
THE SEARCH FOR THE SMALLEST 3-E.C.
GRAPHS

PRZEMYSÃLAW GORDINOWICZ AND PAWEÃL PRAÃLAT

Abstract. A graph G is 3-existentially closed (3-e.c.) if
each 3-set of vertices can be extended in all of the possible
eight ways. Results which improve the lower bound of the
minimum order of a 3-e.c. graph are reported. It has been
shown that mec(3) ≥ 24 where mec(3) is defined to be the
minimum order of a 3-e.c. graph.

1. Introduction

Adjacency properties of graphs have received much attention
since Erdős and Rényi [5] first studied them in their pioneering
work on random graphs. One such adjacency property is the n-
e.c. property. For a positive integer n, a graph is n-existentially
closed or n-e.c., if for all disjoint sets of vertices A and B with
|A∪B| = n (one of A or B can be empty), there is a vertex z not
in A∪B joined to each vertex of A and no vertex of B. We say
that z is correctly joined to A and B. Hence, for all n-subsets S
of vertices, there exist 2n vertices joined to S in all possible ways.
For example, a graph is 2-e.c. if for each pair of distinct vertices
u and v, there are four vertices (distinct from u and v) joined
to them in all four possible ways. See Figure 1 for the unique
isomorphism type of 2-e.c. graph with the least possible number
of vertices. (In [3] it was first noted that mec(2) = 9; in [2]
it was observed that K32K3 is in fact the unique isomorphism

The authors gratefully acknowledge support from ACEnet, NSERC, MI-
TACS, and SHARCNET.

1

2 PRZEMYSÃLAW GORDINOWICZ AND PAWEÃL PRAÃLAT

type of 2-e.c. graphs of order 9.) For completeness, every (non-
null, that is, with non-empty vertex set) graph is 0-e.c. For a
recent survey of n-e.c. graphs, see [1].

Figure 1. The smallest order 2-e.c. graph.

For a positive integer n, the probability that a binomial ran-
dom graph G(v, 1/2) is not n-e.c. is bounded from above by

(
v

n

)
2n

(
1− 1

2n

)v−n

which is smaller than one for v sufficiently large. This guarantees
that there is a graph that satisfies this property. Therefore we
can define mec(n) to be the minimum order of an n-e.c. graph.
It is not difficult to show that mec(1) = 4 (P4, C4, and K2 ∪K2

are the only 1-e.c. graphs with least possible number of vertices)
and, as we already mentioned, mec(2) = 9, but no other values
of this function are known. For example, 20 ≤ mec(3) ≤ 28; the
upper bound was determined by searching through the vertex-
transitive graphs of order 20 and up listed on Gordon Royle’s
website (see [2] for more details). Analogous to the well-known
Ramsey numbers (see a dynamic survey of Radziszowski [7]) it
is difficult to compute the exact value of mec(n), even for n = 3,
and very little progress has been made up to date. The goal of
the present paper is to improve the lower bound, namely, it will
be shown that mec(3) ≥ 24. In order to obtain this result, a
computer support was required to verify that a necessary con-
dition for a graph to be n-e.c. (see Section 2) is not satisfied.

THE SEARCH FOR THE SMALLEST 3-E.C. GRAPHS 3

Some additional subtle approaches specific for a given case are
discussed in Section 3. We conclude the paper with a few open
problems (see Section 4).

All graphs considered are simple, undirected, and finite unless
otherwise stated. We denote the complement of the graph G
by G. Let G[X] denote the graph induced by the set X ⊆
V (G). Let N(v) and N c(v) denote the neighbourhood an non-
neighbourhood of v, respectively.

2. A necessary condition

We start with the following necessary condition for a graph
to be n-e.c. For m = n, the condition we consider is equivalent
to one in the definition of being n-e.c.

Theorem 2.1. Let n ≥ m ≥ 1. If G is n-e.c., then for all
disjoint sets of vertices X and Y with |X ∪ Y | = m (one of X
or Y can be empty), a graph induced by vertex set Z = Z(X,Y)
defined as

Z =

(⋂
x∈X

N(x)

)
∩

(⋂
y∈Y

N c(y)

)

is (n−m)-e.c.

