. More precisely, they showed that c(G(n, p)) ≤ 160000

√
n logn

for np ≥ 2.1 logn and

c(G(n, p)) ≥ 1

(np)2
n

1
2

log log(np)−9
log log(np)

for np→∞. Since if either np = no(1) or np = n1/2+o(1), then a.a.s. c(G(n, p)) = n1/2+o(1),
it would be natural to assume that the cop number of G(n, p) is close to

√
n also for

np = nα+o(1), where 0 < α < 1. In [23] it was shown that the actual behaviour of
c(G(n, p)) is more complicated. For a fixed integer k ≥ 0, function fk : (0, 1)→ R defined
as

fk(x) =
logE(ck(G(n, n

x−1)))

logn
,

where E(ck(G(n, p))) denotes the expected value of the distance k cop number for G(n, p).
The main result of [23] was that f0 has an unexpected zigzag shape; see Figure 3.

We actually found zigzags for all k ≥ 0, as described in the following theorem. See
Figure 3 for the functions fk in the cases k = 0, 1, 2.

Theorem 12. Let k ≥ 0, 0 < α < 1, and d = d(n) = np = nα+o(1).

(1) If 1
2j+1+k

< α < 1
2j+k

for some j ≥ 1, then a.a.s.

ck(G(n, p)) = Θ(dj) .
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Figure 3. The functions fk, for k = 0, 1, and 2, with the darker lines
representing smaller values of k.

(2) If 1
2j+k

< α < 1
2j−1+k

for some j ≥ 1, then a.a.s.

Ω
( n

dj+k

)

= ck(G(n, p)) = O

(

n logn

dj+k

)

.

The proof of Theorem 12 relies on the following two lemmas (essentially from [23])
which supply upper and lower bounds, respectively, for ck(G(n, p)).

Lemma 13. Let k ≥ 0, j ≥ 1, and d = d(n) = np.

(1) If n1/(2j+1+k)(log n)1/(j+1+k) ≤ d ≤ (n/ logn)1/(2j+k), then a.a.s.

ck(G(n, p)) = O
(

dj
)

.

(2) If (n/ logn)1/(2j+2+k) ≤ d ≤ n1/(2j+1+k)(logn)1/(j+1+k), then a.a.s.

ck(G(n, p)) = O
(n logn

dj+1+k

)

.

Lemma 14. Let k ≥ 0, 0 < α < 1, and d = d(n) = np = nα+o(1).

(1) If 1
2j+1+k

< α < 1
2j+k

for some j ≥ 1, then there is a constant c = c(j, α, k) such

that a.a.s.

ck(G(n, p)) ≥
[ d

cj

]j

.

(2) If 1
2j+k

< α < 1
2j−1+k

for some j ≥ 1, then there is a constant c = c(j, α, k) such

that a.a.s.

ck(G(n, p)) ≥
[ d

cj

]j n

cd2j+k
.

The proofs of these lemmas follow with minor modifications from the proofs of Lem-
mas 2.1 and 2.2 in [23]. For this reason, the proofs of the lemmas are omitted. Neverthe-
less, for completeness, we give a high level overview of the proofs of the lower and upper
bounds. In order to derive the upper bound for ck(G(n, p)), the cops use the following
strategy. First, distribute the cops uniformly at random. (The number of cops that is
required depends on the parameter p.) We show that regardless of the first move of the
robber, the cops can move toward the robber so that eventually the robber is surrounded,
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and is captured after another few moves. The proof relies on Hall’s theorem for matchings
in bipartite graphs. For the lower bound, we show that regardless of how the cops move,
the robber can move keeping all cops within distance at least k + 1. (Again, the number
of cops is a function of p.) Moreover, the robber is able to maintain the property that
only a small fraction of all neighbours within distance i (where i ≥ k + 1) are occupied
by a cop. This is enough to set up an inductive proof which ensures that the robber can
move indefinitely without capture.

Proof of Theorem 12. Theorem 12 follows from Lemmas 13 and 14, along with the con-
sideration of one additional case. The only interval which is not covered in the lemmas is
1

2+k
< α < 1

1+k
, which we now consider.

In order to get an upper bound, note that the probability that the distance between

any pair of vertices v, w is at most k + 1 is (1 + o(1))d
k+1

n
. Therefore, a.a.s. any fixed set

of l = 2n logn
dk+1 vertices has the property that the distance between this set and any vertex

is at most k + 1. Indeed

(

1−
(

1− (1 + o(1))
dk+1

n

)l
)n−l

≥ 1− n
(

1− (1 + o(1))
dk+1

n

)l

≥ 1− n exp(−(1 + o(1))2 logn)

= 1− o(1) .

Thus, a.a.s. it does not matter where the robber starts the game since he is going to be
killed (perhaps, from the distance) in the next round. The upper bound holds.

For the lower bound, we can show that, say, L = n
dk+1 cops cannot catch the robber.

We show that a.a.s. it does not matter where the cops and the robber are, the robber can
always escape to the vertex witch is not reachable from any cop.

Fix S a L-subset of vertices and a vertex u at the distance at least k + 1 from S. For
almost all vertices x ∈ V (G) \ (S ∪ {u}), the probability that a vertex x is adjacent to u
and no vertex of S is at the distance at most k + 1 from x is

(1 + o(1))
d

n

(

1− dk+1

n

)L

.

Thus, the probability that no suitable vertex can be found for this particular S and u is

(

1− (1 + o(1))
d

n

(

1− dk+1

n

)L
)(1+o(1))n

.
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Let X be the random variable counting the number of S and u for which no suitable x
can be found. We then have that the expected value of X satisfies

E(X) =

(

n

k

)

(n− k)
(

1− (1 + o(1))
d

n

(

1− dk+1

n

)L
)(1+o(1))n

≤ nk+1

(

1− Ω

(

d

n

))(1+o(1))n

= nk+1 exp (−Ω(d))
= o(1).

The proof now follows by Markov’s inequality. �

Cop-win graphs, where one cop wins, were structurally characterized in [24, 25]. The
cop-win graphs are exactly those graphs which are dismantlable: there exists a linear
ordering (xj : 1 ≤ j ≤ n) of the vertices so that for all 2 ≤ j ≤ n, there is a i < j such
that

N [xj ] ∩ {x1, x2, . . . , xj} ⊆ N [xi] ∩ {x1, x2, . . . , xj}.
For instance, chordal and bridged graph are cop-win; see [3]. No analogous structural
characterization of graphs G satisfying ck(G) = 1, where k ≥ 1 is a fixed integer, is
known.
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