
SIAM J. DISCRETE MATH. c© 2013 Society for Industrial and Applied Mathematics
Vol. 27, No. 2, pp. 732–756

VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS∗

ANTHONY BONATO†, DIETER MITSCHE† , AND PAWE�L PRA�LAT†

Abstract. We examine a dynamic model for the disruption of information flow in hierarchical
social networks by considering the vertex-pursuit game Seepage played in directed acyclic graphs
(DAGs). In Seepage, agents attempt to block the movement of an intruder who moves downward
from the source node to a sink. The minimum number of such agents required to block the intruder
is called the green number. We propose a generalized stochastic model for DAGs with given expected
total degree sequence. Seepage and the green number are analyzed in stochastic DAGs in both the
cases of a regular and power law degree sequence. For each such sequence, we give asymptotic bounds
(and in certain instances, precise values) for the green number.

Key words. vertex-pursuit games, directed acyclic graphs, Seepage, regular graphs, power law
graphs

AMS subject classifications. 05C80, 05C57, 94C15

DOI. 10.1137/120866932

1. Introduction. The on-line social network Twitter is a well-known example of
a complex real-world network with over 300 million users. The topology of the Twitter
network is highly directed, with each user following another (with no requirement of
reciprocity). By focusing on a popular user as a source (such as Lady Gaga or Justin
Bieber, each of whom has over 11 million followers [15]), we may view the followers of
the user as a certain large-scale hierarchical social network. In such networks, users
are organized on ranked levels below the source, with links (and as such, information)
flowing from the source downwards to sinks. We may view hierarchical social networks
as directed acyclic graphs, or DAGs for short. Hierarchical social networks appear in
a wide range of contexts in real-world networks, ranging from terrorist cells to the
social organization in companies; see, for example, [1, 8, 10, 12, 14].

In hierarchical social networks, information flows downward from the source to
sinks. Disrupting the flow of information may correspond to halting the spread of
news or gossip in an on-line social network, or intercepting a message sent in a ter-
rorist network. How do we disrupt this flow of information while minimizing the
resources used? We consider a simple model in the form of Seepage, a vertex-pursuit
game introduced in [6]. Seepage is motivated by the 1973 eruption of the Eldfell vol-
cano in Iceland. In order to protect the harbor, the inhabitants poured water on the
lava in order to solidify it and thus, halt its progress. The game has two players, the
sludge and a set of greens (note that one player controls all the greens), a DAG with
one source (corresponding to the top of the volcano), and many sinks (representing
the lake). The players take turns, with the sludge going first by contaminating the
top node (source). Then it is the greens’ turn, and they choose some nonprotected,
noncontaminated nodes to protect. On subsequent rounds the sludge moves to a non-
protected node that is adjacent (that is, downhill) to the node the sludge is currently
occupying and contaminates it; note that the sludge is located at a single node in

∗Received by the editors February 22, 2012; accepted for publication (in revised form) January
23, 2013; published electronically April 16, 2013. The authors gratefully acknowledge support from
NSERC, Mprime, and Ryerson University.

http://www.siam.org/journals/sidma/27-2/86693.html
†Department of Mathematics, Ryerson University, Toronto, ON, M5B 2K3, Canada (abonato@

ryerson.ca, dmitsche@ryerson.ca, pralat@ryerson.ca).

732

VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 733

each turn. The greens, on their turn, proceed as before; that is, they choose some
nonprotected, noncontaminated nodes to protect. Once protected or contaminated,
a node stays in that state to the end of the game. The sludge wins if some sink is
contaminated; otherwise the greens win (that is, if they erect a cutset of nodes which
separates the contaminated nodes from the sinks). The name “Seepage” is used be-
cause the rate of contamination is slow. The game is related to vertex-pursuit games
such as Cops and Robbers (for an introduction and further reading on such games,
see [4]), although the greens in our case need not move to neighboring nodes. For an
example, see the DAG in Figure 1. (We omit orientations of directed edges in the
figure and assume all edges point from higher nodes to lower ones.)

s

Fig. 1. A DAG where 2 greens are needed to win. The white nodes are the sinks.