Proof. Let X,Y ⊆ V (G), X ∩ Y = ∅, and |X ∪ Y | = m. We
will show that G[Z] is (n−m)-e.c. First note that |Z| ≥ 2n−m.
Indeed, since G is n-e.c., for any (n−m)-subset S ⊆ V (G)\(X∪
Y) of vertices, there exist 2n−m vertices joined to each vertex of
X, no vertex of Y , and S in all possible ways. In particular,
|Z| ≥ 1 and the proof is complete if n = m.

Suppose now that n > m and let A,B ⊆ Z, A ∩ B = ∅, and
|A∪B| = n−m. In order to finish the proof it is enough to show
that there is a vertex z ∈ Z \ (A∪B) that is correctly joined to
A and B. But, since G is n-e.c., X ∩ Z = ∅, Y ∩ Z = ∅, there
is a vertex z′ ∈ V (G) correctly joined to A∪X and B ∪ Y , and
clearly z′ ∈ Z \ (A ∪B). ¤

It was an open problem (personal communication of the sec-
ond author) to determine whether the condition described in

4 PRZEMYSÃLAW GORDINOWICZ AND PAWEÃL PRAÃLAT

The adjacency list:

0 : 4 5 7 8 10;

1 : 5 8 9 10;

2 : 6 7 9 10;

3 : 6 8 9 10;

4 : 0 7 9 10;

5 : 0 1 8 9;

6 : 2 3 7 8;

7 : 0 2 4 6;

8 : 0 1 3 5 6;

9 : 1 2 3 4 5 10;

10 : 0 1 2 3 4 9;

0

12

4

5

67

8

9 3

10

Figure 2. The counterexample on 11 vertices.

Theorem 2.1 with m = 1 is also a sufficient one. With a com-
puter support, we verified that all graphs on at most 10 vertices
satisfying the condition with n = 2, m = 1 are 2-e.c. but there
are counterexamples on 11 vertices (20,058 graphs satisfy the
property but only 12,078 of them are 2-e.c.). Below, we present
one counterexample; it is easy to check that neighbourhood and
non-neighbourhood of each vertex induce 1-e.c. graph but there
is no vertex adjacent to 1 and 7. Another counterexamples (on
larger number of vertices) can be constructed by taking a dis-
joint union of at least two 2-e.c. graphs.

3. Improving a lower bound

Since the neighbourhood and non-neighbourhood of each ver-
tex of a 3-e.c. graph induce a 2-e.c. graph and mec(2) = 9, we
get a trivial lower bound of 19 for mec(3). But, clearly, there is
no 9-regular graph on 19 vertices (since the number of vertices
of odd degree must be even) which yields a lower bound of 20.
Until this paper, no progress had been made so far and it seems
that there is no ‘proof from the Book’ that would determine the
value of mec(3). Therefore, we are content with eliminating a

THE SEARCH FOR THE SMALLEST 3-E.C. GRAPHS 5

few values with computer support. The rest of this section is
devoted to prove the following theorem.

Theorem 3.1. mec(3) ≥ 24.

Before we move to improving a lower bound, we present a
little bit more details about 2-e.c. graphs of small order. As
we already mentioned, there is a unique 2-e.c. graph on 9 ver-
tices (up to isomorphism). Below we present more informa-
tion verified by computer. Let H(n) be a family of graphs
on n vertices, H2(n) ⊆ H(n) be a subfamily containing 2-
e.c. graphs only, Emin(n) = min{|E(H)| : H ∈ H2(n)}, and
Emax(n) = max{|E(H)| : H ∈ H2(n)}.

n |H(n)| |H2(n)| Emin(n) Emax(n)
9 274,668 1 18 18

10 12,005,168 16 21 24
11 1,018,997,864 12,078 23 32
12 165,091,172,592 11,688,811 26 40

Table 1. 2-e.c. graphs of small order.

