
Clean the graph before you draw it! ∗

Serge Gaspers† Margaret-Ellen Messinger‡ Richard J. Nowakowski‡

Pawe l Pra lat‡

†Department of Informatics, University of Bergen,

N-5020 Bergen, Norway
‡Department of Mathematics and Statistics, Dalhousie University,

Halifax, NS, B3H 3J5, Canada

Abstract

We prove a relationship between the Cleaning problem and the Balanced Vertex–

Ordering problem, namely that the minimum total imbalance of a graph equals twice
the brush number of a graph. This equality has consequences for both problems. On one
hand, it allows us to prove the NP-completeness of the Cleaning problem, which was
conjectured by Messinger et al. [7]. On the other hand, it also enables us to design a faster
algorithm for the Balanced Vertex–Ordering problem [6].

1 Introduction

3 a

b

c

d 1

1

1

2

1 2 2

1 1

Figure 1: A graph G with an initial configuration of 3 brushes.

In Figure 1 we illustrate the Cleaning problem. All edges and vertices are initially dirty
and we place three brushes at vertex a. As vertex a contains at least as many brushes as
dirty incident edges, it may be cleaned. At step 1, vertex a is cleaned and a brush is sent
down each dirty edge. At step 2, vertex c cannot be cleaned as it contains one brush, but has
two dirty incident edges. However, either of b and d can be cleaned: In Figure 1, we clean d
and one brush is send down the dirty edge, cleaning it. At step 3, either of c and b could be
cleaned. We clean c, but since only one brush can traverse an edge, one brush remains at c.
Finally, b is cleaned although no brushes move. All edges and vertices of the graph have been

∗Partially supported by grants from the NFR, NSERC, and MITACS serge@ii.uib.no,

messnger@mathstat.dal.ca, rjn@mathstat.dal.ca, pralat@mathstat.dal.ca

1

cleaned, using a total of three brushes. One objective is to determine the minimum number
of brushes needed to clean a graph (over all possible initial distributions of brushes). The
problem has been introduced in [7] where some initial results can be found as well. Cleaning
random graphs was considered in [1, 8, 10] whereas the parallel version of the model has been
studied in [3].

Graph drawing is the art of drawing graphs in such a way that the relationship between the
objects (in the graph) are easily understood by looking at the picture. For the starting point
of many graph drawing algorithms, a ‘balanced’ ordering of the vertices is used [4, 5, 9, 11, 12].
Although there are multiple ways to define a balanced ordering, for our purposes it implies
that the neighbours of each vertex are distributed as evenly as possible. In the Balanced

Vertex–Ordering problem, one wants to find a linear layout of the graph so that for each
vertex, the number of incident edges drawn to the right is close to the number of incident
edges drawn to the left.

A (good) heuristic for the Cleaning problem is to find a cleaning sequence where, for
each vertex, as many of the incoming brushes as possible can be used when that vertex is
cleaned. Obviously, the cleaning sequence can be re-interpreted as a linear layout with a
constraint very similar to the Balanced Vertex–Ordering problem. In this note, we
make this explicit in Theorem 4.1, but first we need to formalize the problems and introduce
some results. This allows us to show that Cleaning is NP-complete (Theorem 4.3) and give
an improved algorithm for solving Balanced Vertex–Ordering (Corollary 4.7).

2 Definitions

At each step t, ωt(v) denotes the number of brushes at vertex v and Dt denotes the set of
dirty vertices. An edge uv ∈ E is dirty if and only if both u and v are dirty: {u, v} ⊆ Dt.
Finally, let Dt(v) denote the number of dirty edges incident to v at step t:

Dt(v) =

{

|N(v) ∩ Dt| if v ∈ Dt

0 otherwise.

The initial configuration of brushes, denoted ω0, is simply the starting collective distri-
bution of brushes on a graph where ω0(v) denotes the number of brushes initially at vertex
v.

