
Cleaning a Network with Brushes

M. E. Messinger, R. J. Nowakowski, and P. Pra lat ∗

Department of Math. & Stats.

Dalhousie University,

Halifax, NS, B3H 3J5, Canada.

Abstract

Following the decontamination metaphor for searching a graph, we introduce a cleaning
process, which is related to both the chip-firing game and edge searching. Brushes (instead
of chips) are placed on some vertices and, initially, all the edges are dirty. When a vertex
is ‘fired’, each dirty incident edge is traversed by only one brush, cleaning it, but a brush
is not allowed to traverse an already cleaned edge; consequently, a vertex may not need
degree-many brushes to fire. The model presented is one where the edges are continually
recontaminated, say by algae, so that cleaning is regarded as an on-going process. Ideally,
the final configuration of the brushes, after all the edges have been cleaned, should be
a viable starting configuration to clean the graph again. We show that this is possible
with the least number of brushes if the vertices are fired sequentially but not if fired in
parallel. We also present bounds for the least number of brushes required to clean graphs
in general and some specific families of graphs.

Key words: searching, chip-firing, cleaning sequence, brush number.

AMS subject classification: 05C38, 05C78, 05C85

1 Introduction

In [19, 20], Parsons introduced the problem of searchers looking for a lost spelunker in a
network of caves (see [1] for a recent survey of the literature). One condition was that the lost
spelunker, or intruder in later literature, was infinitely fast. A new metaphor was introduced
to accommodate this infinite speed, that of chemical or biological contamination of the graph –
any break in the line of searchers would allow contamination behind them and therefore those
vertices or edges would have to be considered recontaminated. In the standard searching
models, a searcher can leave any vertex at any time.

In chip firing (see [2, 3] for example) there is an initial configuration of chips on vertices
and a vertex is ‘primed’ if it has at least as many chips as its degree. A primed vertex may
‘fire’ whereupon it sends one chip along each incident edge. The main questions considered
have been variants of “does this process stop or can it continue forever?”; “how many chips
are needed to produce a cycle?” and “how long before a cycle?”.

∗Partially supported by grants from the NSERC and MITACS. messnger@mathstat.dal.ca,

rjn@mathstat.dal.ca, pralat@mathstat.dal.ca

1

The cleaning model, introduced in [15], is a combination of chip firing and searching.
We envision a network of pipes that have to be periodically cleaned of a contaminant that
regenerates, say algae. This is accomplished by having cleaning agents, colloquially, ‘brushes’,
assigned to some vertices. To reduce the recontamination, when a vertex is ‘cleaned’, a brush
must travel down each contaminated edge. Once a brush has traversed an edge, that edge
has been cleaned. A graph G has been cleaned once every edge of G has been cleaned.
McKeil [15] considered the model where more than one brush can travel down an edge and
brushes can travel down cleaned edges. The particular version in this paper allows only one
brush to travel along an edge and a brush is not allowed to travel down an edge that has
already been cleaned. One condition that this model has, like chip-firing but not searching,
is that the cleaning process is to be automatic, i.e. a union of ‘vertex firing’ sequences where
each sequence cleans the graph, continuing on for the lifetime of the network. Therefore, the
problems to solve are: firstly, a brush configuration and corresponding vertex firing sequence
that cleans the graph; and secondly, having the final configuration of brushes be a starting
configuration for another vertex firing sequence that also cleans the graph; and so on.

The model is similar to the mutating chip firing game [7, 9, 14] where when a vertex fires
the edges traversed by a chip may be removed but others may also be added. The model used
in [7, 9, 14] considered directed graphs obtained by replacing every undirected edge by a pair
of directed edges.

In a graph G, |E(G)| many chips are required for a configuration to give an infinite
(repeating) chip firing game. Finding a configuration is easy [17]: start with any configuration
where each vertex has at least as many chips as its degree and identify each chip with the
edge that it is first fired down. When the new vertex is fired, the same chip goes back along
the same edge. When the configuration repeats, any chip that has not been identified with
an edge is removed. This gives a recurrent configuration with |E(G)| many chips.

However, for the cleaning game, What is the minimum number of brushes required to clean
G? and What is the complexity of finding it? are open questions. As the edges cleaned at each
step are all incident to a vertex v ∈ G, for the purposes of this paper, it is more convenient
to define the cleaning process in terms of the vertices. Initially, all vertices are dirty and we
say a vertex is cleaned when its associated brushes are fired down the incident dirty edges.
Note that with these definitions, a vertex may be dirty but be incident with only clean edges.
For example, given a path with three vertices a, b, c, put two brushes on b and clean b. The
incident edges ab and bc are now both cleaned but the vertices a and c are still dirty even
though their incident edges are clean. In this paper, we will insist on cleaning the vertices a
and b despite the fact that no edges will be cleaned. (Note that in this example, starting with
just one brush on a is sufficient to be able to clean the graph.)

Figure 1 illustrates the cleaning process for a graph G where there are initially 2 brushes
at vertex a. The solid edges indicate dirty edges while the dotted edges indicate clean edges.
First, vertex a is cleaned, sending a brush to each of vertices b, c. Second, vertex b is cleaned,
sending a brush to c. Vertex c now has 2 brushes and 1 dirty edge; it is cleaned and sends
one brush to vertex d. At this step, both c, d have one brush and although G contains no
dirty edges, we still clean vertex d, by sending a brush down each dirty edge (of which there
are none). Thus, G has been cleaned.

It is important to note that we are ‘cleaning’ each vertex of G: G may contain no dirty
edges after step t, but we still must ‘clean’ the remaining vertices (as described in Figure 1).

To recap, in our model every edge in a graph G is initially dirty and a fixed number of

2

dc

b a

dc

b a

dc

b a

dc

b a

dc

b a

2 brushes at a 1 brush at b

1 brush at c

2 brushes at c

1 brush at d

1 brush at c

1 brush at d

1 brush at c

Figure 1: An example of the cleaning process for graph G.

brushes begin on a set of vertices. At each step of the process, vertex v may be cleaned
(instead of fired) if there are at least as many brushes on v as there are dirty incident edges.
When it is cleaned, every dirty edge must be traversed by one (and only one) brush, more-
over, brushes cannot traverse a clean edge. Other cleaning rules are considered in [15]. Our
approach of focusing on cleaning vertices instead of edges makes the proofs more transpar-
ent for Theorem 4.1, an upper bound on the brushes required for the Cartesian Product;
Theorem 2.3, which shows that a cleaning sequence can be run in reverse which addresses
the hoped-for automatic nature of the cleaning process; Theorem 2.1, the final dirty set of
vertices depends only on the initial configuration; and Theorem 2.2, where we show that with
an initial configuration of brushes, the graph can be cleaned by sequential cleaning if and only
if it can be cleaned with parallel cleaning of vertices. In this paper, we concentrate on the
sequential cleaning mode. In Section 2 we present the important basic results for cleaning; in
Section 3 we give several lower bounds on the least number of brushes required; in Section 4
we give upper bounds for the Cartesian product and particularly for hypercubes; in Section 5
we apply some of the earlier results to obtain exact numbers for or bounds on the number of
brushes. In Section 6 we consider the graphs for which given an initial configuration, there is
a unique cleaning sequence that cleans the graph, in particular we give a constructive proof
of the maximum number of edges such a graph can contain.