To obtain the results in this paper, a number of different winning strategies are
employed by the two players. In some cases one of the two players can play arbitrarily
(at least up to some point), whereas in other cases the optimal strategy is simply a
“greedy” one (for example, when the greens protect neighbors as close as possible to
the current position of the sludge). In some other cases, much more sophisticated
strategies have to be applied.

To date, the only analysis of Seepage has been in [6], which presented results for
DAGs. Seepage may be extended to certain directed graphs with cycles, although
we do not consider this variation here (see also section 6). In [6], a characterization
was given of directed trees where one green has a winning strategy, and bounds were
given on the number of greens needed to win in truncated products of paths. See also
Chapter 9 of [4].

Seepage displays some interesting similarities to an approach used in mathemati-
cal counterterrorism, where cutsets in partially ordered sets (posets), which are just a
special kind of DAG, are used to model the disruption of terrorist cells. As described
in Farley [8, 9], the maximal elements of the poset are viewed as the leaders of the
terrorist organization, who submit plans down via the edges to the nodes at the bot-
tom (the foot soldiers or minimal nodes). Only one messenger needs to receive the
message for the plan to be executed. Farley considered finding minimum-order sets
of elements in the poset, which when deleted, disconnect the minimal elements from
the maximal one (that is, find a minimum cut). We were struck by the similarities
in the underlying approaches in [6] and [8, 9]; for example, in Seepage the greens are
trying to prevent the sludge from moving to the sinks by blocking nodes. The main
difference is that Seepage is “dynamic” (that is, the greens can move or choose new

734 A. BONATO, D. MITSCHE, AND P. PRA�LAT

sets of nodes each time-step), while the min-cutset approach is “static” (that is, find
a cutset in one time-step). Seepage is perhaps a more realistic model of counterter-
rorism, as the agents do not necessarily act all at once but over time. However, in
both approaches deterministic graphs are used.

We note that a stochastic model was presented for so-called network interdiction
in [11], where the task of the interdictor is to find a set of edges in a weighted network
such that the removal of those edges would maximally increase the cost to an evader
traveling on a path through the network. A stochastic model for complex DAGs
was given in [2]. For more on models of on-line social networks and other complex
networks, see [3].

Our goal in the present article is to analyze Seepage and the green number when
played on a random DAG as a model of disrupting a given hierarchical social network.
We focus on mathematical results and give a precise formulation of our random DAG
model in section 2. Our model includes as a parameter the total degree distribution
of nodes in the DAG. This has some similarities to the G(w) model of random graphs
with expected degree sequences [5] or the pairing model [17]. We study two cases:
regular DAGs (where we would expect each level of the DAG to have nodes with
about the same out-degree), and power law DAGs (where the degree distribution is
heavy tailed, with many more low degree nodes but a few which have a high degree).
Rigorous results are presented for regular DAGs in Theorem 3.1, and for power law
DAGs in Theorem 3.2. An overview of the main results is given in section 3.

Throughout, G will represent a finite DAG. For background on graph theory, the
reader is directed to [7, 16]. The total degree of a vertex is the sum of its in- and
out-degrees. Additional background on Seepage and other vertex-pursuit games may
be found in [4].

2. Definitions. We denote the natural numbers (including 0) by N, and the
positive integers and real numbers by N

+ and R
+, respectively. For an event A on a

probability space, we let P(A) denote the probability of A. Given a random variable
X , we let E(X) and Var(X) be the expectation and the variance of X , respectively.

We now give a formal definition of our vertex-pursuit game. Fix v ∈ V (G), a
node of G. We will call v the source. For i ∈ N let

Li = Li(G, v) = {u ∈ V (G) : dist(u, v) = i},

where dist(u, v) is the distance between u and v in G. In particular, L0 = {v}. For a
given j ∈ N

+ and c ∈ R
+, let G(G, v, j, c) be the game played on graph G with the

source v and the sinks Lj . The game proceeds over a sequence of discrete time-steps.
Exactly

ct = �ct� − �c(t− 1)�

new nodes are protected at time-step t. (In particular, at most ct nodes are protected
by the time t.) Note that if c is an integer, then exactly c nodes are protected at
each time-step, so this is a natural generalization of Seepage. To avoid trivialities, we
assume that Lj �= ∅.

