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Abstract. We introduce a new class of random graph models for complex real-
world networks, based on the protean graph model by ÃLuczak and PraÃlat. Our
generalized protean graph models have two distinguishing features. First, they
are not growth models, but instead are based on the assumption that a “steady
state” of large but finite size has been reached. Second, the models assume that
the vertices are ranked according to a given ranking scheme, and the rank of
a vertex determines the probability that that vertex receives a link in a given
time step. Precisely, the link probability is proportional to the rank raised to
the power −α, where the attachment strength α is a tunable parameter. We
show that the model leads to a power law degree distribution with exponent
1 + 1/α for ranking schemes based on a given prestige label, or on the degree
of a vertex. We also study a scheme where each vertex receives an initial rank
chosen randomly according to a biased distribution. In this case, the degree
distribution depends on the distribution of the initial rank. For one particular
choice of parameters we obtain a power law with an exponent that depends both
on α and on a parameter determining the initial rank distribution.

1. Introduction

There is considerable interest in using random graphs to model complex real-
world networks in order to gain insight into their properties (see for example [1]
or [3]). Most prevalent models are based on the principle of preferential attach-
ment: new vertices link to existing vertices with a probability that is proportional
to the degree of the existing vertex. The preferential attachment principle has been
successful in explaining the power law degree distribution that has been observed
in many real-life networks. On the other hand, it is hard to adapt the principle to
incorporate more diverse criteria that make a vertex attractive to receive a link,
such as innate popularity or initial advantage (see [2]). Moreover, most models
are growth models, where the graphs grow larger over time. In many real-world
networks, such as protein-protein interaction networks, social networks, and even
the World Wide Web, a more realistic assumption seems to be that the network
will eventually reach a “steady state” where the size stays approximately constant,
but vertices keep appearing and disappearing over time.

In [7], ÃLuczak and PraÃlat introduced a random graph model called the protean
graph Pn(d, α), where the model is controlled by two parameters: initial degree
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d ∈ N and attachment strength 0 < α < 1). The major feature of this model is
that the link probability, that is, the probability that a vertex receives a link in a
given time step, is based on a ranking of the vertices. More precisely, each vertex v
has a rank r(v, t) at time t, and its link probability is proportional to r(v, t)−α. In
the original protean graph model, vertices were ranked according to age, leading
to a model where the old get richer. In the paper it was proven that the degrees
in Pn(d, α) are distributed according to a power law with exponent 1 + 1/α. This
implies that the attachment strength α can be used to tune the exponent of the
power law: In order to establish the right attachment strength to model a given
real-life network where the number of vertices of degree k is approximately k−γ,
the attachment strength should be chosen to be α = 1/(γ − 1).

In [7], the behaviour of the protean graph model near the connectivity threshold
is studied, where d = d(n) is allowed to grow with n. The second author of this
paper showed also in [9] that the protean graph Pn(d, α) asymptotically almost
surely (aas) has one giant component, containing a positive fraction of all vertices.
The diameter of this component is equal to Θ(log n). In [10], the recovery time
of certain connectivity properties was studied. Suppose that the protean graph
aas possesses property P , but at some particular time instance, the graph looses
property P . Then the following natural question can be asked: how much time
does it take for the protean graph to regain its typical property P? Since P holds
aas and after O(n log n) steps each vertex from the original graph is deleted aas,
the recovery time is aas bounded from above by O(n log n). It has been shown,
however, that the recovery time for connectivity is smaller than the above universal
bound implied by the coupon collector problem.

In this paper, we extend the idea of the protean graph to include variations
where vertices are ranked according to other criteria than age. The general ap-
proach of using a link probability based on a ranking of the vertices according to
degree or an externally determined prestige label was first proposed by Fortunato,
Flammini and Menczer in [4]. The specific model used by Fortunato et al. was a
growth model, where one new vertex is added in every time step, and no vertices
disappear. The occurrence of a power law with exponent 1 + 1/α was postulated
based on simulations. The authors of this paper provided rigorous proofs and
extended their results in [6]. A growth model based on the original protean graph,
where vertices are ranked by age, was proposed in [12]. Here new vertices are
added at a faster rate than old vertices are deleted. A prelimary version of this
paper appeared in [11].

As we will show, the protean graph model leads to power law graphs for a variety
of different ranking schemes. The ranking scheme of the original protean graph
from [7, 9] ranks vertices by age (the old get richer); as we already mentioned,
this leads to a power law with exponent 1 + 1/α. As a contrast, here we also
consider the case where vertices are ranked inversely according to age (the young
get richer). As suspected, the young are not young long enough to accumulate a
lot of wealth, and we find that in the resulting graph, aas all vertices have degree
bounded by log2 n.

We also study a ranking scheme where each vertex receives an independently
chosen prestige label, and vertices are ranked according to their prestige label.
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Here we do obtain a power law, with the same exponent. In order to allow for
a non-uniform distribution of “prestige” over the vertices, we considered also a
scheme based on random initial rank. Here, each vertex is assigned an initial rank
according to a given distribution. We consider distributions of the following form.
Let Ri be the initial rank of a vertex born at time i. Then P(Ri ≤ k) = (k/n)s.
Thus, when s = 1 the initial rank is chosen according to the uniform distribution.
In this case, the behaviour is very similar to that of ranking by by prestige label:
vertices with initial rank Ri exhibit behaviour as if they had received fitness Ri/n.
When s > 1, so the initial rank of new vertices is biased towards the lower ranks
(highly ranked vertices tend to be older). In this case, the behaviour is similar
to that of ranking by age, and we obtain a power law degree distribution with
exponent 1 + 1/α. If 0 < s < 1, so the initial rank is biased towards the higher
ranks (young vertices tend to be ranked high), the behaviour is more complex,
and depends on both s and α. If 0 < s ≤ 1 − α, the behaviour is like ranking
by inverse age, and we have a “flat” degree distribution with maximum degree
bounded by log2 n. If 1 − α < s < 1, then we do obtain a power law, but with
exponent 1 + s/(s + α− 1).