Formally, at each step t, ωt(v) denotes the number of brushes at vertex v (ωt : V → N∪{0})
and Dt denotes the set of dirty vertices. An edge uv ∈ E is dirty if and only if both u and v
are dirty: {u, v} ⊆ Dt. Finally, let Dt(v) denote the number of dirty edges incident to v at
step t:

Dt(v) =

{

|N(v) ∩Dt| if v ∈ Dt

0 otherwise.

Definition 1.1 The cleaning process P(G,ω0) = {(ωt,Dt)}T
t=0 of an undirected graph G =

(V,E) with an initial configuration of brushes ω0 is as follows:

(0) Initially, all vertices are dirty: D0 = V ; set t := 0

(1) Let αt+1 be any vertex in Dt such that ωt(αt+1) ≥ Dt(αt+1). If no such vertex exists,
then stop the process (T = t), return the cleaning sequence α = (α1, α2, . . . , αT), the
final set of dirty vertices DT , and the final configuration of brushes ωT

(2) Clean αt+1 and all dirty incident edges by traversing a brush from αt+1 to each dirty
neighbour. More precisely, Dt+1 = Dt \ {αt+1}, ωt+1(αt+1) = ωt(αt+1)−Dt(αt+1), and

3

for every v ∈ N(αt+1) ∩ Dt, ωt+1(v) = ωt(v) + 1, the other values of ωt+1 remain the
same as in ωt.

(3) t := t+ 1 and go back to (1)

Note that for a graph G and initial configuration ω0, the cleaning process can return
different cleaning sequences and final configurations of brushes; consider, for example, an
isolated edge uv and ω0(u) = ω0(v) = 1. We will show in Theorem 2.1, however, that the
final set of dirty vertices is determined by G and ω0. Thus, the following definition is natural.

Definition 1.2 A graph G = (V,E) can be cleaned by the initial configuration of brushes
ω0 if the cleaning process P(G,ω0) returns an empty final set of dirty vertices (DT = ∅).

Let the brush number, b(G), be the minimum number of brushes needed to clean G, that
is,

b(G) = min
ω0:V →N∪{0}

{

∑

v∈V

ω0(v) : G can be cleaned by ω0

}

.

Similarly, bα(G) is defined as the minimum number of brushes needed to clean G using
the cleaning sequence α.

It is clear that for every cleaning sequence α, bα(G) ≥ b(G) and b(G) = minα bα(G). (The
last relation can be used as an alternative definition of b(G).) In general, it is difficult to
find b(G), but bα(G) can be easily computed. To do this, it seems better not to choose the
function ω0 in advance, but to run the cleaning process in some order, and compute the initial
number of brushes needed to clean a vertex. We can adjust ω0 along the way, letting

ω0(αt+1) = max{2Dt(αt+1) − deg(αt+1), 0}, for t = 0, 1, . . . , |V | − 1, (1)

since that is how many brushes we have to add over and above what we get for free.
When a graph G is cleaned using the cleaning process, each edge of G is traversed exactly

once and by exactly one brush which gives rise to the following definition.

Definition 1.3 Given some initial configuration ω0 of brushes, suppose G = (V,E) admits a
cleaning sequence α = (α1, α2, . . . , αT) which cleans G. As each edge in G is traversed exactly
once and by exactly one brush, an orientation of the edges of G is permitted such that for
every αiαj ∈ E(G), αi → αj if and only if i < j.

The brush path of a brush b is the oriented path formed by the set of edges cleaned by
b (note that a vertex may not be repeated in a brush path). Then G can be decomposed into
bα(G) oriented brush paths (note that no brush can stay at its initial vertex in the minimal
brush configuration).

Alternately, we can consider following variation of the above process: at each step, instead
of cleaning just one vertex, we clean all vertices which are ready to be cleaned. In general,
therefore, cleaning in parallel will terminate before cleaning one vertex at a time.

Definition 1.4 The parallel cleaning process C = {(ωt,Dt)}K
t=0 of an undirected graph

G = (V,E) with an initial configuration of brushes ω0 is as follows:

(0) Initially, all vertices are dirty: D0 = V ; set t := 0

4

(1) Let ρt+1 ⊆ Dt be the set of vertices such that ωt(v) ≥ Dt(v) for v ∈ ρt+1. If ρt+1 = ∅, then
stop the process (K = t), return the parallel cleaning sequence ρ = (ρ1, ρ2, . . . , ρK),
the final set of dirty vertices DK , and the final configuration of brushes ωK

(2) Clean each vertex v ∈ ρt+1 and all dirty incident edges by traversing a brush from v to
each dirty neighbour. More precisely, Dt+1 = Dt \ ρt+1, for every v ∈ ρt+1, ωt+1(v) =
ωt(v) −Dt(v) + |N(v) ∩ ρt+1|, and for every u ∈ Dt+1, ωt+1(u) = ωt(u) + |N(u) ∩ ρt+1|
the other values of ωt+1 remain the same as in ωt

(3) t := t+ 1 and go back to (1).

Let the parallel brush number, pb(G), be the minimum number of brushes needed to clean G.

Note that with parallel cleaning, two adjacent vertices can be cleaned at the same time
and the common edge will have two brushes traverse it in opposite directions. The brushes,
therefore, may not decompose the graph into oriented (brush) paths.

2 General Results

Consider the cleaning process P(G,ω0) = {(ωt,Dt)}T
t=0. Note that if v is dirty at step t, then

ωt(v) is a function of G,ω0, and Dt, namely,

ωt(v) = ω0(v) + deg(v) −Dt(v)

= ω0(v) + deg(v) − |N(v) ∩Dt|, (2)

since ωt(v) cannot be decreased during that period of time and each edge incident to v which
was cleaned before time t increased the number of brushes at v by 1.

Theorem 2.1 Given a graph G and the initial configuration of brushes ω0, the cleaning
algorithm returns a unique final set of dirty vertices.

