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ABSTRACT
Co-citation (number of nodes linking to both of a given pair
of nodes) is often used heuristically to judge similarity be-
tween nodes in a complex network. We investigate the rela-
tion between node similarity and co-citation in the context
of the Spatial Preferred Attachment (SPA) model. The SPA
model is a spatial model, where nodes live in a metric space,
and nodes that are close together in space are considered
similar, and are more likely to link to one another.

Theoretical analysis of the SPA model leads to a mea-
sure to estimate spatial distance from the link information,
based on co-citation as well as the degrees of both nodes.
Simulation results show this measure to be highly accurate
in predicting the actual spatial distance.

1. INTRODUCTION
Studies of self-organizing networks of various kinds — the

World Wide Web, citation graphs, online social networks,
biological networks — have given convincing evidence that
a significant amount of information about the entities rep-
resented by the nodes can be derived from the link environ-
ment of those nodes. A central question in such studies is
how to extract information about similarity between node-
entities from the link structure. This link similarity can be
used as a complementary indication of similarity between
nodes when other information is unreliable (as is often the
case in the World Wide Web), largely unavailable (as in some
biological networks and online social networks), or protected
by privacy laws (as in networks representing phone calls or
bank transactions). It can also be used as the basis to iden-
tify communities, or clusters, of similar nodes.

One of the earliest measures of link similarity, proposed by
Small in 1973 in a paper in library science is co-citation [13].
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The co-citation measure of a pair of scientific papers is de-
fined by the number of times both papers are both cited
by another paper. In the wider context of complex net-
works, the co-citation measure of a pair of nodes is given by
the number of nodes that link to both nodes of the pair. In
terms of graph theory, this measure is also called the number
of common (in)-neighbours of a pair of nodes. Co-citation,
and the related measure of bibliographic coupling (from [8])
based on the number of common out-neighbours, are widely
used link similarity measures for scientific papers, via the
citation graph, for Web pages, and others [3, 4, 12, 10].

While it is intuitively clear that the number of common
neighbours should give an indication of node similarity, it
is not so obvious how precisely this number should be in-
terpreted. It seems plausible that the co-citation measure
should somehow be scaled by the degree of the nodes: the
fact that a pair of nodes has ten common neighbours will
have different importance depending on whether the num-
ber of neighbours of each node is in the tens, or in the
thousands. This consideration is especially important, since
studies show that most of the networks under considera-
tion have a degree distribution with a power law tail, which
means that extremely high degrees occur in the network,
although they are less common. Moreover, there is no “typ-
ical” node degree.

This paper shows that it is possible to quantify the rela-
tionship between the co-citation measure and node similar-
ity, if we assume a generative model for the network where
the nodes are embedded in an underlying space that repre-
sents their similarity. Precisely, we assume a spatial graph
model, where nodes are points in a metric space, and the
links are generated through a stochastic process that is in-
fluenced by the relative position of the nodes in space. The
metric space is meant to represent the underlying reality of
the entities represented by the nodes. Thus, if the nodes
represent scientific papers, the space could be interpreted
as the word-document space or some derivative thereof. If
the nodes are individuals in a social network, the space could
represent physical space, or an artificial “interest space” that
represents the interests and activities of each individual. In
protein-protein interaction networks, the space may repre-
sent the chemical properties of the proteins. The key as-
sumption is that similar nodes will be close together in space,
and that such nodes are more likely to link to each other
than nodes that are far apart. Thus, the generated graph
encodes, to some extent, the relative positions of the nodes,
and it should be possible to extract information about the
node positions from the link structure of the graph.



A number of spatial models have been proposed recently [1,
2, 5, 6, 11, 7]. In most spatial models, however, the rela-
tionship between spatial distance and link formation is de-
termined by a simple threshold function: a link is possible if
vertices are within a prescribed distance t of each other, and
impossible otherwise. For such models, information from the
graph will only be able to determine whether the nodes are
within distance t or not. In [9], a model is given where
nodes are embedded in hyperbolic space. The Internet is
embedded in this space using maximum likelihood.