3.1. Eliminating 20. Suppose that G has 20 vertices and is
3-e.c. Since the neighbourhood and non-neighbourhood of each
vertex induce 2-e.c. graph, each vertex has degree 9 or 10. More-
over, there is at least one vertex of degree 10. Suppose for a con-
tradiction that all vertices have degree 9 so |E(G)| = 90. But
for any vertex v ∈ V (G), G[N(v)] and G[N c(v)] are 2-e.c. so
|E(N(v), N(v))| = 18 and |E(N c(v), N c(v))| ≤ 24 (see Table 1)
where E(X,Y) = {uv ∈ E(G) : u ∈ X, v ∈ Y }. Since

|E(N(v), N c(v))| =
∑

u∈N(v)

deg(u)− |N(v)| − 2|E(N(v), N(v))|

= 36,

we get

|E(G)| = |N(v)|+ |E(N(v), N(v))|
+|E(N(v), N c(v))|+ |E(N c(v), N c(v))|

≤ 9 + 18 + 36 + 24 = 87 < 90.

6 PRZEMYSÃLAW GORDINOWICZ AND PAWEÃL PRAÃLAT

Let v0 denote a vertex of degree 10 in G, X = N(v0), Y =
N c(v0); both G[X] and G[Y] are 2-e.c. Since each vertex has
degree 9 or 10, we obtain that

81 ≤
∑
v∈Y

deg(v) = 2|E(Y, Y)|+ |E(X,Y)|

so |E(X,Y)| ≥ 45. Similarly

100 ≥
∑
v∈X

deg(v) = |X|+ 2|E(X,X)|+ |E(X, Y)|

so |E(X,Y)| ≤ 90 − 2|E(X, X)|. Note also that a graph G is
n-e.c. if and only if G is. Hence, without loss of generality, we
can assume that

|E(G)| = |X|+ |E(X,X)|+ |E(X,Y)|+ |E(Y, Y)|
≤

(
20

2

)
/2 = 95,

which implies that |E(X,X)| = 21 or 22. If |E(X, X)| = 21,
then E(X,Y) = 45 or 46; E(X, Y) = 45 otherwise.

In order to show that there is no 3-e.c. graph on 20 vertices we
put a 2-e.c. graph on 10 vertices (one out of 8 (not 16) possible
ones due to the additional condition) on set X and the only 2-
e.c. graph on 9 vertices on set Y . It remains to check that it is
not possible to distribute edges between X and Y to satisfy the
necessary condition stated in Theorem 2.1.

If E(X, Y) = 46, then we have exactly one vertex of degree
10 in Y . Since all vertices in Y are undistinguishable (at this
point), we can take any vertex v1 ∈ Y and assign to this vertex
6 neighbours from X so that G[N c(v1)] is isomorphic to the only
2-e.c. graph on 9 vertices. This, of course, can be done in many
different ways. Next, we take any other vertex v2 ∈ Y and try to
assign 5 neighbours from X so that G[N(v2)] is 2-e.c. (note that
this time we check the neighbourhood so, again, the only chance
for the necessary condition to hold is that the graph induced by
N(v2) is the only 2-e.c. graph on 9 vertices). We repeat this
process to discover that there is no chance for a graph to be 3-
e.c. The argument can be repeated for the case E(X, Y) = 45;

THE SEARCH FOR THE SMALLEST 3-E.C. GRAPHS 7

this time all vertices in Y have degree 9 so one should check
neighbourhoods only.

It has been verified that it is not even possible to satisfy three
vertices, that is, it is not possible to distribute edges between X
and Y so that three vertices in Y satisfy the necessary condition.
As we already mentioned, there are 8 possible 2-e.c. graphs we
can start with; after verifying the condition for v1 we get 816
(possibly some of them are isomorphic) configurations; finally,
there are only 120 configurations satisfying the necessary condi-
tion for v1, v2. The running time was below a second.

3.2. Eliminating 21. Suppose that G has 21 vertices and is 3-
e.c.; each vertex has degree 9, 10, or 11. Let v0 denote a vertex
of degree 10 (note that there is at least one such vertex since
the number of vertices of odd degree must be even), X = N(v0),
Y = N c(v0).

Similarly as before, we assume, without loss of generality, that

|E(G)| = |X|+ |E(X,X)|+ |E(X,Y)|+ |E(Y, Y)|
≤

(
21

2

)
/2 = 105,

which gives |E(X,Y)| ≤ 95−|E(X,X)|−|E(Y, Y)|. This implies
that at least 5+ |E(X, X)|− |E(Y, Y)| vertices in Y have degree
9.