The sludge starts the game on the node v1 = v. The second player, the greens,
can protect c1 = �c� nodes of G \ {v}. Once nodes are protected, they will stay
protected to the end of the game. At time t ≥ 2, the sludge makes the first move by
sliding along a directed edge from vt−1 to vt, which is an out-neighbor of vt−1. After
that the greens have a chance to protect another ct nodes. Since the graph is finite

VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 735

and acyclic, the sludge will be forced to stop moving, and so the game will eventually
terminate. If he reaches any node of Lj , then the sludge wins; otherwise, the greens
win.

If c = Δ(G) (the maximum out-degree of G), then the game G(G, v, j, c) can be
easily won by the greens by protecting all neighbors of the source. Therefore, the
following graph parameter, the green number, is well defined:

gj(G, v) = inf{c ∈ R
+ : G(G, v, j, c) is won by the greens}.

It is clear that for any j ∈ N+, we have gj+1(G, v) ≤ gj(G, v).

2.1. Random DAG model. There are two parameters of the model: n ∈ N
+

and an infinite sequence

w = (w1, w2, . . .)

of nonnegative integers. Note that the wi’s may be functions of n. The first layer
(that is, the source) consists of one node: L0 = {v}. The next layers are recursively
defined. For the inductive hypothesis, suppose that all layers up to and including the
layer k are created, and let us label all nodes of those layers. In particular,

Lk = {vdk−1+1, vdk−1+2, . . . , vdk
},

where dk =
∑k

i=0 |Li|. We would like the nodes of Lk to have a total degree with
distribution (wdk−1+1, wdk−1+2, . . . , wdk

). However, it can happen that some node

vi ∈ Lk has an in-degree deg−(vi) already larger than wi, and so there is no hope
for the total degree of wi. If this is not the case, then the requirement can be easily
fulfilled. As a result, w, the desired degree distribution, will serve as a (deterministic)
lower bound for the actual degree distribution we obtain during the (random) process.

Let S be a new set of nodes of cardinality n. All directed edges that are created
at this time-step will be from the layer Lk to a random subset of S that will form a
new layer Lk+1. Each node vi ∈ Lk generates max{wi−deg−(vi), 0} random directed
edges from vi to S. Therefore, we generate

ek =
∑

vi∈Lk

max{wi − deg−(vi), 0}

random edges at this time-step. The destination of each edge is chosen uniformly
at random from S. All edges are generated independently, and so we perform ek
independent experiments. The set of nodes of S that were chosen at least once forms
a new layer Lk+1. Note that it can happen that two parallel edges are created during
this process. However, this is a rare situation for sparse random graphs we are going
to investigate in this paper. Hence, our results on the green number will also hold for
a slightly modified process which excludes parallel edges.

3. Main results. In this paper, we focus on two specific sequences: regular and
power law. We will describe them both and state the main results in the next two
subsections. We consider asymptotic properties of the model as n → ∞. We say
that an event in a probability space holds asymptotically almost surely (a.a.s.) if its
probability tends to one as n goes to infinity.

736 A. BONATO, D. MITSCHE, AND P. PRA�LAT

3.1. Random regular DAGs. We consider a constant sequence; that is, for
i ∈ N

+ we set wi = d, where d ≥ 3 is a constant. In this case, we refer to the stochastic
model as random d-regular DAGs. Since wi = d, observe that |Lj | ≤ d(d − 1)j−1

(deterministically) for any j, since at most d(d − 1)j−1 random edges are generated
when Lj is created. We will write gj for gj(G, v), since the graph G is understood to
be a d-regular random graph, and L0 = {v} = {v1}.

Theorem 3.1. Let ω = ω(n) be any function that grows (arbitrarily slowly) as
n tends to infinity. For the random d-regular DAGs, we have the following.

(i) A.a.s. g1 = d.
(ii) If 2 ≤ j = O(1), then a.a.s.

gj = d− 2 +
1

j
.