Proof: Let α = (α1, α2, . . . , αT) and β = (β1, β2, . . . , βU) be two cleaning sequences of the
cleaning processes Pα = {(ωt,Dt)}T

t=0 and Pβ = {(τt, Ct)}U
t=0, respectively (ω0 = τ0). Note

that it is enough to prove that {α1, α2, . . . , αT } = {β1, β2, . . . , βU}.
Suppose that there is a vertex in β which is not in α. Let βl, 1 ≤ l ≤ U , be the first such

vertex. Consider now Pα at the final step T and Pβ at step l − 1. Clearly ωT (βl) < DT (βl)
and, since α contains vertices β1, β2, . . . , βl−1, DT (βl) ≤ Cl−1(βl). Using (2) we get

ωT (βl) = ω0(βl) + deg(βl) −DT (βl)

≥ τ0(βl) + deg(βl) − Cl−1(βl)

= τl−1(βl) .

Since βl was cleaned at step l of the process Pβ, τl−1(βl) ≥ Cl−1(βl). Thus,

ωT (βl) ≥ τl−1(βl) ≥ Cl−1(βl) ≥ DT (βl)

which gives us a contradiction.

5

A symmetric argument can be used to show that β contains all vertices of α. So α is a
permutation of β and the assertion holds.

Actually, a more general theorem is true. Take any vertex deletion algorithm where, once a
vertex can be deleted, further deletions of other vertices do not change that fact (the cleaning
algorithm is of this type). Then the result of the algorithm will always be the same. This
is easy to see: take one run of the algorithm and let Si be the set of vertices deleted after i
steps. By induction on i, all runs of the algorithm must eventually remove all vertices in Si.

Theorem 2.2 For any graph G, b(G) = pb(G).

Proof: It is clear that b(G) ≤ pb(G): if (G,ω0) can be cleaned using a parallel cleaning
sequence ρ = (ρ1, ρ2, . . . , ρK), then (G,ω0) can also be cleaned using, as a (sequential) cleaning
sequence, any permutation of ρ1, then any permutation of ρ2, and so on. Thus, it is enough
to show that pb(G) ≤ b(G).

Let n = |V (G)| and α = (α1, α2, . . . , αn) be a cleaning sequence of the process P(G,ω0) =
{(ωt,Dt)}n

t=0 such that b(G) brushes are used to clean G. For a contradiction, suppose that
pb(G) > b(G), that is, the parallel process C(G,ω0) = {(τt, Ct)}K

t=0 (τ0 = ω0) returns a
nonempty set of dirty vertices CK . Let i0 = min{i ∈ [n] : αi ∈ CK}. Using a similar
argument as in Theorem 2.1, we can show that αi0 can be cleaned at step K + 1 of C(G,ω0).
This contradiction finishes the proof.

Theorem 2.3 The Reversibility Theorem

Given the initial configuration ω0, suppose G can be cleaned yielding final configuration ωn,
n = |V (G)|. Then, given initial configuration τ0 = ωn, G can be cleaned yielding the final
configuration τn = ω0.

Proof: Let α = (α1, α2, . . . , αn) be a cleaning sequence of the cleaning process P+ =
{(ωt,Dt)}n

t=0 which will clean graph G. Let N−(αt) = |{αtαi ∈ E(G) : i < t}| and similarly
N+(αt) = |{αtαi ∈ E(G) : i > t}|, clearly deg(αt) = N−(αt) +N+(αt). Vertex αt is dirty at
time t− 1, so using (2) we have

ωn(αt) = ωt(αt) = ωt−1(αt) −Dt−1(αt)

= ω0(αt) + deg(αt) −Dt−1(αt) −Dt−1(αt)

= ω0(αt) + deg(αt) −N+(αt) −N+(αt)

= ω0(αt) +N−(αt) −N+(αt). (3)

We show now that the cleaning process P− = {(τt, Ct)}U
t=0, τ0 = ωn, can be used to clean

G using a cleaning sequence (αn, αn−1, . . . , α1), that is, vertex αn−t+1 is cleaned at time t.
We use induction on t. Since

τ0(αn) = ωn(αn) = ω0(αn) +N−(αn) −N+(αn) ≥ N−(αn) = C0(αn),

vertex αn can be cleaned at the first step and the basis step is verified. For the induction
step, assume that vertices αn, αn−1, . . . , αk (n ≤ k < 1) are clean at time n − k + 1 of the

6

process P−. It is not difficult to check, again using (2) and (3), that αk−1 can be cleaned in
a very next step. Indeed,

τn−k+1(αk−1) = τ0(αk−1) + deg(αk−1) − Cn−k+1(αk−1)

= ωn(αk−1) +N+(αk−1) = ω0(αk−1) +N−(αk−1)

≥ N−(αk−1) = Cn−k+1(αk−1).

To finish the proof it is enough to show that τn = ω0. Using a similar calculation as in (3)
we get τn(αt) = τ0(αt) +N+(αt) −N−(αt). Now, replacing τ0(αt) by ωn(αt) and using (3),
one can check that the assertion follows.

The concept of reversibility, however, does not extend to the parallel cleaning process. For
example, consider cleaning K3 using the parallel cleaning process: initially one vertex contains
two brushes and is cleaned at step 1. At step 2 the remaining two vertices are cleaned, but
in the final configuration, each contains one brush. Clearly this process cannot be reversed.

As a final result, there is a trivial upper bound on the number of brushes needed. We use
a cleaning sequence that starts with a path that forms a diameter of the graph. One brush
then travels the length of path yielding the following result (which is sharp for paths).

Theorem 2.4 Let G be a connected graph. Then b(G) ≤ |E(G)| − diam(G) + 1.

3 Lower Bounds

Erdös asked what the minimum number of paths into which every connected graph can be
decomposed [6]. Gallai conjectured [11] that this number is ⌈ |V (G)|

2 ⌉. If this is correct, it yields
a lower bound for b(G); only a lower bound because some path decompositions would not be
valid in the cleaning process. For example, K4 can be decomposed into two edge-disjoint
paths, but b(K4) = 4.

Following Definitions 1.1 and 1.3, every vertex of odd degree in a graph G will be the
endpoint of (at least) one brush path. This leads to a natural lower bound for b(G) since any
graph with do odd vertices, can be decomposed into a minimum of do

2 paths.

Theorem 3.1 Given initial configuration ω0, suppose G can be cleaned yielding final config-
uration ωT . Then for every vertex v in G with odd degree, either ω0(v) > 0 or ωT (v) > 0. In

particular, b(G) ≥ do(G)
2 where do(G) denotes a number of vertices of odd degree.

Proof: Suppose a graph G = (V,E) is cleaned by process P(G,ω0) = {(ωt,Dt)}T
t=0 and let

v ∈ V be a vertex of odd degree that is cleaned at step t. Using (3) we have that

ωT (v) − ω0(v) = deg(v) − 2Dt−1(v).

As deg(v) is odd, the right side of the equality is also odd and it is not possible that both
ωT (v) and ω0(v) are equal to zero. This finishes the first part of the proof.