Definition 2.1. [7] The cleaning process P(G,ω0) = {(ωt,Dt)}
T
t=0 of an undirected graph

G = (V,E) with an initial configuration of brushes ω0 is as follows:

(0) Initially, all vertices are dirty: D0 = V ; set t := 0

(1) Let αt+1 be any vertex in Dt such that ωt(αt+1) ≥ Dt(αt+1). If no such vertex exists,
then stop the process (T = t), return the cleaning sequence α = (α1, α2, . . . , αT), the
final set of dirty vertices DT , and the final configuration of brushes ωT

(2) Clean αt+1 and all dirty incident edges by traversing a brush from αt+1 to each dirty
neighbour. Consequently, Dt+1 = Dt \ {αt+1}, ωt+1(αt+1) = ωt(αt+1) − Dt(αt+1), and
for every v ∈ N(αt+1) ∩ Dt, ωt+1(v) = ωt(v) + 1, otherwise ωt+1(v) = ωt(v).

(3) Set t := t + 1 and go back to (1)

2

It was shown in [7] that given an initial configuration ω0, the cleaning process returns a
unique final set of dirty vertices. Consequently, if there exists a cleaning sequence that will
clean G, we know that every (legal) cleaning sequence will clean G.

Definition 2.2. A graph G = (V,E) can be cleaned by the initial configuration of brushes
ω0 if the cleaning process P(G,ω0) returns an empty final set of dirty vertices (DT = ∅).

Let the brush number of G, denoted b(G), be the minimum number of brushes needed to
clean G, that is,

b(G) = min
ω0:V →N∪{0}

{

∑

v∈V

ω0(v) : G can be cleaned by ω0

}

.

Similarly, bα(G) is defined as the minimum number of brushes needed to clean G using
the cleaning sequence α.

The Cleaning problem is defined as follows.

Cleaning

Instance: A graph G = (V,E) and integer k ≥ 0.
Question: Is b(G) ≤ k?

Before we introduce a problem which is related to the Cleaning one, we need a few more
definitions.

Definition 2.3. For a graph G = (V,E) with |V | = n, given a cleaning sequence α =
(α1, α2, . . . , αn), let

N−
α (αt+1) = {αi ∈ N(αt+1) : i < t + 1} and N+

α (αt+1) = {αi ∈ N(αt+1) : i > t + 1}.

A vertex–ordering π of a graph G = (V,E) on n vertices is a linear layout or more precisely,
a bijection π : V → {1, 2, . . . , n}. Given a graph G = (V,E) and a vertex–ordering π of G,
the imbalance of a vertex v ∈ V with respect to π is

φπ(v) =
∣

∣|N+
π (v)| − |N−

π (vt)|
∣

∣

and the total imbalance Imbπ(G) of an ordering is the sum of the imbalance of each vertex:
Imbπ(G) =

∑

v∈V φπ(v). Let Imb(G) denote the minimum total imbalance taken over all
possible vertex–orderings. A vertex v is said to be imbalanced in a vertex–ordering π if
φπ(v) > 0.

Balanced Vertex–Ordering

Instance: A graph G = (V,E) and integer k ≥ 0.
Question: Does G have a vertex–ordering with total imbalance at most k?

3

Definition 2.4. Let #φπ(G) denote the number of imbalanced vertices in the vertex–ordering
π for G. Additionally, if Imb(G) ≤ k, then let #φ(G; k) denote the minimum number of
imbalanced vertices in any vertex ordering π of total imbalance at most k; otherwise (that is,
if Imb(G) > k) let #φ(G; k) = k.

We define the corresponding notions for the number of vertices having at least one brush
in an initial configuration of brushes.

Definition 2.5. Let #bπ(G) denote the minimum number of vertices that have at least one
brush in an initial configuration of brushes for G such that G can be cleaned using the cleaning
sequence π. Additionally, if b(G) ≤ k, then let #b(G; k) denote the minimum number of
vertices that have at least one brush in an initial configuration of brushes for G such that
G can be cleaned using any cleaning sequence π such that bπ(G) ≤ k; otherwise (that is, if
b(G) > k) let #b(G; k) = k − d2 + 1 where (d1, d2, . . . , d|V |) denotes the sequence of vertex
degrees of G = (V,E) where di ≤ di+1 for all 1 ≤ i ≤ |V | − 1.