These results suggest a broader explanation for the power law degree distribu-
tions often observed in real-life networks such as the web graph, protein interaction
networks, and social networks, even when they have reached a stage where their
size does not grow significantly. The distribution of new links in such networks
can be seen as governed by a rank-based attachment scheme, based on a ranking
scheme that can be derived from a number of different factors such as age, degree,
or fitness. The exponent of the power law is independent of these factors, but
is rather a consequence of the attachment strength. In addition, rank-based at-
tachment accentuates the difference between higher ranked vertices: the difference
in link probability between the vertices ranked 1 and 2 is much larger than that
between the vertices ranked 100 and 101. This again corresponds to our intuition
of what constitutes a credible mechanism for link attachment.

2. Definitions

In this section, we formally define the graph generation model based on rank-
based attachment which will lead to the limiting protean graph. The model pro-
duces a sequence {Gt}∞t=0 = {(Vt, Et)}∞t=0 of undirected graphs on n vertices, where
t denotes time. Our model has two fixed parameters: initial degree d ∈ N and
attachment strength α ∈ (0, 1). At each time t, each vertex v ∈ Vt has rank
r(v, t) ∈ [n] (we use [n] to denote the set {1, 2, . . . , n}). In order to obtain a
proper ranking, the rank function r(·, t) : Vt → [n] is a bijection for all t, so every
vertex has a unique rank. In agreement with the common use of the word “rank”,
high rank refers to a vertex v for which r(v, t) is small: the highest ranked vertex
is ranked number one, so has rank equal to 1; the lowest ranked vertex has rank n.
The probability that v receives an edge is proportional to r(v, t)−α; the negative
exponent guarantees that vertices with higher ranks (r(v, t) close to 1) are more
likely to receive new edges than lower ranks. The initialization and update of the
ranking is done according to a ranking scheme. Various ranking schemes can be
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considered, and will lead to different protean graphs. We first give the general
model, and then list the ranking schemes.

To initialize the model, let G0 = (V0, E0) be any graph on n vertices and let
r0 = r(·, 0) be any initial rank function r0 : V0 → [n] which is consistent with
the ranking scheme. (For the random labeling scheme we assign any set of labels
l : V0 → (0, 1) and form the initial rank function accordingly.) For t ≥ 1 we form
Gt from Gt−1 according to the following rules:

(i) Add a new vertex v together with d edges from v to existing vertices chosen
randomly with weighted probabilities. The edges are added in d substeps.
In each substep, one edge is added, and the probability that a vertex w is
chosen as its endpoint is proportional to r(w, t− 1)−α.

(ii) Choose uniformly at random a vertex u ∈ Vt−1, delete u and all edges
incident to u.

(iii) Update the ranking function r(·, t) : Vt → [n] according to the ranking
scheme.

We refer to the time step t in which vertex v was added to the graph as time
in which v was born. Since all results refer to the steady state of the process, no
vertices of G0 remain at the time L when the limiting graph is analyzed.

Our model allows for loops and multiple edges; there seems no reason to exclude
them. However, with high probability there will not be many of these, so removing
them after the process ends can be shown not to affect our conclusions in any
significant way.

We now define the different ranking schemes.

(i) Ranking by age: The newly added vertex v obtains an initial rank n;
its rank decreases by one each time a vertex with smaller rank is removed.
Formally, r(v, t) = r(v, t− 1)− 1−γ, where γ = 1 if the rank of the vertex
deleted in step t is smaller than r(v, t− 1), and 0 otherwise.

(ii) Ranking by inverse age: The vertex added at time t obtains an initial
rank 1; its rank increases by one each time a vertex with higher rank is
removed. Formally, r(v, t) = r(v, t− 1) + 1− γ, where γ = 1 if the rank of
the vertex deleted in step t is smaller than r(v, t− 1), and 0 otherwise.

(iii) Ranking by prestige label: The vertex v added at time t obtains a label
l(v) ∈ (0, 1) chosen uniformly at random. Vertices are ranked according to
their labels: if l(u) < l(w), then r(u, t) < r(w, t).

(iv) Random initial rank: The vertex added at time t obtains an initial rank
Rt which is randomly chosen from [n] according to a prescribed distribu-
tion. Ranks of all vertices are adjusted accordingly. Formally, for each
v ∈ Vt−1, r(v, t) = r(v, t − 1) + δ − γ, where δ = 1 if r(v, t − 1) > Rt and
0 otherwise, and γ = 1 if where the rank of the vertex deleted in step t is
smaller than r(v, t− 1), and 0 otherwise.

(v) Ranking by degree: After each time step t, vertices are ranked according
to their degrees in Gt, and ties are broken by age. Precisely, if deg(u, t) <
deg(w, t) then r(u, t) < r(w, t), and if deg(u, t) = deg(w, t) then r(u, t) <
r(w, t) if u was born before w.
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Since the process is an ergodic Markov chain, it will converge to a stationary
distribution. The random graph GL corresponding to this distribution is called
a protean graph Pn(d, α, scheme), where scheme indicates the ranking scheme
used. The coupon collector problem can give us insight into when the stationary
state will be reached. Namely, let L = n(log n + O(ω(n))) where ω(n) is any
function tending to infinity with n. It is a well-known result that aas after L
steps all original vertices will have been deleted. In the case of ranking by age,
inverse age or random initial rank this implies that after L steps, the stationary
distribution has been reached. In the case of ranking by prestige label, we need
L = 2n(log n+O(ω(n))) steps for the process to converge: the first L/2 steps will
remove the initial prestige labels, and another L/2 steps will eliminate all vertices
that were possibly influenced by prestige labels of the initial vertices.

In the rest of the paper, {Gt}∞t=1 is assumed to be a graph sequence generated
by the rank-based attachment model, with ranking scheme as defined in each
particular section, and d and α are assumed to be the initial degree and attachment
strength parameters of the model as defined above. The results are generally about
the degree distribution in GL, where the asymptotics are based on n tending to
infinity.

We will use the stronger notion of wep in favour of the more commonly used
aas, since it simplifies some of our proofs. We say that an event holds with extreme
probability (wep), if it holds with probability at least 1 − exp(−Θ(log2 n)) as
n → ∞. Thus, if we consider a polynomial number of events that each holds
wep, then wep all events hold. To combine this notion with asymptotic notations
such as O() and o(), we follow the conventions in [13].

For any 0 < α < 1, we define the function gα : N→ R:

gα(n) =
n∑

j=1

j−α =
n1−α

1− α
+ O(1) .