For the second part, note that, by pigeonhole principle, there are at least do(G)
2 odd vertices

with brushes at the initial configuration or at least do(G)
2 ones at the final configuration. Thus,

b(G) = min
ω0:V →N∪{0}

{

∑

v∈V

ω0(v) =
∑

v∈V

ωT (v) : G can be cleaned by ω0

}

≥ do(G)

2
,

7

and the assertion follows.

Note that the lower bound given by Theorem 3.1 is sharp since b(T) = do(T)
2 for any tree

T (see Theorem 5.1).

We can also create a lower bound for b(G) dependent on the girth of G, see Corollary 3.3.
But first we introduce a more general theorem. Let S be a subset of the vertices of a graph
G, we denote by G[S] the subgraph induced by S.

Theorem 3.2 Let G = (V,E) be any graph on n vertices, and for any k ∈ [n],

bk = min
S⊆V,|S|=k

{

∑

v∈S

degG(v) − 2|E(G[S])|
}

.

Then b(G) ≥ maxk bk.

Proof: Let α = (α1, α2, . . . , αn) be the cleaning sequence that cleans G using the optimal
number of b(G) brushes and fix k ∈ [n]. Using (1) we get that

b(G) =

n
∑

i=1

max
{

2Di−1(αi) − degG(αi), 0
}

≥
k

∑

i=1

(

2Di−1(αi) − degG(αi)
)

=
k

∑

i=1

(

degG(αi) − 2(degG(αi) −Di−1(αi))
)

=
k

∑

i=1

degG(αi) − 2|E(G[{α1, α2, . . . , αk}])| ≥ bk ,

since each edge in the induced subgraph E(G[{α1, α2, . . . , αk}]) appears exactly once in the
sum as a clean edge.

Note that in Theorem 3.2,
∑

v∈S degG(v) − 2|E(G[S])| is the number of edges from the
subset S to its complement in G, that is, the ‘boundary’ edges.

Let δ(G) be the minimum degree of graph G. The next result is a simple corollary of
Theorem 3.2.

Corollary 3.3 For any graph G with girth g <∞, b(G) ≥ (δ(G) − 2)g.

Proof: Take any S ⊆ V of order g, v ∈ S. Since G has no cycle of length less than g,
G[S \ {v}] induces a forest with g − 1 − l edges (l denotes the number of components). If
l = 1, then v can have at most two neighbours among vertices from S \{v}; otherwise at most
l vertices can be adjacent to v. Thus, |E(G[S])| ≤ g and we can use Theorem 3.2 with

bg = min
S⊆V,|S|=g

{

∑

v∈S

degG(v) − 2|E(G[S])|
}

≥ δ(G)g − 2 max
S⊆V,|S|=g

{|E(G[S])|} ≥ (δ(G) − 2)g .

8

Definition 3.4 Let G = (V,E) be a graph and f : V → {1, 2, . . . n} be a linear layout of G.
The cutwidth of f is

cwf (G) = max
1≤i≤n

|{(u, v) ∈ E : f(u) ≤ i < f(v)}| .

The cutwidth denoted cw(G), is the minimum cutwidth over all possible linear layouts of G.

Theorem 3.5 For any graph G, cw(G) ≤ b(G).

Proof: Let G = (V,E) be a graph with |V (G)| = n. Let α = (α1, α2, . . . , αn) be a cleaning
sequence of the cleaning process P(G,ω0) that will clean G using b(G) brushes. As any
cleaning sequence which yields a clean graph G is a linear layout of the vertices of G, let
f(αi) = i for all i ∈ [n]. Let Ai = |{(u, v) ∈ E : f(u) ≤ i < f(v)}| and note it represents
the number of brushes which are no longer at their initial vertices and, at step i, are at
dirty vertices. That is, the number of brushes which are at vertices vj where vj ∈ Di and
ωi(vj) > ω0(vj). Clearly cwf (G) = max1≤i≤nAi ≤ b(G) and finally cw(G) ≤ cwf (G) ≤ b(G).

Definition 3.6 In the discrete edge-searching process of G = (V,E), an edge-search strat-

egy is a sequence of actions such that the final action leaves all edges of G uncontaminated.
(See [1, 8, 16] for more on searching.)

Initially, all edges E are contaminated and a fixed number of searchers are placed on
vertices of G. An edge uv ∈ E becomes decontaminated when a searcher traverses edge uv
from u to v while there is a second searcher on u or while all other edges incident with u are
already decontaminated. If edge e is decontaminated and an action results in a path (with no
searchers) from a contaminated edge to edge e, then e has become recontaminated.

A vertex has been decontaminated if all incident edges are decontaminated. A graph

G is decontaminated when all v ∈ V have been decontaminated (or, equivalently, when all
edges E have been decontaminated). The minimum number of searchers needed to decontam-
inate G is the edge-search number es(G).

It is clear that when a vertex is cleaned, sending the brushes one at a time, is an edge
search which proves the next inequality.

Theorem 3.7 For any graph G, es(G) ≤ b(G).

4 Cartesian Products of Graphs

The graph G�H is the Cartesian product of graphs G and H. It contains vertex set V (G) ×
V (H) where (u, v) ∈ V (G�H) is adjacent to (u′, v′) ∈ V (G�H) when either u = u′ and
vv′ ∈ E(H) or v = v′ and uu′ ∈ E(G). It can easily be seen that G�H decomposes into
|V (G)| copies of H and also into |V (H)| copies of G. This idea is used in creating an upper
bound for G�H in Theorem 4.1. As the bound of Theorem 4.1 can be hard to compute,
Corollary 4.2 gives an easier (but weaker) upper bound to compute.

9

Theorem 4.1 Given cleaning processes P(G,ω0), C(H, τ0) that clean graphs G and H, re-
spectively,

b(G�H) ≤
∑

α∈V (G)

∑

β∈V (H)

max{0, ω0(α) + τ0(β) − ω|V (G)|(α) − τ|V (H)|(β)}.

Proof: For graphs G,H with |V (G)| = g, |V (H)| = h, let α = (α1, α2, . . . , αg), β =
(β1, β2, . . . , βh) be cleaning sequences of the respective processes P(G,ω0) = {(ωt,Dt)}g

t=0,
C(H, τ0) = {(τt, Ct)}h

t=0. Applying (3) to α and β respectively, we get that

degG(αi) −Di−1(αi) = Di−1(αi) + ωg(αi) − ω0(αi)

degH(βj) − Cj−1(βj) = Cj−1(βj) + τh(βj) − τ0(βj) (4)

for i ∈ [g], j ∈ [h].
Label the vertices of G�H as (αi, βj) for i ∈ [g] and j ∈ [h]. Set

ψ0((αi, βj)) = max{0, ω0(αi) + τ0(βj) − ωg(αi) − τh(βj)} (5)

and γ = ((α1, β1), (α1, β2), . . . , (α1, βh), . . . , (αg, β1), (αg, β2), . . . , (αg, βh)). Then, to finish
the proof it is enough to show that given initial configuration ψ0, G�H can be cleaned by a
cleaning process B(G�H,ψ0) = {(ψt, Bt)}gh

t=0 using sequence γ: we use induction on t.
From the Cartesian product definition, degG�H((αi, βj)) = degG(αi) + degH(βj). Since

ψ0(γ1) = ω0(α1) + τ0(β1) = degG(α1) + degH(β1) = B0(γ1), γ1 can be cleaned at the first
step and the basis step is verified. For the induction step, we assume that (γ1, γ2, . . . , γt),
t = (i− 1)h + j − 1, cleans the first t vertices of G�H.