This paper is based on the Spatial Preferred Attachment
(SPA) model from [1]. In the SPA model, link formation is
determined by spatial distance, as well as by the number of
in-links of the receiving nodes. Thus, if the receiving node is
highly popular, long links may occur. However, short links
will be more common. The SPA model can therefore be
seen as a plausible model for graphs governed by the Pref-
erential Attachment principle (high degree nodes are more
attractive), and where the length of an edge depends on the
popularity of the receiving node. An example is the Web
graph: popular web pages tend to receive more links, even
if they are not that closely related to the web page of the
originator of the link. While the results in this paper apply
only to graphs generated by the SPA model as described, we
believe that the results apply in general to graphs governed
by those two principles.

The SPA model will be precisely described in Section 2. A
theoretical analysis of a modified version of the SPA model,
presented in Section 3, leads to a formula to predict the spa-
tial distance between nodes, based on the number of com-
mon neighbours. In Section 4, the validity of the estimator
is tested on a large set of simulating data, generated using
the SPA model. By comparing real vs. estimated distance
we will show that our estimator gives highly dependable re-
sults.

2. THE SPA MODEL
The SPA model. proposed in [1], is a stochastic graph

model for self-organizing complex networks with an under-
lying spatial reality. The model generates directed graphs
according to the following principle. Nodes are points in a
given metric space S. Each node v has a sphere of influ-
ence. A new node u can only link to an existing node v if u
falls inside the sphere of influence of v. In the latter case, u
links to v with probability p. The SPA model incorporates
the principle of preferential attachment, since the size of the
sphere of influence of a node is proportional to its in-degree.

In [1], the model is defined for a variety of metric spaces S.
In this paper, we let S be the unit square in R2, equipped
with the torus metric derived from the Euclidean metric.
This means that for any two points x and y in S,

d(x, y) = min{||x− y + u||2 : u ∈ {−1, 0, 1}n}.

The torus metric thus “wraps around” the boundaries of the
unit square; this metric was chosen to eliminate boundary
effects.

The parameters of the model consist of the link probability
p ∈ [0, 1], and three positive constants A1, A2 and A3, which,
for technical reasons, must be chosen so that pA1 ≤ 1.

The SPA model generates stochastic sequences of graphs
(Gt : t ≥ 0), where Gt = (Vt, Et), and Vt ⊆ S. Let
deg−(v, t) be the in-degree of node v in Gt, and deg+(v, t) its
out-degree. We define the sphere of influence S(v) of node

v at time t ≥ 1 to be the ball centered at v with volume
A(v, t) defined as follows:

A(v, t) =
A1deg−(v, t) +A2

t+A3
, (1)

or A(v, t) = 1 if the right-hand-side of (1) is greater than
1. Note that, since we use the torus metric, this ball will
always be contained in S.

The process begins at t = 0, with G0 being the empty
graph. Time-step t, t ≥ 1, is defined to be the transition
between Gt−1 and Gt. At the beginning of each time-step
t, a new node vt is chosen uniformly at random from S, and
added to Vt−1 to create Vt. Next, independently, for each
node u ∈ Vt−1 such that vt ∈ R(u, t − 1), a directed link
(vt, u) is created with probability p. Thus, the probability
that a link (vt, u) is added in time-step t equals pA(u, t−1).

It was shown in [1] that the SPA model produces graphs
with a power law degree distribution, with exponent 1 +
1/pA1. From the analysis presented in the paper, we can
deduce the expected in-degree of a node, as given in the
following theorem.