In order to check that there is no 3-e.c. graph on 21 vertices we
consider 162 possible embeddings of 2-e.c. graphs on sets X, Y
and all possible distributions of 5+|E(X,X)|−|E(Y, Y)| vertices
among those from Y . For each such a vertex vY we generate all
possible distributions of edges between X and Y so that N(vY)
is isomorphic to the only 2-e.c. graph on 9 vertices. (Note that
sometimes we are guaranteed to have only 2 such vertices and
the condition can be satisfied easily but sometimes the number of
such vertices is as large as 8 and there is no way to do that.) For
each such a distribution of edges, we take a vertex vX from set
X for which the number of determined incident edges and non-
edges is maximized and we fix a degree (we have to consider three
cases: 9,10,11). If deg(vX) = 9, then we check the condition for

8 PRZEMYSÃLAW GORDINOWICZ AND PAWEÃL PRAÃLAT

the neighbourhood; if deg(vX) = 11, then we verify the condition
for the non-neighbourhood; otherwise, we deal with both cases
in order to decrease the number of configurations that stay to
the next round (since the number of 2-e.c. graphs on 11 vertices
is large, we avoid considering this case here). We repeat the
operation for a next candidate until there is no way to satisfy
the necessary condition. It has been verified that 37 pairs (out
of 256) of 2-e.c. graphs can be used to satisfy vertices in Y
but only 8 pairs can satisfy an additional condition for the first
vertex from X; 2 pairs survive to the next round and the process
ends. It took a few minutes for a computer to eliminate order
21.

3.3. Eliminating 22. Suppose that G has 22 vertices and is 3-
e.c.; each vertex has degree 9, 10, 11, or 12. Since if G is 3-e.c. so
is G, we can assume that there is a vertex v0 of degree at most
10, X = N(v0). If deg(v0) = 9, then we put the only 2-e.c. graph
on 9 vertices in the neighbourhood of v0; otherwise we have to
check all 16 graphs on 10 vertices independently. Experiments
show that it is better to resign with determining graphs in the
non-neighbourhood of v0 at this point due to the large number
of initial configurations to consider. Moreover, without fixing
this, the number of non-isomorphic configurations we have to
deal with in a first few steps of the process is much smaller.

Similarly as before, at each step of the process, we sort vertices
that are not satisfied yet with respect to the number of deter-
mined edges and non-edges (so that the number of branches into
we split the process is as small as possible), and try to distrib-
ute edges and non-edges so that the necessary conditions are
satisfied. We avoid considering 2-e.c. graphs on more than 10
vertices by checking the condition for neighbourhood (or non-
neighbourhood if vertex has degree 11 or 12) only.

It is possible that we can satisfy a vertex using different edge
distributions which can yield a large number of configurations
that are isomorphic to each other. The main improvement here,
required to solve the problem, is the following. After considering
all possibilities for X, fixing the degree of the first vertex, and

THE SEARCH FOR THE SMALLEST 3-E.C. GRAPHS 9

satisfying this vertex, we store all possible configurations and
remove any isomorphic copies. Next, for each configuration, we
fix degree of the next vertex, try to satisfy this vertex, and store
the result again. We repeat this procedure trying to satisfy
a new vertex at each round until there is no configuration to
consider.

Moreover, we improve the running time of the algorithm dra-
matically by checking (at each step) the necessary condition
stated in Theorem 2.1. After satisfying vertex v1, we check the
condition with m = 2 for the two vertices that are satisfied at
this point, that is, vertices v0, v1. All configurations that fail this
test are removed. At the next steps, after satisfying a new ver-
tex vi, the additional test is checked for m = 2 and m = 3, and
for all sets of satisfied vertices containing vertex vi we deal with
at the current round. The operation of removing isomorphisms,
together with checking the additional condition, can decrease
the number of configurations by even 90% (at each round) so
without this improvement the number 22 would not be elimi-
nated. The total computational requirements can be estimated
to be 70 CPU hours.