Thus, the probability that a vertex v is chosen as a neighbour of vt in a substep
of step 1 of the generation process equals

r(v, t− 1)−α

gα(n)
=

1− α

n1−α + O(1)
r(v, t− 1)−α.

Finally, we will make frequent use of the following standard result about the
sum of independent random variables, known as the Chernoff bound:

Theorem 2.1 (Chernoff bound, see for example Theorem 2.8 [5]). Let X be a
random variable that can be expressed as a sum X =

∑n
i=1 Xi of independent

random indicator variables where Xi ∈ Be(pi) with (possibly) different pi = P(Xi =
1) = EXi. Then the following holds for t ≥ 0:

P(X ≥ EX + t) ≤ exp

(
− t2

2(EX + t/3)

)
,

P(X ≤ EX − t) ≤ exp

(
− t2

2EX

)
.
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In particular, if ε ≤ 3/2, then

P(|X − EX| ≥ εEx) ≤ 2 exp

(
−ε2EX

3

)
.

Moreover, if EX ≤ log2 n, then wep X = O(log2 n).

3. Ranking by age and inverse age

We start by discussing two deterministic ranking schemes: the rank of the new
vertex is independent of the stochastic process. In the case of ranking based on
age, the new vertex is assigned rank n. This ranking scheme was used in the
paper that introduced protean graphs [7]. It was shown there that the degree
distribution follows a power law with exponent 1 + 1/α. In fact, the variable
representing the degree of a vertex over time is concentrated around its mean (if
this mean is sufficiently large), and the mean shows a “midlife crisis”: starting
from a fixed initial degree d, a given vertex first tends to loose neighbours and
gain few new ones; as higher ranked vertices are deleted the vertex drifts towards
to higher ranks and start attracting more new neighbours.

To investigate the other extreme, we introduce ranking according to inverse age:
each new vertex is assigned rank 1. Thus, right after birth, a given vertex attracts
many new neighbours. However, over time new vertices are added to the front of
the line, and the vertex will drift toward the lower ranks, eventually loosing more
neighbours through deletion process than gaining new ones.

Thus, the degree of a given vertex is determined by its age. To understand the
influence of age, we introduce the following concept.

Definition 3.1. The age rank a(v, t) of vertex v at time t is the rank of v if the
vertices in Gt are ranked by age. In other words, a(v, t)− 1 equals the number of
vertices in Gt that were born earlier than v.

Consider vertices vi and vj with ranks r(vi, L) = i and r(vj, L) = j, respectively.
Assume that j < i. Because of the ranking scheme, this implies that vj is younger.
It is clear that the rank of vi when vj was born is at least i− j, so

E deg(vi, L) ≤ d + d

i−1∑
j=1

(i− j)−α

gα(n)

= d + (1 + o(1))d

(
i

n

)1−α

≤ 2.1d.

Thus, the expected degree is bounded by a constant, and, since the degree is the
sum of independent variables, we can use the Chernoff bound (see Theorem 2.1)
to show that wep the degree of any vertex is at most log2 n. Thus, vertices do not
remain in the high ranks long enough to accumulate a large number of neighbours,
and we do not get a power law.

To gain a better understanding of the behaviour of the degree over time, we
consider the case where i = xn and j = yn, and x, y are two different constants in
(0, 1). Since vertices are deleted uniformly at random, the rank r(vi, t) of vertex
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vi at time t behaves exactly like n− a(vi, t). Using the results from [7] (Facts 3.2
and 3.3), we find that the expected rank of vi at the time vj was born equals:

n− (n− i)
n

n− j
= n

i− j

n− j
= n

x− y

1− y
,

and it is possible to show concentration for this random variable.
Therefore,

E deg(vxn, L) = (1 + o(1))d

(
1− x + (1− α)

∫ x

0

(
x− y

1− y

)−α

dy

)
.

By numerical approximation of the integral we obtained the following figures
(see Figure 1), for different values of α. We see that, in this case, instead of a
“midlife crisis” we have a “midlife peak”: the degree of a vertex initially increases,
but reaches a maximum fairly soon, and then starts a steady decline. As the
figures show, the place where the maximum is reached depends on α.
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(a) α = 0.4 (b) α = 0.7

Figure 1. Function f(x) = E deg(vxn, L) for d = 1.

4. Ranking by random labeling

In this scheme, each new vertex v obtains a prestige label l(v) ∈ R chosen
randomly according to any distribution with the property that the probability that
two vertices receive the same label is zero. Prestige labels for different vertices
are chosen independently. Vertices are ranked by their labels: if l(u) < l(w), then
r(u, t) < r(w, t).

We assume (without loss of generality) that the prestige labels are chosen uni-
formly at random from (0, 1). Namely, suppose that the labels are chosen from
R according to any probability distribution with a strictly increasing cumulative
distribution function F . Since F is an increasing function, labels F (l(vi)) lead
to exactly the same ranking as labels l(vi). But P(F (l(vi)) ≤ x) = P(l(vi) ≤
F−1(x)) = F (F−1(x)) = x, so the values of labels F (l(vi)) are chosen from (0, 1)
according to the uniform distribution.
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The following theorem shows how the expected degree depends on the age rank
and prestige label, and gives a concentration result for the case where the expected
degree grows sufficiently fast with n.

Theorem 4.1. Let 0 < α < 1, d ∈ N, i = i(n) ∈ [n], and let vi be the vertex
whose age rank at time L equals a(vi, L) = i. Let l(vi) be the prestige label of vi,
and assume that n · l(vi) > log3 n. Then the expected degree of vi is given by

E deg(vi, L) = d
i− 1

n− 1
+ (1 + O(log−1/2 n))d(1− α)l(vi)

−α(1− i/n).

Moreover, if E deg(vi, L) ≥ log2 n, we have that wep

deg(vi, L) = E deg(vi, L) + O(
√
E deg(vi, L) log n).

If E deg(vi, L) < log2 n, then wep deg(vi, L) = O(log2 n).

Proof. Since l(vi) is chosen uar, at any time during the process the expected rank
of vi is equal to l(vi)n. Since the prestige labels are chosen independently, the
rank is the sum of independent random variables, so the Chernoff bound (see

Theorem 2.1) applies. Therefore, wep r(vi, t) = l(vi)n(1 + O(log−1/2 n)) during
the entire period (since wep L = O(n log n) and the sum of L exponentially small
probabilities is still exponentially small).