Theorem 2.1. The expected in-degree at time t of a node
born at time i, if i� 1 and t� i, as t→∞, is given by

E deg−(vi, t) = (1 + o(1))
A2

A1

„
t

i

«pA1

. (2)

3. NUMBER OF COMMON NEIGHBOURS
AND SPATIAL DISTANCE

The principles of the SPA model make it plausible that
nodes that are close together in space will have a relatively
high number of common neighbours. Namely, if two nodes
are close together, their spheres of influence will overlap a
great deal, and any new node falling in the intersection of
both spheres has the potential to become a common neigh-
bour. Thus, co-citation should indeed lead to a reliable mea-
sure of similarity, here represented by closeness in the metric
space. In this section, we will quantify the relation between
spatial distance and number of common in-neighbours.

The size of the sphere of influence of a node is a function
of its in-degree, and is therefore a random variable. For our
analysis, we will modify the model so that the size is instead
a deterministic variable. The simulation results presented in
the next section show that this simplification is justifiable.

Precisely, we assume that at each time t

A(vi, t) =

`
t
i

´p
t
. (3)

Asymptotically, the right hand side of (3) corresponds to
the expected size of the region of influence in the original
SPA model, based on the expected in-degree as given in
equation (2). For simplicity, we have set A1 = A2 = A3 = 1;
inclusion of these parameters would only alter the results by
a multiplicative constant. With this assumption, the size of
the sphere of influence of each node shrinks with each time
step.

For the remainder of this section, the results apply to this
modified version of the SPA Model.

The radius of the sphere of influence of node vi at time
t can now be deduced from (3). Since we are using the
Euclidean torus metric, the sphere of influence is a ball with



Case At birth of vj End of process
(t = j + 1) (t = n)

1

2

3

Figure 1: The three cases of Theorem 3.1

radius r = r(vi, t), satisfying A(vi, t) = πr2. Thus

r(vi, t) =
p
A(vi, t)/π = π−1/2i−p/2t−(1−p)/2.

The term “common neighbour” here refers to common in-
neighbours. Precisely, a node w is a common neighbour of
nodes u and v if there exist directed links from w to u and
from w to v. Note that in our model this can only occur if
w is younger than u and v, and, at its birth, w lies in the
intersection of the spheres of influence of u and v. We use
cn(u, v, t) to denote the number of common in-neighbours
of u and v at time t.

The following theorem gives bounds for the number of
common in-neighbours, based on the spatial distance. There
are three cases, depending on how the spheres of influence of
vi and vj overlap, and when or whether they become disjoint.
Figure 1 gives a pictorial representation of the three cases.

Theorem 3.1. Consider nodes vi and vj (1 ≤ i < j ≤
n), in a graph generated by the SPA model as given, and let d
be the distance between vi and vj according to the Euclidean
torus metric. Then

1. If d > r(vi, j + 1) + r(vj , j + 1), then vi and vj can
have no common neighbours.

2. If d ≤ r(vi, n) − r(vj , n), then the expected number of
common neighbours equals (1 + o(1))p(n/j)p.

3. If r(vi, n) − r(vj , n) < d ≤ r(vi, j + 1) + r(vj , j + 1),
then

E cn(vi, vj , n) =

pπ
− p

1−p

„
i
− p2

1−p

«`
j−p
´ “
d
− 2p

1−p

”
 

1 +O

 „
i

j

«p/2!!
(4)

Proof. Note that in the modified SPA model, the prob-
ability that vj received a link at time t equals pA(vj , t) =

p(i−p)(t−(1−p)). Therefore,

E deg−(vj , t) =

tX
τ=j+1

pj−pτ−(1−p) = (1 + o(1))

„
t

j

«p
. (5)

Case 1: If d > r(vi, j+ 1) + r(vj , j+ 1) then the spheres
of influence of vi and vj never intersect, so vi and vj can
have no common neighbours.

Case 2: If r(vj , n) + d ≤ r(vi, n), then the sphere of
influence of vj is contained in the sphere of influence of vi
during the entire process. Any node vk that links to vj must
fall inside the sphere of influence of vi as well, and thus has a
probability p of also linking to vi. Thus the expected number

of common neighbours is pE deg−(vj , n) = (1+o(1))p
“
n
j

”p
.