We next show γt+1 = (αi, βj) can be cleaned at step t + 1. Note that Bt((αi, βj)) =
Di−1(αi) +Cj−1(βj). Combining this with (4) and (5), we have

ψt(γt+1) = ψ0((αi, βj)) + degG�H((αi, βj)) −Bt((αi, βj))

= max{0, ω0(αi) + τ0(βj) − ωg(αi) − τh(βj)}
+ degG(αi) + degH(βj) −Di−1(αi) − Cj−1(βj)

= max{ωg(αi) − ω0(αi) + τh(βj) − τ0(βj), 0} +Di−1(αi) +Cj−1(βj)

≥ Bt(γt+1) .

This implies that γt+1 can be cleaned at step t+ 1 and the assertion follows.

Corollary 4.2 Given cleaning processes P(G,ω0), C(H, τ0) that clean graphs G and H, re-
spectively,

b(G�H) ≤ |V (H)|b(G) + |V (G)|b(H).

Proof: For graphs G,H with |V (G)| = g, |V (H)| = h, let cleaning processes P(G,ω0) =
{(ωt,Dt)}g

t=0, C(H, τ0) = {(τt, Ct)}h
t=0 clean G,H, with b(G), b(H) brushes, respectively.

By Theorem 4.1

10

b(G�H) ≤
∑

α∈G

∑

β∈H

max{0, ω0(α) + τ0(β) − ωg(α) − τh(β)}

≤
∑

α∈G

∑

β∈H

(ω0(α) + τ0(β))

=
∑

α∈G

(hω0(α) + b(H))

= hb(G) + gb(H) .

Theorem 4.1 and Corollary 4.2 can easily be extended to the general case to give an upper
bound for b(G1�G2� . . .�Gm).

Note that these bounds depend on the original cleaning sequences, moreover, different
sequences (even if all use the minimum number of brushes) could give different number of
brushes for the product graph. For example, Figure 2 presents a graph G with four different
initial configurations which are minimum, but when Theorem 4.1 is applied to G�K2, they
give different upper bounds. Specifically, that of Figure 2a gives an upper bound of 7 while
that of Figure 2b gives 6 (the other two symmetric initial configurations also give upper bounds
of 6 and 7). Note that in Figures 2a and 2b, the boxed numbers indicate the vertices with
ωn > 0. As it happens, neither is the correct number: G�K2 can be cleaned with 5 brushes.
For this, the initial configuration is w0((1, a)) = 3 and w0((1, b)) = 2. The table shows the
cleaning sequence (an ‘x’ indicates the vertex that was cleaned) and the configuration at each
step.

Vertex (1,a) (1,b) (1,c) (1,d) (1,e) (2,a) (2,b) (2,c) (2,d) (2,e)

w0 3 2

w1 x 3 1 1

w2 x 2 1 1 1

w3 x 2 1 1 1

w4 x 1 1 1 1 1

w5 x 1 1 1 1 1

At this stage there is one copy of G remaining with a brush at every vertex which can
cleaned by the cleaning sequence (2, e), (2, d), (2, c), (2, b), (2, a).

Combining the lower bound from Theorem 3.1 with the upper bound of Theorem 4.1, we
can determine the brush number for the product of two finite paths.

Theorem 4.3 For m,n > 1, b(Pm�Pn) = m+ n− 2.

Proof: Let G = Pm�Pn. From Theorem 3.1 and the Reversibility Theorem, we assume
there are at least d0

2 = 2(m−2)+2(n−2)
2 = m + n − 4 odd vertices with brushes at the initial

configuration. Suppose G is cleaned with b(G) brushes and v was the first vertex cleaned; the
initial number of brushes at v is equal to degG(v) ∈ {2, 3, 4}. Then, there must be at least
two extra brushes initially at v and thus b(G) ≥ m+ n− 2.

11

3 -1

-2

-1

-1

-1

1

1

1

(a) (b)G

a

b c

d

e

Figure 2: Two initial/final configuration of brushes which can clean G.

To show an upper bound we use Theorem 4.1 with an initial configurations of brushes ω0

and τ0 of paths Pm = {u1, u2, . . . , um} and Pn = {v1, v2, . . . , vn}, respectively; ω0(u1) = 1,
ω0(ui) = 0 for 1 < i ≤ m; τ0(v1) = 1, τ0(vj) = 0 for 1 < j ≤ n.

b(G) ≤
m

∑

i=1

n
∑

j=1

max{0, ω0(ui) + τ0(vj) − ωm(ui) − τn(vj)}

=
n

∑

j=1

max{0, 1 + τ0(vj) − τn(vj)} + (m− 2)
n

∑

j=1

max{0, τ0(vj) − τn(vj)}

+

n
∑

j=1

max{0, τ0(vj) − τn(vj) − 1}

= n+ (m− 2) .

...

...

...

· · · · · · · · ·

2 1 1 1 1 1

1

1

1

1

1

Figure 3: An initial configuration of brushes which will clean Pm�Pn.

5 Families of Graphs

Theorem 5.1 For any tree T with do(T) vertices of odd degree, b(T) = do(T)
2 .

12

Proof: We use induction on |V (T)|. The basis step is trivial: b(K1) = 0 = do(K1)
2 . For the

induction step we assume b(T) = do(T)
2 for all trees T on k (k ≥ 1) vertices. Let T ′ = (V,E)

be a tree with |V (T ′)| = k + 1, v be any leaf of T ′, and w be the only neighbour of v. As

|V (T ′ − v)| = k, the inductive hypothesis implies b(T ′ − v) = do(T ′−v)
2 . Let α = (α1, . . . , αk)

be a cleaning sequence returned by the process P(T ′−v, ω0) which yields b(T ′−v) = do(T ′−v)
2 .

By Theorem 3.1, we simply need to show that b(T ′) ≤ do(T ′)
2 .