Next we consider the contribution to the degree of vi of vertices that are younger
than vi. Let vt be the vertex with age rank t at time L, and assume i < t ≤ n.
Let X(t, j) be a random indicator variable for the event that vertex vt chooses vi

as a neighbour at substep j of the time step when vt was born (j ∈ [d]). Then

P(X(t, j) = 1) =

(
l(vi)n(1 + O(log−1/2 n))

)−α

gα(n)

= (1 + O(log−1/2 n))(1− α)l(vi)
−α/n.

The number of younger neighbours of vi can thus be expressed as a sum
∑n

t=i+1

∑d
j=1 X(t, j)

of independent random variables.
For the number of older neighbours, note that vertex vi had exactly d older

neighbours at the time it was born. From the n − 1 vertices that were older
than vi at the time it was born, only i − 1 remain. Since vertices are deleted
uar, this means that the expected number of older neighbours remaining equals
d(i−1)/(n−1). Combining the expected number of older and younger neighbours,
we obtain:

E deg(vi, L) = d
i− 1

n− 1
+ d(n− i)EX(t, j)

= d
i− 1

n− 1
+ (1 + O(log−1/2 n))d(1− α)l(vi)

−α(1− i/n) .

Finally, since the number of younger neighbours of vi is expressed as a sum of
independent random variables, we can use the Chernoff bound (see Theorem 2.1)
to show the concentration result. ¤
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Let Zk = Zk(n, d, α) denote the number of vertices of degree k and Z≥k =∑
l≥k Zl. The following theorem shows that the Z≥k’s follow a power law with

exponent 1/α. Since the Z≥k’s represent the cumulative degree distribution, this
implies that the degree distribution follows a power law with exponent 1 + 1/α.

Theorem 4.2. Let 0 < α < 1 and d ∈ N, log4 n ≤ k ≤ nα/ log4α n. Then wep

Z≥k =
(
1 + O(log−1/3 n)

) α

1 + α

(
d(1− α)

k

)1/α

n.

Proof. This theorem is a simple consequence of Theorem 4.1. One can show that
wep each vertex vi such that

l(vi) ≥
(
1 + log−1/3 n

) (
d(1− α)(1− i/n)

k

)1/α

has fewer than k neighbours, and each vertex vi for which

l(vi) ≤
(
1− log−1/3 n

) (
d(1− α)(1− i/n)

k

)1/α

has more than k neighbours.
Thus,

EZ≥k =
n∑

i=1

(
1 + O(log−1/3 n)

) (
d(1− α)(1− i/n)

k

)1/α

=
(
1 + O(log−1/3 n)

) (
d(1− α)

k

)1/α

n

∫ 1

0

(1− x)1/αdx

=
(
1 + O(log−1/3 n)

) α

1 + α

(
d(1− α)

k

)1/α

n

and the assertion follows from Chernoff bound since EZ≥k = Ω(log4 n). ¤

5. Randomly chosen initial rank

Next, we consider the case where the rank Ri of the vertex v added at time i is
chosen at random from [n]. As in the previous case, the ranks of existing vertices
are adjusted accordingly. In contrast to the previous scheme, in this case it does
matter according to which distribution Ri is chosen. We make the assumption that
all initial ranks are chosen according to a similar distribution. In particular, we fix
a continuous bijective function F : [0, 1] → [0, 1], and for all integers 1 ≤ k ≤ n,
we let

P(Ri ≤ k) = F

(
k

n

)
.

Thus, F represents the limit, for n going to infinity, of the cumulative distribu-
tion functions of the variables Ri. To simplify the calculations while exploring a
wide array of possibilities for F , we assume F to be of the form

F (x) = xs, where s > 0.
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We will distinguish three cases: s = 1, s > 1, and 0 < s < 1. When s = 1, the
initial rank is chosen uar, and the behaviour mimics that of the random labeling
scheme. In the second case, we again obtain power law behaviour with exponent
1/α, as in the previously studied schemes. For the third case, the behaviour is
more complex, and depends on the relative values of s and α.

5.1. The case s = 1. The case s = 1 represents the uniform distribution of the
Ri. As with random labeling, the random variable r(v, t) is sharply concentrated
around a fixed value, in this case the initial rank Ri.

Our proofs use the supermartingale method of Pittel et al. [8], as described
in [14, Corollary 4.1]. We need the following lemma.

Lemma 5.1. Let G0, G1, . . . , GL be a random process and Xt a random variable
determined by G0, G1, . . . , Gt, 0 ≤ t ≤ L. Suppose that for some real β and γ,

E(Xt −Xt−1 | G0, G1, . . . , Gt−1) < β

and

|Xt −Xt−1 − β| ≤ γ

for 1 ≤ t ≤ L. Then for all ε > 0,

P
(
For some t with 0 ≤ t ≤ L : Xt −X0 ≥ tβ + ε

) ≤ exp
(
− ε2

2Lγ2

)
.

Lemma 5.2. Suppose that vertex v obtained an initial rank R ≥ √
n log2 n. Then,

wep r(v, t) = R(1 + O(log−1/2 n)) to the end of its life.

Proof. Fix t so that v is alive at times t and t + 1. Then r(v, t + 1)− r(v, t) = −1
if a vertex of rank lower than r(v, t) is deleted, and the new vertex receives rank
higher than r(v, t). This happens with probability (r(v, t)−1)(n−r(v, t))/(n−1)n.
Similarly r(v, t+1)−r(v, t) = 1 with probability (n−r(v, t))r(v, t)/(n−1)n. Thus,

β = E(r(v, t + 1)− r(v, t) | r(v, t)) = O(1/n).

Clearly, the rank can change by at most one (γ = 1) so we can use Lemma 5.1

with ε =
√

n log3/2 n to get that wep r(v, t) = R(1 + O(log−1/2 n)) during the
whole life of that vertex (note that wep v will be deleted after O(n log n) steps, so

L = O(n log n), and the condition on R implies that ε/R ≤ log−1/2 n). ¤

From the previous lemma it follows that the random ranking case for s = 1 is
very similar to the random labeling case, where an initial rank of R corresponds to
a prestige label of R/n. Since we have similar behaviour of the rank, the following
theorem is an exact analogue of Theorem 4.1, so its proof is omitted.