Let us note that if b(G) ≤ k, then #b(G; k) ≤ k − d1 + 1 since in order to start the
process, the first vertex we clean must have at least d1 brushes in the initial configuration.
Moreover, since at least one vertex in the initial or final configuration must have at least
d2 brushes, and both configurations can be used to clean the graph by the Reversibility
Theorem (Theorem 3.1), this can be further improved to k − d2 + 1. This implies that
#b(G; k) ≤ k − d2 + 1 regardless whether G can be cleaned using at most k brushes.

3 Previous Results

In our proofs we need the Reversibility Theorem of Messinger et al. [7].

Theorem 3.1 ([7]). Given an initial configuration ω0, suppose G can be cleaned yielding final
configuration ωn, n = |V (G)|. Then, given initial configuration τ0 = ωn, G can be cleaned
yielding the final configuration τn = ω0.

The complexity of the Balanced Vertex–Ordering problem has been studied by Biedl
et al. [2] and by Kára et al. [6]. It is clear that Balanced Vertex–Ordering is in NP .
Given a graph and an ordering of its vertices, it is straightforward to check whether or not
that ordering has total imbalance at most k. Using a reduction from NAE-3Sat, it was
shown in [2] that Balanced Vertex–Ordering is NP-complete. In particular, Biedl et
al. proved that given a graph G on do(G) vertices of odd degree, the problem of deciding
whether Imb(G) ≤ do(G) is NP-complete and remains NP-complete for bipartite graphs
with maximum degree 6. A linear time algorithm, MEDIAN PLACEMENT, due to [2] provides
a cleaning sequence that uses at most |E(G)|/2 + (1/2)⌊|V (G)|/2⌋ brushes. It computes a
vertex–ordering of minimum total imbalance for any graph of maximum degree at most 3.

In an effort to close the gap in the complexity results with respect to the maximum degree
of the graph, it was shown in [6] that Balanced Vertex–Ordering is NP-complete for
planar graphs with maximum degree 4 and for 5-regular graphs. In particular, they show that
it is NP-complete to decide whether a graph G has minimum total imbalance at most

do(G) + d1 − (d1 mod 2) + d2 − (d2 mod 2) (1)

4

where (d1, d2, . . . , d|V |) denotes the sequence of vertex degrees of G = (V,E) where di ≤ di+1

for all 1 ≤ i ≤ |V | − 1, and do(G) denotes the number of odd degree vertices. This bound
holds because the following two facts are true for any ordering:

• every vertex of odd degree has imbalance at least one, and

• the two vertices at the beginning and at the end of any ordering have imbalance equal
to their degrees.

It has also been shown by Kára et al. [6] that Balanced Vertex–Ordering can be solved
in time O(n#φ(G;k)(n + m)).

4 New Results

Given a cleaning sequence α = (α1, α2, . . . , αn), it is easy to compute bα(G). To do this, we
can simply run the cleaning process on G using the cleaning sequence α and at the tth step,
we add the minimum number of brushes required to clean vertex αt and continue the process.
After αt has been cleaned, it is clear that vertex αt+1 has N+

α (αt+1) = Dt(αt+1) dirty incident
edges and N−

α (αt+1) = deg(αt+1)−Dt(αt+1) clean incident edges. So αt+1 must have received
exactly deg(αt+1) − Dt(αt+1) brushes from neighbouring vertices. If

(deg(αt+1) − Dt(αt+1)) − Dt(αt+1) ≥ 0,

then αt+1 requires no additional brushes and we may set ω0(αt+1) = 0. Otherwise, αt+1

requires an additional

Dt(αt+1) − (deg(αt+1) − Dt(αt+1)) = 2Dt(αt+1) − deg(αt+1)

brushes in order to be cleaned at step t so we set ω0(αt+1) = 2Dt(αt+1)−deg(αt+1). Therefore,
we can adjust ω0 along the way:

