
Discrete Mathematics and Theoretical Computer Science DMTCS vol. (subm.), by the authors, 1–1

On-line Ramsey Numbers for Paths and Stars

J.A. Grytczuk,1 H.A. Kierstead2, and P. Prałat3

1Algorithmics Research Group, Faculty of Mathematics and Computer Science, Jagiellonian University, 30-387
Kraków, Poland,
2Department of Mathematics and Statistics, Arizona State University, Tempe, Arizona 85287, U.S.A.
3Department of Mathematics and Statistics, Dalhousie University, Halifax NS, Canada B3H 3J5

received February 8, 2007, revised September 8, 2008, accepted tomorrow.

We study on-line version of size-Ramsey numbers of graphs defined via a game played between Builder and Painter:
in one round Builder joins two vertices by an edge and Painter paints it red or blue. The goal of Builder is to force
Painter to create a monochromatic copy of a fixed graph H in as few rounds as possible. The minimum number of
rounds (assuming both players play perfectly) is the on-line Ramsey number r̃(H) of the graph H . We determine exact
values of r̃(H) for a few short paths and obtain a general upper bound r̃(Pn) ≤ 4n − 7. We also study asymmetric
version of this parameter when one of the target graphs is a star Sn with n edges. We prove that r̃(Sn, H) ≤ n ·e(H)
when H is any tree, cycle or clique.

Keywords: size Ramsey number, online Ramsey games

1 Introduction
In this paper we are concerned with on-line variant of size-Ramsey numbers of graphs. For given graphs
G and H we write G → H if there is a monochromatic copy of H in any red-blue coloring of the edges of
G. The size-Ramsey number of a graph H , denoted by r̂(H), is the smallest possible number of edges in
a graph G satisfying G → H . This notion was first studied by Erdős, Faudree, Rousseau, and Schelp (8),
as a variation on the usual Ramsey number r(H) (which is the least n such that Kn → H , where Kn is
a clique on n vertices). Clearly, r̂(H) is at most

(
r(H)

2

)
for every graph H . Somewhat surprisingly this

bound is attained if H = Kn (8). However, r̂(Pn) ≤ cn for some absolute constant c, where Pn is a path
on n vertices. This was proved by Beck (2) in response to a one-hundred-dollar question of Erdős. The
proof uses random graphs and is nonconstructive (cf. (5)). Explicit construction based on expanders was
provided by Alon and Chung (1). Since then many deep results for other natural classes of graphs were
obtained (cf. (3; 7; 15; 22)).

On-line version of size-Ramsey numbers was introduced independently by Beck (4) and Kurek and
Ruciński (14). It is best explained by the following game between Builder and Painter, played on a large
set of vertices. In one round Builder joins two nonadjacent vertices by an edge and Painter colors this
edge red or blue. The goal of Builder is to create a monochromatic copy of a fixed graph H in as few
rounds as possible. Painter will try to resist doing it for as long as possible. The on-line Ramsey number
r̃(H) of a graph H is the minimum number of rounds in which Builder achieves his goal, assuming both
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players play perfectly. Clearly, r̃(H) ≤ r̂(H) and it is natural to ask how much these two parameters may
differ. We study this question in several typical situations. For instance we show that r̃(Pn) ≤ 4n − 7,
while currently best bound in the off-line case is r̂(Pn) ≤ 594n (cf. (5)). In general the problem may be
hard as it is not even known if the ratio r̃(Kn)/r̂(Kn) tends to zero as n → ∞ (cf. (14)). Other open
problems and related versions of the game can be found in (10; 12; 13).

One can also consider an asymmetric version of the on-line Ramsey number. We write F → (G,H)
if in any red-blue coloring of the edges of F there is a red copy of G or a blue copy of H . Similarly,
r̂(G,H) stands for the minimum number of edges in a graph F such that F → (G,H), and r̃(G,H) is
defined accordingly.

Similar to the classical Ramsey numbers (see a dynamic survey of Radziszowski (21) which includes all
known nontrivial values and bounds for Ramsey numbers), it is hard to compute the exact value of r̃(G)
unless G are trivial. In this relatively new area of small on-line Ramsey numbers, very little is known.