If degT ′−v(w) is even, then do(T
′) = do(T

′ − v) + 2 and b(T ′ − v) = do(T ′)
2 − 1. Set

τ0(v) = 1, τ0(αi) = ω0(αi) for i ∈ [k]; then P(T ′, τ0) cleans T ′ using cleaning sequence

α′ = (v, α1, . . . , αk). Thus, b(T ′) ≤ b(T ′ − v) + 1 = do(T ′)
2 .

If degT ′−v(w) is odd, then do(T
′) = do(T

′ − v) and b(T ′ − v) = do(T ′)
2 . Using Theo-

rem 3.1 and Theorem 2.3, we can, without loss of generality, assume that ωk(w) > 0. Set
τ0(v) = 0, τ0(αi) = ω0(αi) for i ∈ [k]; then P(T ′, τ0) cleans T ′ using cleaning sequence

α′ = (α1, . . . , αk, v). Thus, b(T ′) ≤ b(T ′ − v) = d0(T ′)
2 .

Theorem 5.2 For a complete graph Kn,

b(Kn) =

{

n2

4 if n is even
n2−1

4 if n is odd.

Proof: Let α = (α1, α2, . . . , αn) denote the cleaning sequence used to clean Kn with b(Kn)
brushes. The symmetry of Kn implies that all cleaning sequences of Kn are equivalent.

Note that deg(αi) = n− 1 for all i ∈ [n] and Dt(αt+1) = n− (t+ 1). Then, using (1), we
get

ω0(αt+1) = max{2Dt(αt+1) − deg(αt+1), 0} =

{

n− 2t− 1 if t ≤ ⌊n−1
2 ⌋

0 otherwise.

Thus

b(Kn) =

n
∑

i=1

ω0(αi) =

⌊n−1
2

⌋
∑

i=0

(n− 2i− 1) =

{

n2

4 if n is even
n2−1

4 if n is odd.

Theorem 5.3 Let K(n,m) be the complete multipartite graph with m colour classes each of

size n. Then b(K(n,m)) = m2n2

4 +O(mn2).

Proof: Let V (K(n,m)) = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m} where Vj = {(i, j) : 1 ≤ i ≤ n} is
the jth colour class.

For an upper bound, consider cleaning the graph with the cleaning sequence (1, j), 1 ≤
j ≤ m followed by (2, j), 1 ≤ j ≤ m, etc. Each vertex (1, j) requires n(m − 1) − 2(j − 1)
brushes. Vertex (2, 1) requires n(m− 1) − 2(m − 1), the same as (1,m). In general, when it
is their turn to clean, (i, j) has received (i − 1)(m − 1) + (j − 1) brushes and is adjacent to
the same number of clean edges and so requires

max{n(m− 1) − 2(i − 1)(m − 1) − 2(j − 1), 0}

13

brushes in the original configuration. The initial configuration then needs

2

n(m−1)
2

∑

i=1

i+O(mn2) =
m2n2

4
+O(mn2)

brushes.
Suppose n is even and consider a subgraph S of order nm

2 . It is easy to verify that the
S has the least number of edges to G − S if it is isomorphic to the subgraph induced by the
vertex set {(i, j) : 1 ≤ i ≤ n

2 , 1 ≤ j ≤ m}. With this subgraph, from Theorem 3.2, we have

that b(K(n,m)) ≥ nm
2 · nm

2 = n2m2

4 . The case where n is odd is similar and left to the reader.
Recall that the hypercube Qn is the Cartesian product of an edge with itself n times.

Alternatively, given a set S of cardinality n, it is the graph whose vertices are the subsets of
S and two vertices x and y are adjacent if |x \ y| = 1 or |y \ x| = 1.

Theorem 5.4 For the hypercube Qn,

2

3
(2n − 1) ≤ b(Qn) ≤

(

n

0

)

n+

(

n

1

)

(n− 2) +

(

n

2

)

(n− 4) + . . .+

(

n

⌊n
2 ⌋

)

(n− 2⌊n
2
⌋).

Proof: From Theorem 4.1, we can obtain an upper bound for hypercubes. However, an
easier way to get the same bound—that it is the same, we leave to the reader—is to use the
representation of Qn where the vertices are subsets of {1, 2, 3 . . . , n}. Every vertex has degree
n and if a vertex corresponds to a cardinality k subset then it has k edges incident to vertices
with subsets of cardinality k−1 and n−k edges to those with cardinality k+1. The appropriate
cleaning sequence is to go in order of the cardinalities: first the vertex corresponding to the
empty set starts with n brushes, the vertices with a cardinality 1 next but need n− 2 initial
brushes; the vertices of cardinality 2 need n− 4 brushes, etc. Once the vertices of cardinality
⌈n

2 ⌉ have been reached, no new initial brushes are needed.
In [18] (see also [5, 10, 12]) it is shown that cw(Qn) = 2

3(2n − a) where a = 1 if n is even
and 1

2 otherwise. From Theorem 3.5 we have that b(Qn) ≥ cw(G) giving the lower bound.

If n = 2m then the sum in the theorem is (m+ 1)
(

2m
m+1

)

.
For the Cartesian product Km�Kn, by symmetry, we may suppose that m ≥ n. Assume

that both n and m are even and consider the subgraphs of order mn
2 . We wish to find the

subgraph G of order mn
2 that has the fewest boundary edges, or, equivalently, that subgraph

G, which with its complement Gc, together they have the maximum number of interior edges.
This occurs when G = Km�Kn

2
. We outline a proof: let V (Km) = {1, 2, . . . ,m}, V (Kn) =

{1, 2, . . . , n}, Gi = G∩({i}×Kn) andGj = G∩(Km×{j}). We may suppose that vertices of G
are arranged so that |V (Gi)| ≥ |V (Gi+1)| and |V (Gj)| ≥ |V (Gj+1)|. With this arrangement, it
can be easily shown that the number of edges in G and Gc is greatest is Gi = {i}×{1, 2, . . . , ki}
and Gj = {1, 2, . . . , lj} × {j}. Suppose G is not isomorphic to Km�Kn

2
then there are j and

k , j < k such that m > |V (Gj)| ≥ |V (Gk)| > 0. The number of interior edges of G plus Gc

can now be increased by deleting part (or all) of V (Gk) and adding that number of vertices
to V (Gj). The process continues until the final graph is Km�Kn

2
.

Now G has mn
2 · n

2 edges to its complement so that by Theorem 3.2, b(Km�Kn

2
) ≥ mn

2 · n
2 .

By Theorem 5.2, there is essentially only one cleaning sequence for a complete graph. Take
the cleaning sequence that cleans copies of Km first, that is, (ai, bj), j = 1, 2, . . . ,m for

14

i = 1, 2, . . . , n. Following Theorem 4.1, the subgraph with i = 1 requires (n − 1 +m − 1) +
(n − 1 + m − 3) + . . . brushes; with i = 2 requires (n − 3 +m − 1) + (n − 3 +m − 3) + . . .
brushes; etc. finishing with i = n which requires (−(n−1)+m−1)+(−(n−1)+m−3)+ . . .
brushes. Since m+ n is even then the summation is

m+n−2
2

∑

j= m−n

2

2

j
∑

i=0

i =
3m2n+ n3 − 4n

12
.