ω0(αt+1) = max{|N+
α (αt+1)| − |N−

α (αt+1)|, 0}

= max{2Dt(αt+1) − deg(αt+1), 0}, (2)

for t = 0, 1, . . . , |V | − 1.
Similarly, as ωn(αt+1) represents the number of brushes at αt+1 in the final configuration

(after every vertex has been cleaned), we have

ωn(αt+1) = ωt+1(αt+1) = max{|N−
α (αt+1)| − |N+

α (αt+1)|, 0}

= max{deg(αt+1) − 2Dt(αt+1), 0}, (3)

for t = 0, 1, . . . , |V | − 1.

Theorem 4.1. For any graph G = (V,E) and any vertex–ordering π of G, Imbπ(G) = 2bπ(G).

5

Proof. By the definition of Imbπ, φπ, bπ and equations (2) and (3),

Imbπ(G) =
∑

v∈V

φπ(v)

=
∑

v∈V

∣

∣|N+
π (v)| − |N−

π (v)|
∣

∣

=
∑

v∈V

max{|N+
π (v)| − |N−

π (v)|, 0} +
∑

v∈V

max{|N−
π (v)| − |N+

π (v)|, 0}

=
∑

v∈V

ω0(v) +
∑

v∈V

ωn(v)

= 2bπ(G).

Corollary 4.2 follows immediately from Theorem 4.1 since the brush number can be ex-
pressed as a minimum of bα(G) over all vertex permutations α.

Corollary 4.2. For any graph G, Imb(G) = 2b(G).

The following theorem follows from the complexity results in [2, 6] and Corollary 4.2. This
proves a conjecture of Messinger et al. [7].

Theorem 4.3. Cleaning is NP-complete and remains NP-complete for bipartite graphs of
maximum degree 6, planar graphs of maximum degree 4, and 5-regular graphs.

Moreover, it is NP-complete to determine whether b(G) ≤ do(G)/2 for a graph G, even if
G is restricted to the class of bipartite graphs with maximum degree 6 and it is NP-complete
to determine whether b(G) ≤ (do(G) + d1 − (d1 mod 2) + d2 − (d2 mod 2))/2 for a graph G,
even if G is restricted to the class of planar graphs with maximum degree 4 or the class of
5-regular graphs.

Before we describe an algorithm for Cleaning, recall that a configuration of brushes ωt

maps each vertex v ∈ V to the number of brushes ωt(v) situated at that vertex at time step
t. Given an initial configuration of brushes ω0 for G, it can be checked in linear time if G
can be cleaned with this initial configuration: if the cleaning process in Definition 2.1 leaves
an empty set of dirty vertices, G can be cleaned with the initial configuration ω0. Since the
abritrary selection of a vertex v for which ωt(v) ≥ Dt(v) in step (1) does not influence the
final set of dirty vertices [7], the cleaning process can easily be implemented in time O(n+m)
with appropriate data structures: each edge is traversed by at most one brush, and finding a
vertex with at least as many brushes as incident dirty edges can be done in time O(1).

As there are at most O(nk) possible initial configurations of at most k brushes, Cleaning

can be solved in time O(nk(n + m)). We prove a slightly stronger result.

Theorem 4.4. Cleaning can be solved in time O(n#b(G;k)(n + m)).