Theorem 5.3. Let 0 < α < 1, d ∈ N, i = i(n) ∈ [n], and let vi be the vertex
whose age rank at time L equals a(vi, L) = i. Let R be the initial rank of vi, and
assume that R ≥ √

n log2 n. Then the expected degree of vi is given by

E deg(vi, L) = d
i− 1

n− 1
+ (1 + O(log−1/2 n))d(1− α)(R/n)−α(1− i/n).
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Moreover, if E deg(vi, L) ≥ log2 n, then wep

deg(vi, L) = E deg(vi, L) + O(
√
E deg(vi, L) log n),

and if E deg(vi, L) < log2 n, then wep deg(vi, L) = O(log2 n).

As a corollary of the behaviour of the degree of each vertex, we obtain our result
about the degree distribution, as expressed in the following theorem, which is an
analogue of Theorem 4.2. Again, the proof is omitted. Note that the range for
k is slightly different due to the condition on the initial rank R ≥ √

n log2 n in
Lemma 5.2, which is stronger than the corresponding condition l(vi)n > log3 n in
Theorem 4.1 for the prestige label.

Theorem 5.4. Let 0 < α < 1 and d ∈ N, log4 n ≤ k ≤ nα/2/ log3α n. Then wep

Z≥k =
(
1−O(log−1/3 n)

) α

1 + α

(
d(1− α)

k

)1/α

n.

5.2. The case s > 1. In this case, the initial rank is biased towards the lower
ranks. Thus, this behaviour tends towards age-based ranking, addressed in Sec-
tion 3. Vertices tend to receive an initial rank near the “end of the line”, but will
drift towards the front over time. Thus the age rank is not concentrated around
a constant value, as in previous cases, but tends to decrease with time. The rank
function also exhibits more complex behaviour in this case.

We first study the age rank of a vertex v. We assume without loss of generality
that v was born at time 0, so a(v, 0) = n. For t > 0, a(v, t) decreases by one
precisely when in time step t + 1, the vertex u which is deleted was older than v,
so a(u, t) < a(v, t). So, we obtain that

E(a(v, t + 1)− a(v, t) | Gt) = −a(v, t)− 1

n− 1
,

conditional on the fact that v is not deleted.
To analyze the age rank, we use the differential equations method [14]. Defining

a real function z(x) to model the behaviour of a(v, xn)/n, the above relation
implies the following differential equation

z′(x) = −z(x) (1)

with the initial condition z(0) = 1.
The general solution is z(x) = exp(−x + C), C ∈ R and the particular solution

is z(x) = exp(−x). This suggests that a random variable a(v, t) should be close to
a deterministic function n exp(−t/n). The following theorem precisely states the
conditions under which this holds.

Theorem 5.5. Let a(v, t) be the age rank of vertex v at time t. Then wep, for
every t in the range 0 ≤ t ≤ tf = 1

2
n log n− 2n log log n, we have

a(v, t) = n exp(−t/n)(1 + O(log−1/2 n)) (2)

conditional upon the vertex v surviving until time tf .
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Proof. We transform a(v, t) into something close to a martingale. Consider the
following real-valued function

H(a, t) = log a + t/n (3)

and the stopping time

T = min{t ≥ 0 : a(v, t) < (1/2)
√

n log2 n ∨ t = tf} .

(A stopping time is any random variable T with values in {0, 1, . . . } ∪ {∞} for
which it can be determined whether T = t̂ for any time t̂ from knowledge of the
process up to and including time t̂.)

Let wt = (a(v, t), t), and consider the sequence of random variables (H(wt) :
0 ≤ t ≤ tf ). H is chosen so that H(w) is close to a constant along every trajectory
w of the differential equation (1). It is easy to check that the second-order partial
derivatives of H are O(a−2) = O(n−1 log−4 n) along the trajectory wt, provided
T > t. Therefore, with i ∧ T denoting min{i, T}, we have

H(w(t+1)∧T )−H(wt∧T )

= (w(t+1)∧T −wt∧T ) · grad H(wt∧T ) + O(1/n log4 n) . (4)

Observe also that,

E(wt+1 −wt | Gt) · grad H(wt)

=

(
−a(v, t)− 1

n− 1
, 1

)
· (1/a(v, t), 1/n) = O((a(v, t)n)−1) = O(n−3/2 log−2 n),

provided T > t.
Taking the expectation of (4) conditional on Gt∧T , we obtain that

E(H(w(t+1)∧T )−H(wt∧T ) | Gt∧T ) = O(1/n log4 n) .

From (4), noting that grad H(wt) = (O(1/a(v, t)), 1/n), and using the fact that
the rank changes by at most one in each step,

|H(w(t+1)∧T )−H(wt∧T )| = O(1/a(v, t∧T ))+O(1/n)+O(1/n log4 n) = O(1/
√

n log2 n) .

Now we may apply Lemma 5.1 to the sequence (H(wt∧T ) : 0 ≤ t ≤ tf ), and sym-

metrically to (−H(wt∧T ) : 0 ≤ t ≤ tf ), with ε = 1/ log1/2 n, β = O(1/n log4 n),
and γt = O(1/

√
n log2 n) to show that wep

|H(wt∧T )−H(wt0)| = O(log−1/2 n).

As H(w0) = log n, this implies from the definition (3) of the function H, that wep
equation (2) holds for every 0 ≤ t ≤ T .

To complete the proof we need to show that wep, T = tf . The events as-
serted by (2) hold wep up until time T , as shown above. Thus, in particular, wep
a(v, T ) = (1 + o(1))n exp(−T/n) > (1 + o(1))

√
n log2 n which implies that T = tf

wep. ¤
Exactly the same approach can be used to study the rank of a vertex after t

steps of the process, given that its initial rank is equal to R. We present a sketch
of the proof only.
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Theorem 5.6. Suppose that a vertex v obtained an initial rank r(v, 0) = R <
0.99n at time 0. Then wep, for every t in the range 0 ≤ t ≤ tf = 1

2
n log n −

2n log log n conditional upon the vertex v surviving until time t,

r(v, t) = n

(((
R

n

)1−s

− 1

)
e(s−1)t/n + 1

) 1
1−s

(1 + O(log−1/2 n))

provided

n

(((
R

n

)1−s

− 1

)
e(s−1)t/n + 1

) 1
1−s

≥ √
n log2 n .