2 Paths
As a warm-up we start with exact determination of the on-line Ramsey numbers for a few short paths. Let
e(H) denote the number of edges of a graph H . Note first that in general we have r̃(H) ≥ 2e(H) − 1,
since Painter may color safely the first e(H) − 1 edges red, and the next e(H) − 1 edges blue. Since
e(Pn) = n− 1 we have r̃(Pn) ≥ 2n− 3. This lower bound is attained for n = 2, 3, 4, 5.

Proposition 2.1 r̃(Pn) = 2n− 3, for n = 2, 3, 4, 5.

The cases n = 2, 3 are trivial. The case n = 4 is also very easy; after presenting three edges of a path P4,
there are only two possible patterns (up to symmetry): bbr and brb. Then Builder creates a monochromatic
path P4 in the next two moves, as depicted in Figure 1. (The final edge is drawn in two colors.) To prove
that r̃(P5) = 7 we have to analyze more subcases. In the first four moves Builder constructs a path P5 so
that essentially one of the three possible color patterns appears, as displayed in Figure 2. Then he obtains
a monochromatic P5 in next three moves, as shown in Figure 3. (A circled number means that Painter had
a choice in that move, which led to a branching into subcases.)
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Fig. 1: Forcing a path P4

The pattern breaks already for n = 6.

Proposition 2.2 r̃(P6) = 10.
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Fig. 2: Forcing a monochromatic P5 (first four moves)
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Fig. 3: Forcing a path P5 (last three moves)
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Proof: For the lower bound consider a natural strategy for Painter: color an edge blue if it does not create
a blue copy of P6, otherwise use red. Suppose first that the graph constructed by Builder in the first four
moves is not a path P5. Then clearly Painter will be able to use the color blue in the very next move and
we are done. So, suppose that after first four rounds there is a blue path P5. The only way for Builder to
finish the game in the total of nine rounds is to create in next four rounds a red P5. This is possible only
by using both ends of the blue path P5, making the last winning move impossible.

The upper bound is achieved by case-by-case analysis shown in Figure 4 (first five moves) and Figure 5
(last five moves). 2
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Fig. 4: Forcing a monochromatic P6 (first five moves)

Further computer assisted results for small paths can be found in (18; 19). (It has been shown that
r̃(P7) = 12, r̃(P8) = 15, and r̃(P9) = 17. The values for an asymmetric version of the on-line Ramsey
number for paths of lengths at most 8 are also determined.) In general we have the following upper bound.

Theorem 2.3 Let k ≥ 1. In 2k − 1 rounds Builder can force Painter to create two vertex disjoint
monochromatic paths (the red one and the blue one) the sum of whose lengths is equal to k.

In particular, r̃(Pn) ≤ 4n− 7 for all n ≥ 2.
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(c) Case 2b – bbbrb
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(d) Case 3a – bbbrr
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Fig. 5: Forcing a path P6 (last five moves)
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Proof: The proof goes by induction on k. The basis step k = 1 is trivial. For the inductive step assume
that the statement holds for some k ≥ 1, that is after 2k−1 rounds there is a red path R and a blue path B
such that V (R) ∩ V (B) = ∅ and |E(R) ∪ E(B)| = k. Let vR and vB denote any end vertices of R and
B, respectively (take any isolated vertex as vR or vB if the corresponding path has no edge). If there is no
edge vRvB , then Builder draws the edge vRvB and Painter does her job (note that it is only to Builder’s
advantage if it already exists).

Suppose Painter colors this edge red. Then Builder draws an edge from vertex vB to a new vertex v.
If Painter uses red color, then there are two vertex disjoint monochromatic paths R′ = R + vB + v and
B′ = B − vB , with k + 1 edges in total. If Painter colors vBv blue, the paths R′ = R and B′ = B + v
satisfy the assertion. If initially Painter colors the edge vBvR blue, then Builder draws an edge from vR

to a new vertex v instead, and the situation is symmetric.
In order to finish the proof notice that after 4n−7 = 2(2n−3)−1 rounds there must be a monochromatic

path with at least n− 1 edges, that is, a monochromatic Pn. 2

3 Trees
Let f(n) be the maximum value of r̃(T ) taken over all trees with n edges. In (9) Erdős and Graham
proved that r(T ) ≤ 4e(T ) + 1 for every tree T . From this it follows that f(n) = O(n2). We show that
this bound cannot be improved asymptotically, that is, f(n) = Θ(n2). First we derive a general lower
bound for r̃(H) for arbitrary graphs and then present an example that proves the statement. Let τ(H)
denote the smallest number of vertices covering all edges of H . The size-Ramsey number of H can be
bounded from below in terms of τ(H) and the maximum degree ∆(H) of a graph H . A similar bound
holds in the on-line case.