In order to remove unnecessary configurations we use Brendan
McKay’s nauty software package [6] for computing automor-
phism groups of graphs and digraphs. We cannot use, however,
the package directly since in our situation each pair of vertices
uv can be in three different stages, say: s(uv) = 2 if there is no
edge uv, s(uv) = 1 if there is an edge uv, and finally s(uv) = 0
indicates that the existence of an edge uv is not determined yet.
Moreover, we need to keep the information of which vertices
are satisfied (note that this cannot be determined based on the
function s; |{uv : v ∈ V and s(uv) = 0}| = 0 is only a necessary
condition for u to be satisfied). To overcome this problem we in-
troduce a bijection from our configuration to a (binomial) graph
H on 2|V (G)| + 2 vertices. Let V (G) = {v1, v2, . . . , vn} and let
V (H) = {u1, u2, . . . , un} ∪ {w1, w2, . . . , wn} ∪ {x, y}. Now, we
construct H as follows: uiuj ∈ E(H) if and only if s(vivj) = 1
(this corresponds to the edges of G), wiwj ∈ E(H) if and only

10 PRZEMYSÃLAW GORDINOWICZ AND PAWEÃL PRAÃLAT

if s(vivj) = 2 (non-edges), and uiwi ∈ E(H) for i ∈ [n]. More-
over, xui ∈ E(H) for i ∈ [n] in order to keep an information
which vertices correspond to the original graph (note that x is
the only vertex of degree n in H). Finally, ywi ∈ E(H) if vi

is satisfied. (An example of this transformation is depicted on
Figure 3; vertex v1 is satisfied, there are edges v1v2 and v2v4;
v1v3 and v1v4 are non-edges.) It is clear that we can reconstruct
the graph G, together with the information of which vertices are
satisfied, from H.

v1

v2

v3

v4

x y

u1

u2

u3

u4

w1

w2

w3

w4

Graph G Graph H = H(G, {v1})

Figure 3. Transformation.

3.4. Eliminating 23. Suppose that G has 23 vertices and is 3-
e.c.; each vertex has degree between 9 and 13. Note that there
is at least one vertex of even degree since the number of vertices
of odd degree must be even. Since if G is 3-e.c. so is G, without
loss of generality, we can assume that there is a vertex v0 of
degree 10, X = N(v0). The main idea is the same as before: we
start with embedding a 2-e.c. graph on 10 vertices into X and
try to satisfy vertices one by one. However, there are several
adjustments that have to be made to adopt the approach to this
case. Let us mention a few of the most important ones.

THE SEARCH FOR THE SMALLEST 3-E.C. GRAPHS 11

In the previous cases, we were able to avoid considering 2-e.c.
graphs on more than 10 vertices whereas now we have to take
care of the situation where the size of the neighbourhood of vi

(and thus non-neighbourhood as well) is 11. Since the num-
ber of 2-e.c. graphs on 11 vertices is large (see Table 1), it is
very time-consuming to find all distributions of edges so that
the neighbourhood and the non-neighbourhood of vi induce 2-
e.c. graphs. In order to overcome this problem, we take a vertex
w ∈ N(vi) for which the number of determined incident edges
and non-edges in G[N(vi)] is maximized. By Theorem 2.1, both
N(vi) ∩ N(w) and N(vi) ∩ N c(w) induce 1-e.c. graph, that is,
N(vi) \ {w} has to be decomposed into two disjoint sets A,B,
4 ≤ |A|, |B| ≤ 6, |A| + |B| = 10, so that each set induces 1-e.c.
graph. There are only 688 different graphs G[A] and G[B] that,
together with w and some edges between A and B can yield
2-e.c. graph on 11 vertices. All possible pairs, pre-computed
in advance and stored in an appropriate data structure (for in-
stance, a decision tree has been used), allows us to determine
possible decompositions efficiently. Finally, it remains to try to
generate all configurations of edges and non-edges between A
and B to get 2-e.c. graph on 11 vertices. Since some pairs ab,
a ∈ A, b ∈ B have already determined value, this can be done
efficiently using pre-computed decision tree. A similar approach
is used for the non-neighbourhood.

The second improvement we would like to mention is the fol-
lowing. At each round of the process, we verify the 3-e.c. con-
dition in order to check that a given partial configuration has
a chance to yield the 3-e.c. graph. In other words, for each of(
23
3

)
triples of vertices and try to find 8 vertices joint to them

in all possible ways. Of course, a pair of vertices for which the
status is not determined yet (that is, s(uv) = 0) is treated as an
edge (s(uv) = 1) or a non-edge (s(uv) = 2) depending on the
case. This eliminates a large number of configurations that are
hopeless anyway.