Proof. The conditional expected change in r(v, t) in time step t + 1, conditional
on vertex v surviving to time t + 1, is given by:

E(r(v, t + 1)− r(v, t) | Gt) = −r(v, t)− 1

n− 1
+

(
r(v, t)

n

)s

.

Defining a real function z(x) to model the behaviour of r(v, xn)/n, this suggests
the differential equation

z′(x) = −z(x) + z(x)s,

with the initial condition z(0) = R/n. The general solution is

z(x) =
(
Ce(s−1)x + 1

) 1
1−s , C ∈ R ,

and the particular solution is

z(x) =

(((
R

n

)1−s

− 1

)
e(s−1)x + 1

) 1
1−s

.

Define the function

H(r, t) = log

((n

r

)s−1

− 1

)
− (s− 1)

t

n

and the stopping time

T = min{t ≥ 0 : r(v, t) < (1/2)
√

n log2 n ∨ t = tf} .

Let wt = (r(v, t), t). As in the analysis of the age rank, H is chosen to be close
to a constant along every trajectory of the differential equation. Specifically, it
can be shown that

|H(w(t+1)∧T )−H(wt∧T )| = O(1/r(v, t ∧ T )) = O(1/
√

n log2 n)

E(H(w(t+1)∧T )−H(wt∧T ) | Gt∧T ) = O(1/n log4 n),

and H(w0) = log((R/n)1−s − 1). Using Lemma 5.1 in a similar way as in the

previous proof, we can then show that wep H(wt∧T ) = H(w0) + O(log−1/2 n).
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Solving for r in the expression for H, we obtain that that wep

r(v, t) = n
(
eH(w0)e(s−1)t/n + 1

) 1
1−s (1 + O(log−1/2 n))

= n

(((
R

n

)1−s

− 1

)
e(s−1)t/n + 1

) 1
1−s

(1 + O(log−1/2 n)).

¤

Now we are ready to state the main theorem in this section.

Theorem 5.7. Let 0 < α < 1 and d ∈ N, log4 n ≤ k ≤ nα/2 log−3α n. Then wep

Z≥k = (1 + o(1))

(
d(1− α)

k(1 + α)

)1/α

n.

Proof. Consider vertices vi and vj with age-ranks a(vi, L) = i and a(vj, L) = j,
respectively, and let i = xn and j = yn (i < j). Suppose that vi obtained an
initial rank of R. Let ti and tj be the times that vertices vi and vj were born,

respectively. By Theorem 5.5, wep ti = L − (1 + O(log−1/2 n))n log(1/x) and

tj = L− (1 + O(log−1/2 n))n log(1/y), and tj − ti = (1 + O(log−1/2 n))n log(y/x).
By Theorem 5.6, wep vi had the following rank when vj was born:

r(vi, tj) = n

(((
R

n

)1−s

− 1

)(y

x

)s−1

+ 1

) 1
1−s

(1 + O(log−1/2 n)).

Thus, the contribution to the degree of vi of vertices born after vi is the sum
of independent indicator variables of the event that a vertex vj links to vi in a
particular substep of time step tj. The probability of this event is r(vi, tj)

−α/gα(n).
Since every vertex has initial degree d, the contribution to the degree of vi by
older vertices is O(d). Combining this, we obtain the following expression for the
expected degree:

E deg(vi, L) = O(d)+(1+O(log−1/2 n))d(1−α)

∫ 1

x

(((
R

n

)1−s

− 1

)(y

x

)s−1

+ 1

) −α
1−s

dy.

If x = Ω(1) and R/n = Ω(1) then the expected degree is a constant and the degree
is smaller than log2 n wep. Otherwise it simplifies to

E deg(vi, L) = (1 + O(log−1/2 n))d(1− α)

((
R

n

)1−s

− 1

) −α
1−s

x−α

∫ 1

x

yαdy

= (1 + O(log−1/2 n))
d(1− α)

1 + α

((
R

n

)1−s

− 1

) −α
1−s (

x−α − x
)
,

and, provided E deg(vi, L) = Ω(log4 n), wep deg(vi, L) = E deg(vi, L)(1+O(log−1/2 n)),
by the Chernoff bound.
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Therefore, we get a threshold R0 = R0(k, x) on the initial rank which causes
the vertex to have degree at least k, namely,

R0(k, x) = n

((
d(1− α)

k(1 + α)

(
x−α − x

)) 1−s
α

+ 1

) 1
1−s

.

Precisely, a vertex vi with initial rank R has degree at least k (provided k ≥ log4 n)

if R ≤ R0(k, i/n)(1 − log−1/3 n), and degree at most k − 1 if R ≥ R0(k, i/n)(1 +

log−1/3 n).
The expected number of vertices of degree at least k is

n∑
i=1

(
R0(k, i/n)

n

)s

(1 + o(1)) = (1 + o(1))n

∫ 1

0

((
d(1− α)

k(1 + α)

(
x−α − x

)) 1−s
α

+ 1

) s
1−s

dx

= (1 + o(1))

(
d(1− α)

k(1 + α)

)1/α

n.

To see the last step, let A = d(1−α)
k(1+α)

. Using the substitution x = A1/αz, and noting

that A = O(1/k) = o(1), we obtain

(
A

(
x−α − x

)) 1−s
α =

(
A

(
A−1z−α − A1/αz

)) 1−s
α

=
(
z−α − A1+1/αz

) 1−s
α

= zs−1(1− A1+1/αz1+α)
1−s

α

= zs−1(1 + o(1)).

Thus,

∫ 1

0

((
A

(
x−α − x

)) 1−s
α + 1

) s
1−s

dx = A1/α(1 + o(1))

∫ A−1/α

0

(
zs−1 + 1

) s
1−s dz

= A1/α(1 + o(1)),

since the antiderivative of (zs−1 + 1)
s

1−s is z(zs−1 + 1)
1

1−s . The assertion follows
from the Chernoff bound. ¤

5.3. The case 0 < s < 1. In this case, the distribution of the initial rank Ri is
biased towards the higher ranks. Thus, the behaviour tends somewhat towards a
rank-based process based on inverse age, where new vertices are ranked first.