Case 3: If r(vi, n)−r(vj , n) < d ≤ r(vi, j+1)+r(vj , j+1),
then the spheres of influence of vj and vj overlap when vj is
born, but at least part of S(vj) is outside S(vi) at time n.

Let t1 be the first moment that S(vj) is not completely
contained in S(vi), i.e. the smallest t ≥ j so that d+r(vj , t) >
r(vi, t). (Let t1 = j if S(vj) is not contained in S(vi) at the
birth of vj .) Let t2 be the first moment that S(vj) and S(vi)
are completely disjoint (or let t2 = n if S(vj) and S(vi) over-
lap at time n). Up to time t1, each neighbour of vj will also
be a neighbour of vi with probability p. From time t2 to n,
any neighbour of vj cannot also be a neighbour of vi. From
time t1 until time t2, the probability that a neighbour of vj
becomes a neighbour of vi is at most p.

Thus, pE deg−(vj , t1) and pE deg−(vj , t2) form a lower
and an upper bound, respectively, on the expected number
of common neighbours of vi and vj . It can be easily derived
that t1 and t2 as defined above satisfy t1 = max{bτ1c+ 1, j}
and t2 = min{bτ2c+ 1, n}, where

τ1 = π
− 1

1−p

“
i
− p

1−p

”“
d
− 2

1−p

” 
1−

„
i

j

«p/2! 2
1−p

τ2 = π
− 1

1−p

“
i
− p

1−p

”“
d
− 2

1−p

” 
1 +

„
i

j

«p/2! 2
1−p

Combined with equation (5) about the expected degree,
this leads to the the following bounds, which hold within a
(1 + o(1)) term:

π
− p

1−p

„
i
− p2

1−p

«`
j−p
´ “
d
− 2p

1−p

”„
1−

“
i
j

”p/2« 2p
1−p

≤ E cn(vi, vj , n) ≤

π
− p

1−p

„
i
− p2

1−p

«`
j−p
´ “
d
− 2p

1−p

”„
1 +

“
i
j

”p/2« 2p
1−p

.

The result follows from the fact that 
1±

„
i

j

«p/2! 2p
1−p

= 1 +O

 „
i

j

«p/2!
.

For any pair of vertices vi and vj , the events that vi and
vj receive a common neighbour in time step t are indepen-
dent for all t > j. Standard results such as the Chernoff
bound can therefore be use to show that the actual number



of common neighbours is concentrated around the expected
value given in Theorem 3.1, provided the value is sufficiently
large.

4. ESTIMATING DISTANCE BASED ON
NUMBER OF COMMON NEIGHBOURS

In this section, we test the predictive power of our theoret-
ical results on data obtained from simulations. The data was
obtained from a graph with 100K nodes. The graph was gen-
erated from points randomly distributed in the unit square
in R2 according to the SPA model described in Section 1,
with n = 100, 000 and p = 0.95. It is important to note
that the data was generated using the original SPA model
as described in Section 2. Our computational results will
show that the assumption that led to the simplified model
was justified.

First of all, we show that a blind approach to using the co-
citation measure does not work. From the description of the
SPA model it is clear that there exists a correlation between
the spatial distance and number of common in-neighbours
of a given pair of nodes. However, as shown in Figure 2,
when we plot spatial distance versus number of common
neighbours without further processing, no relation between
the two is apparent.

Figure 2: Actual distance vs. number of common
neighbours.

The results from Theorem 3.1 lead to an estimate d̂ of
the spatial distance between two nodes, based on the num-
ber of common neighbours of the pair. (The spatial dis-
tance is the actual distance between the point in the metric
space, i.e. the distance obtained from the Euclidean torus
metric on the unit square.) Note that from case 1 and 2,
we can only obtain a lower and upper bound on the dis-
tance, respectively. If two nodes vi and vj have no common
neighbours, then we can assume we are in case 1, and thus
d̂ ≥ r(vi, j+1)+r(vj , j+1). If cn(vi, vj , n) ≈ p deg−(vj , n),
then we are likely in case 2, and thus we get the upper
bound d̂ ≤ r(vi, n) − r(vj , n). In order to eliminate case 1,
we consider only pairs that have at least 20 common neigh-
bours (19.2K pairs). To eliminate case 2, we require that
the number of common neighbours should be less than p/2
times the lowest degree of the pair. This reduces the data
set to 2.4K pairs.