(iii) If ω ≤ j ≤ logd−1 n− ω log logn, then a.a.s.

gj = d− 2.

(iv) If logd−1 n − ω log log n ≤ j ≤ logd−1 n − 5
2s log2 logn + logd−1 logn − O(1)

for some s ∈ N
+, then a.a.s.

d− 2− 1

s
≤ gj ≤ d− 2.

(v) Let s ∈ N
+, s ≥ 4. There exists a constant Cs > 0 such that if j ≥ logd−1 n+

Cs, then a.a.s.

gj ≤ d− 2− 1

s
.

The whole of section 4 is devoted to proving this theorem. Theorem 3.1 tells us
that the green number is slightly bigger than d − 2 if the sinks are located near the
source, and then it is d− 2 for a large interval of j. Later, it might decrease slightly
since an increasing number of vertices already have in-degree 2 or more, but only for
large j (part (v)) can we prove better upper bounds than d− 2. One interpretation of
this fact is that the resources needed to disrupt the flow of information in a typical
regular DAG is (almost) independent of j and relatively low (as a function of j).

3.2. Random power law DAGs. We have three parameters in this model:
β > 2, d > 0, and 0 < α < 1. For a given set of parameters, let

M = M(n) = nα, i0 = i0(n) = n

(
d

M

β − 2

β − 1

)β−1

,

and

c =

(
β − 2

β − 1

)
dn

1
β−1 .

Finally, for i ≥ 1 let

wi = c(i0 + i− 1)−
1

β−1 .

In this case, we refer to the model as random power law DAGs.

VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 737

We note that the sequence w is decreasing (in particular, the source has the
largest expected degree). Moreover, the number of coordinates that are at least k is
equal to

n

(
β − 2

β − 1

d

k

)β−1

− i0 = (1 + o(1))n

(
β − 2

β − 1

d

k

)β−1

= Θ(nk−β+1),

and hence the sequence follows a power law with exponent β. From the same obser-
vation, it follows that the maximum value is

w1 = ci
− 1

β−1

0 = M.

Finally, the average of the first n values is

c

n

i0+n−1∑
i=i0

i−
1

β−1 = (1 + o(1))
c

n

(
β − 1

β − 2

)
n1− 1

β−1 = (1 + o(1))d,

since M = o(n).
Our main result on the green number gj = gj(G, v) in the case of power law

sequences is the following.
Theorem 3.2. Let

γ = dβ−1

(
β − 2

β − 1

)β−2
⎛
⎝(1 + (dβ − 2

β − 1

)1−β
)β−2

β−1

− 1

⎞
⎠

if 1
α −β+3 ∈ N

+ \ {1, 2}, and γ = 1 otherwise. Let j1 be the largest integer satisfying
j1 ≤ max{ 1

α − β + 3, 2}. Let j2 = O(log logn) be the largest integer such that

dβ−1
(γ

dβ−1
nα(j1−1)−1

)(β−2
β−1)

j2−j1

≤ (ω log logn)−max{2,(β−1)2}.

Finally, let

ξ =

(
β − 2

β − 1

)
d

((
d(β − 2)

β − 1

)β−1

+ 1

)− 1
β−1

.

Then, for 1 ≤ j ≤ j2 − 1 we have that a.a.s.

(1) (1 + o(1))w̄j ≤ gj ≤ (1 + o(1))w̄j−1,

where w̄0 = w̄1 = M , for 2 ≤ j < 1
α − β + 3,

w̄j =

⎧⎪⎪⎨
⎪⎪⎩
nα if 2 ≤ j < 1

α − β + 2,

ξnα if 2 ≤ j = 1
α − β + 2,(

β−2
β−1

)
dn

1−α(j−1)
β−1 if 1

α − β + 2 < j < 1
α − β + 3 and j ≥ 2,

and for j1 ≤ j ≤ j2 − 1,

w̄j =

(
β − 2

β − 1

)(γ

dβ−1
nα(j1−1)−1

)−(β−2
β−1)

j−j1/(β−1)

.