The results on the behaviour of age rank and rank for the case where s > 1, as
given in Theorems 5.5 and 5.6, do not depend on s, and thus hold for this case as
well. Using these theorems, we can derive the degree of a vertex with age rank i.
The interesting fact is that this degree depends on both s and α. In particular,
there are two regimes for s: if s > 1 − α, then the degree depends on the initial
rank R with an exponent that depends both on α and on s, and if s ≤ 1− α, the
behaviour mimics that of the inverse age case, and wep the degree of each vertex
is bounded from above by log2 n.
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Theorem 5.8. Let 0 < α < 1, d ∈ N, i = i(n) ∈ [n] so that i = xn for x ∈ (0, 1).
Let vi be the vertex whose age rank at time L equals a(vi, L) = i. Let R be the
initial rank of vi, and assume that R ≥ √

n log2 n.

If 1− α < s < 1 and R ≤ n log−3/(s+α−1) n, then wep

deg(vi, L) = (1 + o(1))d(1− α)
( n

R

)s+α−1 x

s + α− 1
.

If 0 < s ≤ 1− α, then wep deg(vi, L) = O(log2 n).

Proof. Let vi be a vertex with age rank i and initial rank R as in the statement
of the theorem. For any vertex vj with age rank j > i (so vi is older than vj), let
tj be the time when vertex vj is born. By Theorem 5.5,

tj = L− n log(n/i)(1 + O(log−1/2 n)).

By the above, tj − ti = n log( j
i
)(1 + O(log−1/2 n)), so by Theorem 5.6, wep the

rank r(i, tj, R) of vi when vj was born is

r(i, tj, R) = n

(((
R

n

)1−s

− 1

)(
j

i

)(s−1)(1+O(log−1/2 n))

+ 1

) 1
1−s

(1+O(log−1/2 n)).

Now suppose that j = i + t, where t ≤ T = n log−1 n. Since t/n = O(log−1 n),

(
j

i

)(s−1)(1+O(log−1/2 n))

=

(
1 +

t

xn

)(s−1)(1+O(log−1/2 n))

= 1− (1− s)
t

xn
(1 + O(log−1/2 n)).

If R/n = o(1), then

r(i, tj, R) = n

((
R

n

)1−s

+ (1− s)
t

xn

) 1
1−s

(1 + o(1))

= R

(
1 + (1− s)

t

xn(R/n)1−s

) 1
1−s

(1 + o(1)). (5)

If R = Θ(n), then r(i, tj, R) = R(1+o(1)), and thus formula (5) correctly expresses
r(i, tj, R) for the case where t < T , and thus t/n = o(1).



PROTEAN GRAPHS WITH A VARIETY OF RANKING SCHEMES 17

We can use expression (5) to estimate the number of edges from vertices vj with
j = i + t and t ≤ T .

d

T∑
t=1

r(i, tj, R)−α

gα(n)

= (1 + o(1))
dR−α

gα(n)

T∑
t=1

(
1 + (1− s)

t

xn(R/n)1−s

) −α
1−s

= (1 + o(1))
d(1− α)R−α

n1−α
n

(
R

n

)1−s ∫ y

0

(
1 + (1− s)

z

x

) −α
1−s

dz

= (1 + o(1))d(1− α)

(
R

n

)1−s−α
x

1− s

∫ 1+(1−s)y/x

1

w
−α
1−s dw, (6)

where y = (T/n)(R/n)s−1 = log−1 n(R/n)s−1 = Ω(log n). (The second step was
obtained by estimating the sum by an integral, and making the substitution z =
(t/n)(R/n)s−1.)

Now suppose first that 1− s−α < 0. Then the integral is bounded, specifically

∫ 1+(1−s)y/x

1

w
−α
1−s dw =

1− s

1− s− α

(
(1 + (1− s)y/x)

1−s−α
1−s − 1

)

=
1− s

s + α− 1
(1 + o(1)).

Thus the contribution to the expected degree of vi from vertices vi+t with t ≤ T
equals

d(1− α)
( n

R

)s+α−1 x

s + α− 1
(1 + o(1)).

For the case where t > T , we use the fact that

(
1 +

t

xn

)s−1

= 1 + O

(
t

n

)
,

since t/n is bounded from above by 1. From (5) and the fact that (R/n)1−s ≤
t/(yn) = o(t/n) we conclude that

r(i, tj, R) = Ω

(
n

(
t

n

) 1
1−s

)
.
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Then

d

n−i∑
t=T+1

r(i, tj, R)−α

gα(n)
= O(1)

n−i∑
t=T+1

(
n

(
t

n

) 1
1−s

)−α

n1−α

= O(n−(1−α−s)/(1−s))
n−i∑

t=T+1

t−α/(1−s)

= O(n−(1−α−s)/(1−s))

∫ ∞

T

t−α/(1−s)

= O

((
T

n

)(1−s−α)/(1−s)
)

= O




(
y

(
R

n

)1−s
)(1−s−α)/(1−s)




= o((R/n)1−s−α), (7)

since y(1−s−α)/(1−s) = o(1). Thus this part of the sum does not substantially
contribute to the expected degree of vi.

If 1− s− α = 0, then
∫ 1+(1−s)y/x

1

w
−α
1−s dw = log(1 + (1− s)y/x) = O(log log n).

Also, the terms before the integral in (6) are now O(1), so the contribution to the
expected degree of vi from vertices vi+t with t ≤ T is O(log log n). For the second
part of the sum, note that

n−i∑
t=T+1

t−α/(1−s) =
n−i∑

t=T+1

t−1 = O(log n).

Thus, we have that the expected degree of each vertex is O(log n).
If 1− s− α > 0, then
∫ 1+(1−s)y/x

1

w
−α
1−s dw = O(y(1−s−α)/(1−s)) = O(log(1−s−α)/(1−s) n) = O(log n),

(R/n)1−s−α = O(log−3 n), and the contribution from vertices vi+t with t ≤ T is
o(1). In this case,

n−i∑
t=T+1

t−α/(1−s) = O(n(1−s−α)/(1−s)),

so from (7), we see that d
∑n−i

t=T+1
r(i,tj ,R)−α

gα(n)
= O(1).

Finally, since deg(vi, L) is expressed as a sum of independent random variables,
we can use the Chernoff bound to show the concentration result. ¤
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Theorem 5.9. Let 0 < α < 1, 1− α < s < 1. Let d ∈ N and

log4 n ≤ k ≤
(

n

log3 n

) s+α−1
s

.