If one or both of n and m are odd, at most nm further brushes are required. This proves the
following result.

Theorem 5.5 If m ≥ n, then

mn2

4
+O(mn) ≤ b(Km�Kn) ≤ 3m2n+ n3 − 4n

12
+mn.

Note that if n = m and both are even, then careful calculation gives

m3

4
≤ b(Km�Km) ≤ m3 −m

3
.

6 Unique cleaning sequence

Before we move to the main problem of this section, let us mention a problem of a similar
flavour. Is there a graph G that has a unique initial configuration yielding a minimum number
of brushes? The answer is simple: by the Reversibility Theorem, the only graphs that satisfy
this property are the empty graphs. Thus, it seems natural to try to characterize the family
of graphs having exactly two minimum cleaning configurations (each configuration yields
the other as a final configuration) or having all cleaning configurations equivalent (up to
isomorphism). This is still an open question.

In this section we would like to characterize graphs on n vertices that, together with some
initial configurations of brushes, yield a unique cleaning sequence. In other words, at each step
there is only one vertex than can be cleaned. Note then the sequential and parallel cleaning
processes are would be identical. The main result gives an upper bound for the number of
edges of any graph in this family.

Suppose that α = (α1, α2, . . . , αn) is a unique cleaning sequence of the cleaning process
P = {(ωt,Dt)}n

t=0 which cleans a graph G = (V,E). We use the notation introduced before:
N−(αt) = |{αtαi ∈ E(G) : i < t}| and N+(αt) = |{αtαi ∈ E(G) : i > t}| (clearly
deg(αt) = N−(αt) +N+(αt) and Dt(αt) = N+(αt)).

From the fact that vertex αt+1 cannot be cleaned at time t and must be ready to be
cleaned at time t+ 1, it follows that αtαt+1 ∈ E for any t ∈ [n− 1]. This necessary condition
gives a lower bound for the number of edges, namely, |E(G)| ≥ n−1 (the result is sharp since
a path Pn belongs to the family we consider).

Since αt cannot be cleaned at time t− 1 and path P = (α1, α2, . . . , αn) is a subgraph of
G, ω0(αt) + N−(αt) − 1 < N+(αt) + 1. From this, we can obtain a sufficient and necessary
condition for a graph to have a unique sequence (α1, α2, . . . , αn). Note that ω0(αt) can be
adjusted to ensure αt can be cleaned at time t, namely, set

ω0(αt) = max{N+(αt) −N−(αt), 0} .

15

Theorem 6.1 Let P = {(ωt,Dt)}n
t=0 be a cleaning process which cleans a graph G = (V,E).

P returns a unique cleaning sequence α = (α1, α2, . . . , αn) if and only if

(P1) Path P = (α1, α2, . . . , αn) is a subgraph of G,

(P2) ω0(αt) = max{N+(αt) −N−(αt), 0} where N−(αt) ≤ N+(αt) + 1 for t ∈ [n].

Moreover,

n− 1 ≤ |E(G)| ≤ n⌊
√

2n − 1/2⌋ −
(⌊

√
2n + 3/2⌋

3

)

∼ 2
√

2

3
n3/2 .

Proof: We have already discussed the necessary and sufficient conditions and lower bound
for the number of edges in a graph G. It remains to be shown that the upper bound holds.

Consider first two graphs F = F1 and H = H2 constructed by deterministic processes
described below. Both processes ensure that final graphs satisfy desired conditions.

Let Hn+1 be an empty graph on vertex set {α1, α2, . . . , αn}. We construct a final graph
H2 by saturating the vertices one by one, maximizing N−(αi). Formally, given a graph Hi+1

(2 ≤ i ≤ n) we construct a graph Hi by adding hi = min{N+(αi) + 1, i − 1} edges αjαi for
max{i−N+(αi) − 1, 1} = i− hi ≤ j ≤ i− 1.

Let Fn be an empty graph on a vertex set {α1, α2, . . . , αn}. We construct a final graph F1

by saturating a vertices one by one, maximizing N+(αi). Formally, given a graph Fi+1 (1 ≤
i ≤ n−1) we construct a graph Fi by adding fi edges αiαj if j > i and N−(αj) < N+(αj)+1.

It is not hard to see that F and H are exactly the same graphs (Figure 4 presents the
history of both processes run on graphs with 7 vertices). We introduce two algorithms for
generating the same graph since we need a property following from the construction of H2

but we cannot find a number of edges in terms of
∑n

i=2 hi; fortunately
∑n−1

i=1 fi is relatively
easy to compute. In order to find the number fi of edges added to Fi+1 consider a vector
(N+

Fi+1
(αj) − N−

Fi+1
(αj) + 1)nj=i+1; fi is equal to the number of positive coordinates. The

first vectors generated during the process are: (1), (2, 0), (2, 1, 0), (3, 1, 0, 0), (3, 2, 0, 0, 0),
(3, 2, 1, 0, 0, 0), (4, 2, 1, 0, 0, 0, 0), etc. (see also Figure 4).

Noting the pattern we get that

f(n) = |E(F)| = 0 +

n−1
∑

i=1

fi

= 0 + 1 + 1 + 2 + 2 + 2 + 3 + 3 + 3 + 3 + · · · + f1 (6)

= (n− 1) + (n− 1 − 2) + · · · + (n− 1 − 2 − · · · − f1)

= nf1 −
f1

∑

i=1

i
∑

j=1

j = nf1 −
f1

∑

i=1

(

i+ 1

2

)

= nf1 −
(

f1 + 2

3

)

.

Moreover, f1 = k if
∑k

i=1 i < n ≤ ∑k+1
i=1 i (note that (6) contains n terms). Since n is an

integer, this is equivalent to

k(k + 1)

2
+

1

8
< n <

(k + 1)(k + 2)

2
+

1

8
(

k +
1

2

)2

< 2n <

(

k +
3

2

)2

k <
√

2n− 1
2 < k + 1

16

H2

H3

H4

H5

H6

H7

F1

F2

F3

F4

F5

F6

(3, 2, 1, 0, 0, 0)

(3, 2, 0, 0, 0)

(3, 1, 0, 0)

(2, 1, 0)

(2, 0)

(1)

vector

Figure 4: The history of both processes run on graphs with 7 vertices.

and thus f1 = ⌊
√

2n − 1/2⌋. This implies that the upper bound we claim is achieved by
the graph F . We will show that F contains a maximum possible number of edges, that is,
|E(G)| ≤ f(n). This will finish the proof of the theorem.