In the power law case, Theorem 3.2 tells us that the green number is smaller for
large j. This reinforces the view that intercepting a message in a hierarchical social
network following a power law is more difficult close to levels near the source.

738 A. BONATO, D. MITSCHE, AND P. PRA�LAT

4. Proofs for random d-regular DAGs. Before analyzing the game on ran-
dom d-regular DAGs, we need a few lemmas. We will be using the following version
of a well-known Chernoff bound.

Lemma 4.1 (see [13]). Let X be a random variable that can be expressed as a
sum X =

∑n
i=1 Xi of independent random indicator variables, where Xi is a Bernoulli

random variable with success probability pi with (possibly) different pi = P(Xi = 1) =
EXi > 0. Then the following holds for t ≥ 0:

P(X ≥ EX + t) ≤ exp

(
− t2

2(EX + t/3)

)
,(2)

P(X ≤ EX − t) ≤ exp

(
− t2

2EX

)
.(3)

In particular, if ε ≤ 3/2, then

P(|X − EX | ≥ εEX) ≤ 2 exp

(
−ε2EX

3

)
.(4)

We will start by proving the threshold for appearance of vertices of in-degree k.
Lemma 4.2. Let ω = ω(n) be any function that grows (arbitrarily slowly) as n

tends to infinity. Then a.a.s. the following properties hold.
(i) |Lj | = (1 − o(1))d(d− 1)j−1 for any 1 ≤ j ≤ logd−1 n− ω.

(ii) For all k ≥ 2, let jk = k−1
k logd−1 n. For every v ∈ Lj, we have that deg

−(v) <
k if j < jk − ω, and deg−(v) = k for some v ∈ Ljk+ω. In particular, the
threshold for the appearance of vertices of in-degree k is jk.

(iii) |Lj | = d(d− 1)j−1 for 1 ≤ j ≤ 1
2 logd−1 n− ω.

Proof. For (i) note that the probability that a given vertex v ∈ S has in-degree
k ≥ 2 at level j ≥ 1 is at most

(
d(d − 1)j−1

k

)(
1

n

)k

= O

(
(d− 1)jk

nk

)
.

Thus, the expected number of vertices of in-degree k at level j is O((d−1)jk

nk−1) and, in

particular, the expected number of vertices of in-degree 2 or more at Lj is O((d−1)2j

n).

Set αj = (d− 1)
1
2 logd−1 n− j

2 . By Markov’s inequality, with probability at least 1− 1
αj

,

we derive that

(5)
∣∣∣{v ∈ Lj : deg

−(v) ≥ 2}
∣∣∣ = O

(
(d− 1)2jαj

n

)
= O

(
(d− 1)3j/2√

n

)
.

Since

logd−1 n−ω∑
j=1

1

αj
= (d− 1)−

1
2 logd−1 n

logd−1 n−ω∑
j=1

(d− 1)j/2 = O
(
(d− 1)−

ω
2

)
= o(1),

we obtain that a.a.s. (5) holds for all values of j ≤ logd−1 n− ω. Since we aim for a
statement that holds a.a.s., we can assume for j ≤ logd−1 n− ω that

(6) |Lj+1| = (d− 1)|Lj | −O

(
(d− 1)3j/2√

n

)
.

VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 739

We prove (i) by strong induction. It follows from (5) that |L1| = d, so (i) holds
for j = 1. Suppose that (i) holds for all i < j; that is, |Li| = (1 − o(1))d(d − 1)i−1.
By (6) and the inductive hypothesis (used recursively), we obtain that

|Lj | = (d− 1)|Lj−1| −O

(
(d− 1)3j/2√

n

)

= (d− 1)|Lj−1|
(
1−O

(
(d− 1)j/2√

n

))
= d(d− 1)j−1E,

where

E =
∏

j≤logd−1 n−ω

(
1−O

(
(d− 1)j/2√

n

))
.

Note that

E = exp

⎛
⎝−

∑
j≤logd−1 n−ω

O

(
(d− 1)j/2√

n

)⎞⎠
= exp

(
−O
(
(d− 1)−ω/2

))
= (1− o(1)).