Proposition 3.1 r̃(H) ≥ 1
2τ(H)(∆(H)− 1) + e(H) for every graph H .

Proof: Painter’s strategy is to color an edge red as long as the red subgraph has maximum degree strictly
less than ∆(H); otherwise she colors an edge blue. So, a red copy of H will never appear. Suppose a
blue copy of H has appeared in a graph constructed by Builder. Then at least one end vertex of each blue
edge must be incident with exactly ∆(H)− 1 red edges. Hence the red subgraph must have at least τ(H)
vertices of degree ∆(H)− 1 and thus the number of red edges is at least 1

2τ(H)(∆(H)− 1). 2

Now, we are ready to show that f(n) = Ω(n2). Let Bn be a graph with n edges, obtained from a star
Sbn/2c = K1,bn/2c by subdividing each edge, and with an additional edge attached to the center of the
star if n is odd.

Corollary 3.2 f(n) ≥ r̃(Bn) ≥ n2

8 + 3n
4 , for every n ≥ 1.

Proof: We have ∆(Bn) = τ(Bn) = dn/2e as each cover must contain a non-center vertex from each
subdivided edge and one extra vertex for an additional edge if n is odd. 2

If Builder knows that Painter will follow the strategy from Proposition 3.1, then he can force Bn in(dn/2e
2

)
+ n = n2

8 + O(n) moves. He starts by building a dn/2e-clique, which Painter colors entirely red.
From now on, Painter will color any vertex incident to a clique vertex blue. So Builder can force a blue
Bn in n moves by using the clique vertices as subdivision vertices of Bn. Painter can delay her agony a
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little by coloring edges that are incident to the clique and do not create forbidden graph with red, but her
real problem was allowing the red clique.

On the other hand, at most n2

4 + O(n) moves are enough to force Painter to create monochromatic Bn.

Proposition 3.3 r̃(Bn) ≤ n2

4 + 9
2n− 7 for every even n = 2k ≥ 4.

Proof: Builder starts by playing 6k − 5 independent edges. Painter is forced to create a monochromatic
matching M = {xiyi : i ∈ [3k − 2]}; suppose the edges of M are blue. Add a new vertex v and edges
vxi for i ∈ [3k − 2]. To avoid creating Bn, Painter must color 2k − 1 of these edges with red. Say she
colors xiyi red for i ∈ [2k − 1]. In the next k2 steps, Builder introduces k new vertices zl (l ∈ [k]) and
edges zlxm (for some values of m), forcing Painter to either create a blue star with center at some zl (thus
finishing a blue Bn), or a red matching M ′ = {zlxml

: l ∈ [k]} (thus finishing a red Bn). To do this, he
simply plays k edges between zl and k vertices of the form xm, where xm is not incident with an edge in
M ′.

This takes (6k − 5) + (3k − 2) + k2 edges. Builder can save some edges by being more careful at the
beginning. 2

If we restrict to trees of bounded degree then even the size-Ramsey numbers are linearly bounded
(cf. (11)).

4 Stars versus trees, cycles, and cliques
In this section we focus on asymmetric version of the on-line Ramsey number where one of the graphs is
a star Sn.

It is clear that the Proposition 3.1 can be easily generalized to the asymmetric version we consider.
Since the proof is almost identical, we omit it here.

Proposition 4.1 r̃(G, H) ≥ 1
2 max{τ(H)(∆(G)− 1) + e(H), τ(G)(∆(H)− 1) + e(G)} for arbitrary

graphs G and H .
In particular, r̃(Sn,H) ≥ 1

2τ(H)(n− 1) + e(H).

Before we state a general upper bound we need a few more definitions. Let π be a permutation of the
vertices of G. For a vertex v ∈ V (G), let N+

π (v) be the number of neighbors of v that follow it in the
permutation. Similarly, we define N−

π (v). Let dπ(G) be the maximum “back degree”, that is,

dπ(G) = max{N−
π (v) : v ∈ V (G)},

and lπ(G) be the number of vertices with no “forward neighbors”, that is,

lπ(G) =
∑

v∈V (G)

δ(N+
π (v) = 0)

where δ(A) is the Kronecker delta function

δ(A) =
{

1, if A is true
0, otherwise.