Having a graph G that satisfies properties (P1) and (P2), we consider the operation of
moving ‘left endpoints’ of edges ‘to right’ while maintaining these properties. Assume that
αiαj ∈ E(G) and i < j. Then the operation is defined as follows:

MoveToRight(αi, αj):

(1) k := max({x : i < x < j and αxαj /∈ E(G)} ∪ {i}),

(2) Z := {x < i : αxαi ∈ E(G)},

(3) If Z = ∅, then put E(G) := (E(G) \ {αiαj}) ∪ {αkαj};

otherwise put E(G) := (E(G) \ {αmin Zαi, αiαj}) ∪ {αmin Zαk, αkαj}.

Finally, we apply the following operation ϕ on graph G.

ϕ(G): for j := n down to 2

for i := j − 1 down to 1

if αiαj ∈ E(G), then MoveToRight(αi, αj).

An example of ‘MoveToRight’ can be seen in Figure 5. It is easily seen that ϕ(G) is a
subgraph of H = F : suppose ϕ(G) is not a subgraph of H = F . There must exist some αuαw

(u < w) which is an edge in ϕ(G) but not in H = F . By construction of H, the number of ’left
neighbours’ of αw in ϕ(G) is at most the number of ’left neighbours’ of αw in H = F , so there
must exist some αvαw (v < w) which is an edge in H = F , but not in ϕ(G). If u < v < w,
then in applying ϕ to G, ’MoveToRight’ is used and αuαw must be deleted. If v < u < w,

17

then in the construction of F , Fu would have added the edge αuαw (before considering the
edge αvαw). Thus, ϕ(G) must be a subgraph of H = F .

Finally, since the number of edges does not change after applying ϕ, |E(G)| = |E(ϕ(G))| ≤
|E(F)| = f(n).

c)

b)

a)

α1 α2 α3 α4 α5

α1 α2 α3 α4 α5

α1 α2 α3 α4 α5

MoveToRight(α3 , α5): k = 4, Z = {1, 2}
E(G) := (E(G)\{α1α3, α3α5}) ∪ {α1α4, α4α5}

MoveToRight(α3 , α4): k = 3, Z = {2}, E(G) := E(G)

MoveToRight(α1 , α4): k = 2, Z = ∅
E(G) := (E(G)\{α1α4}) ∪ {α2α4}

MoveToRight(α2 , α3): k = 2, Z = {1}, E(G) := E(G)

MoveToRight(α1 , α2): k = 1, Z = ∅, E(G) := E(G)

Figure 5: An example of MoveToRight for a graph on 5 vertices.

7 Conjectures

Finding the number of chips and a configuration that gives an infinite (recurrent) chip firing
game is very easy. Is this true for a cleaning sequence? Because of the closer relationship to
searching we conjecture the following.

Conjecture 7.1 It is an NP-complete problem to determine whether k brushes will clean a
graph.

The sequence from Theorem 4.1 cleans a copy of one of the factors before moving on to the
next, the next being determined by the cleaning sequence of the other factor. In Theorems 5.4
and 5.5 the cleaning sequence obtained from Theorem 4.1 was very close to optimal. Even
the graph in Figure 2, which shows the bound of Theorem 4.1 is not necessarily the best, still
has the optimal cleaning sequence where one cleans the copies of one factor in order.

Conjecture 7.2 Every cleaning sequence of G�H using the least number of brushes, consists
of using a cleaning sequence of one factor and the copies of the other factor are cleaned in
that order.

This would imply that b(Qn) is closer if not equal to the upper bound given in Theorem 5.4.

References

[1] B. Alspach, Searching and sweeping graphs: a brief survey, International Con-
ference in Combinatorics, Le Matematiche, Vol LIX (2004) - Fasc. I-II, pp. 5–37.

18

[2] A. Björner, L. Lovasz, and P. Shor, Chip firing games on graphs, European
Journal of Combinatorics 12 (1991), 283–291.

[3] P. Bak, C. Tang, and K. Wiesenfeld, Physics Review Letters 59 (1987) 381.

[4] H. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theo-
retical Computer Science. 209 (1998) 1–45.

[5] B. Bollobás and I. Leader, Edge-isoperimetric inequalities in the grid, Combina-
torica, 11 (1991), 299–314.

[6] F. R. K. Chung, Open Problems of Paul Erdős in Graph Theory, Journal of
Graph Theory 25 (1997) 3–36.

[7] D. Dhar, P. Ruelle, S. Sen, and D. Verma, Algebraic aspects of sandpile models,
Journal of Physics A 28 (1995) 805–831.

[8] D. Dyer, Sweeping graphs and digraphs, Ph.D. thesis, Simon Fraser University,
2004.

[9] K. Eriksson, Chip firing games on mutating graphs, SIAM Journal of Discrete
Mathematics, 9 (1996) 118–128.

[10] S. Even and R. Kupershtok, Layout area of the hypercube, Journal of Intercon-
nection Networks 4 (2003) 395-417.

[11] G. Fan, Path decompositions and Gallai’s conjecture, Journal of Combinatorial
Theory. B93 (2005) 117–125.

[12] L. H. Harper, Optimal assignments of numbers to vertices, SIAM Journal of
Applied Mathematics 12 (1964), 131–135.

[13] L. M. Kirousis and C.H. Papadimitriou, Interval graphs and searching, Discrete
Math 55 (1985) 181–184.

[14] C. Magnien, Classes of lattices induced by chip firing (and sandpile) dynamics,
European Journal of Combinatorics, 24 (2003) pp. 665–683.

[15] S. McKeil, Chip Firing Cleaning Processes, M.Sc. Thesis, Dalhousie University
(2007).

[16] N. Megiddo, S. L. Hakimi, M. Garey, D. Johnson, C. H. Papadimitriou The
complexity of searching a graph. Journal of the ACM 35(1988) pp. 1844.

[17] C. Merino, The Chip Firing Game and Matroid Complexes, in Discrete Models:
Combinatorics, Computation, and Geometry, DM-CCG 2001, Discrete Mathe-
matics and Theoretical Computer Science Proceedings AA, (2001) pp. 245–256.

[18] K. Nakano, Linear layout of generalized hypercubes, International Journal of
Foundations of Computer Science, 14 (2003) 137-156.

19

[19] T. D. Parsons, Pursuit-evasion in a graph, Theory and Applications of Graphs,
Y. Alavi and D. R. Lick, eds. Springer, Berlin, (1976), pp. 426–441.

[20] T. D. Parsons, The search number of a connected graph, Proc. Ninth Southeastern
Conf. Combinatorics, Graph Theory and Computing, Congressus Numerantium
XXI, Winnipeg, 1978, pp. 549–554.

20