Proof. In the algorithm depicted in Figure 2, we assume that all the parameters passed to the
function Next are passed by value, that is the value of these parameters is unchanged when
the function returns. The algorithm checks whether there is a cleaning sequence such that the

6

Algorithm

Run Step (0) of the cleaning process
Set k′ := 0, ℓ′ := 0 and ω0(v) := 0 for each v ∈ V
foreach v ∈ D0 do // all possibilities for the first vertex

if Next(v, ωt, k
′, ℓ′, t) then

return true

return false // no cleaning sequence using ≤ k brushes

Next(v, ωt, k
′, ℓ′, t)

k′ := k′ + Dt(v) − wt(v)
if k′ > k then // cleaning sequence requires more than k brushes

return false
ℓ′ := ℓ′ + 1
if ℓ′ > ℓ then // need more than ℓ vertices with brushes initially

return false
ωt(v) := Dt(v) // add Dt(v) − wt(v) brushes to v
Run Steps (1)–(3) of the cleaning process, continuing at step t
if Dt = ∅ then // the graph has been cleaned

return true

foreach u ∈ Dt do // all possibilities for the next vertex

if Next(u, ωt, k
′, ℓ′, t) then

return true

return false

Figure 2: Backtracking algorithm for the Cleaning problem

corresponding initial configuration of brushes uses at most k brushes and at most ℓ vertices
initially have brushes. It applies the cleaning process of Definition 2.1 as long as vertices can
be cleaned. If no vertex can be cleaned any more, it goes through all possibilities of choosing
a dirty vertex v as the next vertex to be cleaned and adds enough (that is, Dt(v) − wt(v))
brushes to v so that it can be cleaned and the cleaning process continues if no more than k
brushes have been used so far and if no more than ℓ vertices received brushes.

As the cleaning process has linear time complexity and for each of the ≤ ℓ vertices to
which the algorithm adds brushes so that the cleaning process can continue, the algorithm
goes through n − Dt ≤ n vertices at time step t, the time complexity of the algorithm is
O(nℓ(n + m)).

To solve the Cleaning problem, run the algorithm with increasing values for ℓ, that
is for ℓ ∈ {0, . . . , k − d2 + 1}. As we already mentioned, if b(G) ≤ k, then #b(G; k) ≤
k − d2 + 1. Therefore, the answer to the question we consider is positive and we immediately
stop the process if the algorithm returns true for some value of ℓ; otherwise (that is, when
the algorithms returns false only), the answer is negative. In total the time complexity is
O(n#b(G;k)(n + m)).

The running time of the Cleaning problem is O(n#b(G;k)(n+m)) = O(nk−d2+1(n+m)) =
O(nk−1(n + 1)) unless d2 = 1. For d2 = 1, we need an argument that is a little bit more
sophisticated to show the following.

7

Corollary 4.5. Cleaning can be solved in time O(nk−1(n + m)).

Proof. Assume that G is connected, otherwise run the algorithm for each connected compo-
nent. If d2 ≥ 2, then #b(G; k) ≤ k − 1 and the algorithm of Theorem 4.4 has running time
O(nk−1(n + m)). Otherwise, d2 = 1 (we assume that G has at least 2 vertices). Let v be a
vertex of degree 1 in G. In order to be cleaned, v has one brush in either the initial or final
configuration of brushes corresponding to any cleaning sequence π. Suppose π is a cleaning
sequence such that ω0(v) = 0. Then, by Theorem 3.1, the reverse cleaning sequence πR of
π uses the same number of brushes. So, without loss of generality, set ω0(v) := 1; that is,
v has one brush in the initial configuration of brushes. It remains to call the algorithm of
Theorem 4.4 with ω0(v) initialized to 1 and k′ initialized to 1. Its running time is clearly
O(nk−1(n + m)) with these initializations.

We note in the next lemma that the imbalanced vertices of a given vertex ordering cor-
respond to the vertices that have brushes either in the initial or final configuration of the
corresponding cleaning sequence.

Lemma 4.6. Let π be a vertex–ordering of G = (V,E). Then

#bπ(G) ≤ ⌊#φπ(G)/2⌋ , or #bπR(G) ≤ ⌊#φπ(G)/2⌋ ,

where πR is π reversed.