Finally, let n(G) denote the number of vertices in a graph G.
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Proposition 4.2 r̃(Sn, H) ≤ minπ dπ(H)(n(H)− lπ(H))(n− 1) + e(H) for any graph H .

Proof: Fix a permutation π of vertices of H . We present Builder’s strategy to construct H in an order
yielded by permutation π. When we consider a new vertex v of H , we choose a new vertex w in the
graph we are constructing and add all edges from w to previously assigned vertices that correspond to the
neighbors of v in H . If Painter uses blue color only, we assign w to v and move to the next vertex in H .
Otherwise we try again starting from a new vertex w. In total we can have at most (n(H)− lπ(H))(n−1)
retries since that is exactly an upper bound for the number of red edges when Painter is trying to avoid red
Sn and each retry can be associated with a unique red edge generated in the previous try. In each retry we
use at most dπ(H) edges. 2

Now, we are ready to prove bounds for r̃(Sn,H) in a few special cases where graph H is any tree,
cycle or clique.

Proposition 4.3 Let T be any tree with e(T ) ≥ 2 edges and l vertices of degree 1 (leaves). Then for every
n ∈ N

r̃(Sn, T ) ≤ e(T )n− (l − 1)(n− 1) .

The proof follows immediately from Proposition 4.2 since there is a permutation π with dπ(G) = 1
and lπ(G) = l. We present an alternative proof below.

Proof: Let r ∈ V (T ) be any vertex of degree at least 2, and select this vertex as a root of the tree T making
this tree a rooted one. Let d(v) denote the degree of a vertex v in the tree T . In the first d(r)+n−1 moves
Builder draws a star Sd(r)+n−1 forcing Painter to create a blue star Sd(r). This is the first level of T . Then
for every leaf v of the blue star Sd(r), which is not a leaf of T , Builder draws a star S(d(v)−1)+(n−1) with
center in v. This creates the second level of T (see Figure 6). And so on, until a complete blue copy of T
(or a red copy of Sn) appears. The total number of edges drawn by Builder is

(n− 1)(|V (T )| − l) + e(T ) = e(T )n− (l − 1)(n− 1)

as asserted. 2
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Fig. 6: Forcing a red K1,n or blue T

In next proposition we show that the on-line Ramsey number for a star Sn versus a fixed cycle grows
linearly in n. This is different than in the off-line case, where for odd cycles we have a quadratic growth
(cf. (16; 17)).
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Proposition 4.4 For every n, k ∈ N, k ≥ 3

k

4
(n + 3) ≤ r̃(Sn, Ck) ≤ nk.

Proof: The lower bound follows immediately from Proposition 4.1 since τ(Ck) ≥ k/2.
For the upper bound, Builder first forces a blue path with k − 2 edges. By Proposition 4.3 this takes

at most n(k − 3) + 1 rounds. Let v1 and vk−1 be the two end vertices of this path. Builder draws a star
S2n−1 with center in vk−1 and new vertices u1, . . . , u2n−1 as its leaves. Clearly at least n edges of this
star must be blue. Then he joins these vertices to the vertex v1. If there is no red star yet, then there must
be a vertex ui such that both edges uiv1 and uivk−1 are blue. Hence a blue cycle is created (see Figure 7).
Total number of edges is equal to ((k − 3)n + 1) + (2n− 1) + n = kn. 2
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Fig. 7: Forcing a red K1,n or blue Ck

It is clear that better bounds can be achieved with more effort. For example let us mention the following
small improvement. If Painter creates red Sn−1 in the first phase, then Builder can start growing a path
from the other direction so that vertex v1 is attached to the red star. Now in the second phase we can
generate one blue edge only (instead of n as before). This saves at least min{n− 1, k − 3} edges. Since
there is no hope for a general exact formula, we are happy with the bound which is optimal up to a
multiplicative constant.

A similar bounds hold for cliques Kk. The bound is optimal up to a factor of ck for some constant
c > 0.

Proposition 4.5 For every n, k ∈ N, k ≥ 2

1
2
(k − 1)(n− 1) +

(
k

2

)
≤ r̃(Sn,Kk) ≤

(
k

2

)
n .