Then wep

Z≥k = (1 + o(1))
s + α− 1

2s + α− 1

(
k(s + α− 1)

d(1− α)

)− s
s+α−1

n.

The proof is similar to the proof of Theorem 5.7 so technical details are omitted.

Proof. Consider vertex vi (i = xn) with age-rank a(vi, L) = i. From Theorem 5.8,
we obtain the following threshold R0(k, x) on the initial rank for this vertex having
degree k (for values of k as stated in the theorem):

R0(k, x) = (1 + o(1))n

(
d(1− α)x

k(s + α− 1)

) 1
s+α−1

.

Therefore, the expected number of vertices of degree at least k is

EZ≥k =
n∑

i=1

(
R0(k, i/n)

n

)s

= (1 + o(1))n

(
d(1− α)x

k(s + α− 1)

) s
s+α−1

∫ 1

0

x
s

s+α−1 dx

= (1 + o(1))n

(
d(1− α)x

k(s + α− 1)

) s
s+α−1 s + α− 1

2s + α− 1
.

The assertion follows from the Chernoff bound since EZ≥k = Ω(log3 n). ¤

6. Ranking by degree

The final ranking scheme is based on the same principle as preferential at-
tachment: vertices with higher degree are ranked higher, and thus have a higher
probability of receiving a link. Precisely, the rank function r(·, t) : Vt → [t]
is determined by the degree sequence at time t: if deg(vi, t) > deg(vj, t), then
r(vi, t) < r(vj, t); otherwise (that is, if deg(vi, t) = deg(vj, t)) r(vi, t) < r(vj, t) if
i < j. Our results in this case are more tenuous than in the previous cases; we
can only conjecture that the degree distribution variables converge in this case as
well. Because of the importance of the preferential attachment principle in the
modelling of real-world networks, we decided to include our results even in they
are somewhat inconclusive.

For all t ≥ 1 and k ≥ 0, let Zk(t) denote the number of vertices of degree k
in Gt, and let Z≥k(t) =

∑
j≥k Zj(t) (in particular, Z≥0(t) = n). At time t, the

vertices of degree k have ranks starting at Z≥k+1(t) + 1, and ending at Z≥k(t).
In this section, we assume that d = 1. When a vertex vi is deleted, and a new
vertex vt+1 and an edge vjvt+1 is added at time t + 1, the change in any Zk has
contributions from six possible sources: if vi is a vertex of degree k or a neighbour
of a vertex of degree k, Zk decreases, but if vi is a neighbour of a vertex of degree
k + 1, Zk increases. The expected net increase in Zk due to the deletion of vi is
thus ((k + 1)Zk+1(t)− (1 + k)Zk(t))/n.
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The probability that a vertex of degree k receives a link in step t + 1 equals

Z≥k(t)∑

j=Z≥k+1(t)+1

j−α

gα(n)
=

gα(Z≥k(t))− gα(Z≥k+1(t))

gα(n)
.

Thus, the following equations express the expected change in each time step:

E(Z0(t + 1)− Z0(t) | Gt) = −gα(n)− gα(Z≥1(t))

gα(n)
+

Z1(t)

n
− Z0(t)

n
,

E(Z1(t + 1)− Z1(t) | Gt) = 1 +
gα(n)− gα(Z≥1(t))

gα(n)
− gα(Z≥1(t))− gα(Z≥2(t))

gα(n)

+
2Z2(t)

n
− 2Z1(t)

n
,

and similarly, for all k ≥ 2,

E(Zk(t + 1)− Zk(t) | Gt) =
gα(Z≥k−1(t))− gα(Z≥k(n))

gα(n)

−gα(Z≥k(t))− gα(Z≥k+1(t))

gα(n)

+
(k + 1)Zk+1(t)

n
− (k + 1)Zk(t)

n
.

Since the process is an ergodic Markov chain, each random variable Zk(t) will
tend to a limiting random variable Zk as t grows large, where Zk represents the
value of the number of vertices of degree k in the limiting protean graph. Consider-
ing the other results in this paper, and the results in [6] for similar graph processes,
it seems reasonable to assume that, for a fixed value of k, Zk is concentrated and
Zk/n converges as n grows large, in other words, that wep Zk = ckn+o(n). Under
this assumption, E(Zk(t + 1) − Zk(t) | Gt) → 0, and we can use the equations
above to find a recurrence relation for the ck.

To express this recurrence, we define Ck =
∑∞

i=k ci = 1−∑k−1
i=0 ci, and observe

that ck = Ck − Ck+1 and C0 = 1. Then, using that gα(cn) = 1
1−α

(cn)1−α + O(1),
we obtain the following recurrence relations between the Ck:

0 = −(1− C1−α
1 ) + (C1 − C2)− (1− C1)

0 = 1 + (1− C1−α
1 )− (C1−α

1 − C1−α
2 ) + 2(C2 − C3)− 2(C1 − C2)

0 = (C1−α
k−1 − C1−α

k )− (C1−α
k − C1−α

k+1 )

+(k + 1)(Ck+1 − Ck+2 − (k + 1)(Ck − Ck+1) for k ≥ 2 .
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The last recurrence is telescoping, so for k ≥ 2,

(C1−α
k − C1−α

k+1 )− (k + 1)(Ck+1 − Ck+2)

= (C1−α
k−1 − C1−α

k )− k(Ck − Ck+1)− (Ck − Ck+1)

...

= (C1−α
1 − C1−α

2 )− 2(C2 − C3)− (C2 − Ck+1)

= 1 + (1− C1−α
1 )− 2(C1 − C2)− (C2 − Ck+1)

= Ck+1.

For k = 1, the same relation holds, and thus the Ck satisfy the following recurrence
relation:

C2 = 2C1 − (1− C1−α
1 )− 1

Ck+1 = 1/k(C1−α
k − C1−α

k−1 + (k + 1)Ck) for k ≥ 2.

Note that this recurrence leaves the value of C1 undetermined. We have not
been able to solve the recurrence; however, the recurrence relation is consistent,
in order, with the expression Ck = ck−1/α(1 + o(1)). We conjecture that, in fact,
the Zk are concentrated and follow a power law with exponent 1/α.
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