Proof. Let ωπ
0 be an initial configuration of brushes that yields bπ(G). Since

#φπ(G) = |{v ∈ V : φπ(v) > 0}|

= |{v ∈ V : ||N+
π (v)| − |N−

π (v)|| > 0}|

= |{v ∈ V : |N+
π (v)| − |N−

π (v)| > 0}| + |{v ∈ V : |N−
π (v)| − |N+

π (v)| > 0}|

= |{v ∈ V : ωπ
0 (v) > 0}| + |{v ∈ V : ωπ

n(v) > 0}|

= |{v ∈ V : ωπ
0 (v) > 0}| + |{v ∈ V : ωπR

0 (v) > 0}|

= #bπ(G) + #bπR(G),

either #bπ(G) or #bπR(G) is at most ⌊#φπ(G)/2⌋.

By Theorem 4.1 and Lemma 4.6, to each vertex–ordering with imbalance at most k and
where at most ℓ vertices are imbalanced, there corresponds a cleaning sequence using at most
⌊k/2⌋ brushes and where at most ⌊ℓ/2⌋ vertices initially have brushes.

Thus, we improve on the O(n#φ(G;k)(n+m)) algorithm for Balanced Vertex–Ordering

in [6].

Corollary 4.7. Balanced Vertex–Ordering can be solved in time O(n⌊#φ(G;k)/2⌋(n +
m)).

Proof. To determine if a graph has a vertex–ordering of total imbalance at most k, run the
algorithm of Theorem 4.4 to determine if it has brush number at most k′ = ⌊k/2⌋. This
algorithm has running time O(n#b(G;k′)(n + m)). By Lemma 4.6, #b(G; k′) ≤ ⌊#φ(G; k)/2⌋.

8

References

[1] N. Alon, P. Pra lat, and N. Wormald, Cleaning d-regular graphs with brushes, SIAM
Journal on Discrete Mathematics, accepted, 20pp.

[2] T. Biedl, T. Chan, Y. Ganjali, M. Hajiaghayo, and D. Wood, Balanced vertex–orderings
of graphs, Discrete Applied Mathematics 148(1) (2005) 27–48.

[3] S. Gaspers, M.-E. Messinger, R. Nowakowski, and P. Pra lat, Parallel cleaning of a network
with brushes, Discrete Applied Mathematics, submitted, 18pp.

[4] G. Kant, Drawing planar graphs using the canonical ordering, Algorithmica 16 (1996)
4–32.

[5] G. Kant and X. He, Regular edge labeling of 4-connected plane graphs and its applications
in graph drawing problems, Theoretical Computer Science 172(1–2) (1997) 175–193.

[6] J. Kára, K. Kratochv́ıl, and D. Wood, On the complexity of the balanced vertex ordering
problem, Discrete Mathematics and Theoretical Computer Science 9(1) (2007) 193–202.

[7] M.-E. Messinger, R. J. Nowakowski, and P. Pra lat, Cleaning a network with brushes,
Theoretical Computer Science 399 (2008) 191–205.

[8] M.-E. Messinger, R. J. Nowakowski, P. Pra lat, and N. Wormald, Cleaning random d-
regular graphs with brushes using a degree-greedy algorithm, Proceedings of the 4th
Workshop on Combinatorial and Algorithmic Aspects of Networking (CAAN 2007), Lec-
ture Notes in Computer Science 4852, Springer, 2007, 13–26.

[9] A. Papakostas and I. G. Tollis, Algorithms for area-efficient orthogonal drawings, Com-
putational Geometry: Theory and Applications 9 (1998) 83–110.

[10] P. Pra lat, Cleaning random graphs with brushes, Australasian Journal of Combinatorics,
accepted, 16pp.

[11] D. R. Wood, Minimizing the number of bends and volume in 3-dimensional orthogonal
graph drawings with a diagonal vertex layout, Algorithmica 39 (2004) 235–253.

[12] D. R. Wood, Optimal three-dimensional orthogonal graph drawing in the general position
model, Theoretical Computer Science 299 (2003) 151–178.

9