It took approximately 5 CPU hours to eliminate all degree
distributions with at least 2 vertices of degree 9 or 13. In order
to check all configurations with exactly one vertex of degree 9

12 PRZEMYSÃLAW GORDINOWICZ AND PAWEÃL PRAÃLAT

or 13, roughly 136 CPU hours are needed. Finally, it took ap-
proximately 15,000 CPU hours to check that there is no 3-e.c.
graph on 23 vertices with no vertex of degree 9 or 13. The to-
tal computational requirements we estimated to be 15,141 CPU
hours.

4. Open problems

Using the fact that in an n-e.c. graph with n > 1, the neigh-
bour and non-neighbour sets of each vertex are (n− 1)-e.c., we
have that mec(n) ≥ 2mec(n − 1) + 1. As mec(3) ≥ 24 and by a
simple (and so omitted recursion), we derive that

mec(n) ≥ 25

8
· 2n − 1.

On the other hand, using the random graph G(v, 1/2) one has
that mec(n) = O(n22n). From this it follows that

lim
n→∞

mec(n)1/n = 2.

One of the most important open problems in this area is to
determine whether

lim
n→∞

mec(n)

2n

exists and, if so, to find its value.

The probability space G(N, p) is defined analogously as the
random graph G(v, p), but with vertices the nonnegative inte-
gers. Erdős and Rényi [5] proved that with probability 1 a graph
in G(N, p), where p ∈ (0, 1), is isomorphic to a unique graph,
called the infinite random graph or Rado graph. The Rado graph
R is deterministic and has a rich structure; it is the unique iso-
morphism type of countable graphs that is n-e.c. for all n > 0.

In Section 2, we presented the counterexample showing that
the conjecture that the condition stated in Theorem 2.1 is suffi-
cient for a graph to be n-e.c. is false. But the following question
of the same flavour is still open. (This problem was proposed
by Anthony Bonato; see [4], problem 20.) Suppose that a graph
G has the property that a graph induced by the neighbourhood

THE SEARCH FOR THE SMALLEST 3-E.C. GRAPHS 13

(and the non-neighbourhood) of each vertex of G is isomorphic
to G. It is clear that R has this property but is there any other
graph satisfying this property?

5. Acknowledgement

This work was made possible by the facilities of

• the Shared Hierarchical Academic Research Computing
Network SHARCNET, Ontario, Canada (www.sharcnet.ca):
8,082 CPUs, and

• the Atlantic Computational Excellence Network ACEnet,
Memorial University of Newfoundland, St. John’s, NL,
Canada (www.ace-net.ca): 412 CPUs.

The programs used to obtain the result can be downloaded
from [8].

References

[1] A. Bonato, The search for n-e.c. graphs, Contributions to Discrete
Mathematics, in press.

[2] A. Bonato, K. Cameron, On an adjacency property of almost all
graphs, Discrete Mathematics 231 (2001) 103–119.

[3] L. Caccetta, P. Erdős, K. Vijayan, A property of random graphs, Ars
Combinatoria 19 (1985) 287–294.

[4] P.J. Cameron, Research problems from the 18th British Combinato-
rial Conference. The 18th British Combinatorial Conference (Brighton,
2001). Discrete Mathematics 266 (2003), no. 1-3, 441–451.

[5] P. Erdős, A. Rényi, Asymmetric graphs, Acta Mathematica Academiae
Scientiarum Hungaricae 14 (1963) 295–315.

[6] B.D. McKay, nauty Users Guide (Version 2.4),
http://cs.anu.edu.au/~bdm/nauty/.

[7] S. Radziszowski, Small Ramsey Numbers, Electronics Journal of Com-
binatorics, Dynamic Survey DS1, revision #11 (2006), 60pp.

[8] Programs written in C/C++,
http://www.mathstat.dal.ca/~pralat/index.php?page=publications.

14 PRZEMYSÃLAW GORDINOWICZ AND PAWEÃL PRAÃLAT

Department of Mathematics, Technical University of Lodz,
ÃLódź, Poland

E-mail address: pgordin@p.lodz.pl

Department of Mathematics and Statistics, Dalhousie Uni-
versity, Halifax, NS, Canada

E-mail address: pralat@mathstat.dal.ca