Proof: Again, the lower bound is a simple consequence of Proposition 4.1 since τ(Kk) = k − 1.
For the upper bound, let V0 be a set of |V0| = (k − 1)n + 1 vertices. First Builder proposes (k − 1)n

edges of a star S(k−1)n on the set V0. Since Painter is trying to avoid a red star with n edges, at least
(k− 2)n + 1 edges must be colored blue. Let V1 ⊂ V0, |V1| = (k− 2)n + 1 be a set of vertices of degree
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1 connected with a blue edge. In the second phase Builder is drawing a star S(k−2)n on V1 forcing Painter
to use blue color at least (k− 3)n + 1 times. Thus, there is a set V2 ⊂ V1, |V2| = (k− 3)n + 1 of vertices
of degree 2 incident with a blue edges only. Repeating this strategy in each phase, Builder eventually
forces Painter to draw either a red star Sn or a blue clique Kk. An example of the game in case of K1,2

and K4 is shown on Figure 8. Note that the game consists of k − 1 phases and during the ith round, the
Builder is drawing a star with (k − i)n edges. Thus

r̃(Sn,Kk) ≤
k−1∑

i=1

(k − i)n =
k(k − 1)

2
n

and the assertion follows. 2

»»»»»»
XXXXXX
@

@
@

@@

C
C
C
C
C
C

¤
¤
¤
¤
¤
¤

¡
¡

¡
¡¡

r
r

r
r r

r

r

(a) First phase
»»»»»»»»»»»»³³³³³

XXXXXX
@

@
@

@@

C
C
C
C
C
C

¤
¤
¤
¤
¤
¤

¡
¡

¡
¡¡

¢
¢
¢

¡
¡

¡
¡¡

""""""""

r
r

r
r r

r

r

(b) Second phase
»»»»»»»»»»»»³³³³³»»»»»»

©©©

XXXXXX
@

@
@

@@

C
C
C
C
C
C

¤
¤
¤
¤
¤
¤

¡
¡

¡
¡¡

¢
¢
¢

¡
¡

¡
¡¡

""""""""©©©

r
r

r
r r

r

r

(c) Third phase

Fig. 8: Forcing a red K1,n or blue Kk

The above results suggest that perhaps r̃(Sn, H) ≤ n · e(H) for every graph H .

5 Discussion
We conclude the paper with some questions for future consideration. Let F be a fixed family of graphs
and let r̃(n) = max{r̃(H) : H ∈ F , |V (H)| = n}. Also let r̂(n) and r(n) be defined analogously for
size-Ramsey and Ramsey numbers of graphs from F , respectively. Clearly for any class F we have

r̃(n) ≤ r̂(n) ≤
(

r(n)
2

)
.

A general problem is to determine the asymptotic growth of the function r̃(n) for some basic graph
classes. In particular, to decide whether

lim
n→∞

r̂(n)
r̃(n)

= ∞. (1)

It is natural to expect that (1) should hold for most reasonable families of graphs. Clearly (1) cannot
hold if r̂(n) is linear, but, as we demonstrated, it also does not hold for trees, where r̂(n) grows quadrat-
ically. We do not know what happens for graphs of bounded degree. A well known theorem of Chvátal,
Rödl, Szemerédi, and Trotter (6) asserts that r(n) grows linearly for every fixed ∆ (hence r̂(n) is at
most quadratic). On the other hand, as proved by Rödl and Szemerédi (22), there are cubic graphs with
quadratic size-Ramsey number.



On-line Ramsey Numbers for Paths and Stars 11

It is obvious that the real challenge is in computing the on-line Ramsey numbers for cliques. Therefore,
the following intriguing question was posed by Kurek and Ruciński (14): does (1) hold for the family of
all cliques? A natural strategy for Builder is to mimic a recursive construction giving the upper bound for
classical Ramsey number r(Kn). This gives for instance r̃(K3) ≤ 8 (in fact, r̃(K3) = 8; the proof of
the lower bound is elementary but nontrivial). Moreover, it has been shown that r̃(Kk) ≤ 2k

(
2k−2
k−1

) ∼
1

2
√

π

√
k4k. The third author of this note, with computer support, showed that an asymmetric version of

the on-line Ramsey number r̃(K3,K4) is equal to 17, provided a general upper bound for r̃(Kk,Kl),
which gives a slightly better asymptotic upper bound of 3

8
√

π
4k√

k
for a symmetric version of the on-line

Ramsey numbers (see (20) for more details).
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[22] V. Rödl and E. Szemerédi, On size Ramsey numbers of graphs with bounded maximum degree,
Combinatorica 20 (2000), 257–262.