When we are likely in case 3, we can derive a precise esti-

mate of the distance. We base our estimate on Equation (4),

where we ignore the O(( j
i
)p/2) term. Namely, when i and

j are of the same order, then this expression is the average
of the lower and upper bound as derived in the proof of the
theorem, and when i� j the term is asymptotically negligi-
ble. The estimated distance between nodes vi and vj , given
that their number of common neighbours equals k, is then
given by

d̂ =
“
π−1/2p

1−p
2p

”“
i−p/2

”“
j−

1−p
2

”“
k
− 1−p

2p

”
.

Note that i and j appear in the formula above, so the esti-
mated distance depends not only on the number of common
neighbours of the two nodes, but also on their age. In our
simulation data, the age of the nodes is known, and used in
the estimate of d̂. Figure 3 shows estimated distance vs. real
distance between all pairs of nodes that are likely to be in
case 3.

Figure 3: Actual distance vs. estimated distance for
eligible pairs from simulated data, calculated using
the age of both nodes.

While there is clearly some agreement between estimated
and real distance, the variability in the results leads to the
suspicion that the assumption made, namely that the sphere
of influence is approximately equal to its expected value,
may not be warranted. Indeed, further exploration of our
simulation results revealed relatively large variability in the
in-degree of a node of a given age. However, these deviations
of individual nodes do not desturb the large scale pattern,
since the degree distribution is entirely as expected. The
solution suggested by these observations is to use, instead
of actual age of a node, the estimated age based on its final
in-degree. Thus, using the result from Theorem 2.1 for the
SPA model, the birth time â(v) of a node v with in-degree
k will be:

â(v) = nk−1/p.

Thus, we can compute d̂ again, but this time based on
the estimated birth times. This method has the added ad-
vantage that it can be more conveniently applied to real-life
data, where the degree of a node is much easier to obtain
than its age. Figure 4 again shows estimated vs. real dis-
tance for the exact same data set, but now estimated age
is used in its calculation. This time, we see almost perfect
agreement between estimate and reality.



Figure 4: Actual distance vs. estimated distance for
eligible pairs from simulated data, calculated using
the in-degree of both nodes.

5. CONCLUSIONS AND FURTHER WORK
We have shown how a theoretical analysis of the SPA

model leads to a highly accurate measure for the estimated
spatial distance between nodes, based on the number of com-
mon neighbours. This shows how the assumption of a gen-
erative graph model can be used to obtain predictions about
the underlying reality of the nodes from the link structure.
While the results obtained apply only to a specific situation:
a graph generated by the SPA model, and points uniformly
distributed in the space, we believe strongly that the results,
with some possible alterations, will be applicable to real life
networks. Generally, we conjecture that the results apply to
networks that satisfy the underlying principles of the SPA
model: high degree nodes are more attractive, and links to
popular nodes can span a longer distance in space. The next
step will be to test our conjecture by applying the results
obtained in this paper to a real life network which satisfies
these general principles (for example, the citation graph, any
social network, or part of the World Wide Web). Some of
these graphs are readily available together with a number of
text mining tools that can be used to measure how similar
given two nodes are.

The methods presented in this paper are only valid for a
subset of all pairs of nodes. In further work, we will inves-
tigate to what extent the distances between these pairs suf-
fice to infer the relative placement of all nodes in the space.
Specifically, it would be useful to know if, when the data is
clustered, the distances available are sufficient to obtain the
clusters. Also, further analysis may lead to alternative ways
to estimate the distance for the pairs where our methods do
not apply, based on, for example, graph distance or number
of paths of given lengths between the nodes.
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