We now prove (ii) and (iii). By part (i), the number of random edges ej−1

emanating from Lj−1 is (1 − o(1))d(d − 1)j−1. When layer j is created, these edges
are joined to random vertices in the set S = {s1, s2, . . . , sn} of cardinality n. For any
fixed k ≥ 2 and any fixed layer 1 ≤ j ≤ logd−1 n− ω, we define the indicator variable
Ii to be 1 if si has in-degree k and 0 otherwise, for i = 1, 2, . . . , n. Let X =

∑n
i=1 Ii.

As observed in part (i) of this proof,

P(Ii = 1) =

(
ej−1

k

)(
1

n

)k (
1− 1

n

)ej−1−k

=

(
ej−1

k

)(
1

n

)k

(1 + o(1)) = Θ

(
(d− 1)jk

nk

)
,

and thus, E(X) = Θ((d−1)jk

nk−1). By Markov’s inequality, a.a.s. for j ≤ k−1
k logd−1 n−ω,

no vertices of in-degree k are present. By considering the case k = 2, this shows that
for j ≤ 1

2 logd−1 n−ω, all vertices have in-degree 1 a.a.s., and thus, for such j we have
|Lj | = d(d− 1)j−1 a.a.s. Hence, (iii) holds.

We find that

P(Ii = 1, Ii′ = 1) =

(
ej−1

k

)(
ej−1 − k

k

)(
1

n

)2k (
1− 2

n

)ej−1−2k

=

(
ej−1

k

)2(
1

n

)2k

(1 + o(1)).

740 A. BONATO, D. MITSCHE, AND P. PRA�LAT

Thus,

E(X2) =
∑
i�=i′

P(Ii = 1, Ii′ = 1) +
∑
i

P(Ii = 1)

≤
∑
i�=i′

((
ej−1

k

)2(
1

n

)2k

(1 + o(1))

)
+ E(X)

=

[
n

(
ej−1

k

)(
1

n

)k
]2

(1 + o(1)) + E(X)

= (E(X))2(1 + o(1)) + E(X).

Hence, for j = k−1
k logd−1 n+ ω, it follows from Chebyshev’s inequality that

P(X = 0) ≤ Var(X)

(E(X))2
=

E(X2)

(E(X))2
− 1 = o(1),

and hence, a.a.s. there are vertices of in-degree k, proving part (ii) of the lemma.
The lemma is enough to prove the first two parts of the main theorem.
Proof of Theorem 3.1 (i), (ii), and the upper bound of (iii). By Lemma 4.2 (iii),

for j ≤ 1
2 logd−1 n−ω, the game is played on a tree. Part (i) is trivial, since the greens

have to protect all vertices in L1, or they lose.

To derive the upper bound of (ii), note that for c = d − 2 + 1
j , we have that

cj = d − 1 (ci = d− 2 for 1 ≤ i ≤ j − 1). The greens can play arbitrarily during the
first j − 1 steps and then block the sludge on level j. If j ≥ ω, then we have that
d− 2 is an upper bound of gj , and the upper bound of (iii) holds.

To derive the lower bound of (ii), note that if d− 2 ≤ c < d− 2− 1
j , then exactly

d−2 new vertices are protected at each time-step. Without loss of generality, we may
assume that the greens always protect vertices adjacent to the sludge (since the game
is played on the tree, there is no advantage to playing differently). No matter how
the greens play, there is always at least one vertex not protected, and the sludge can
reach Lj .

For a given vertex v ∈ Lt and integer j, let us denote by S(v, j) the subset of
Lt+j consisting of vertices at distance j from v (that is, those that are in the jth level

of the subgraph whose root is v). Let N(v, j) =
∑j

i=1 S(v, i) be the subgraph of all
vertices of depth j pending at v. Call a vertex u ∈ S bad if u ∈ N(v, j) and u has
in-degree at least 2 (recall that S is a set of n vertices used in the process of generating
a random graph). Let X(v, j) be the total number of bad vertices in N(v, j). In the
next lemma, we estimate X(v, j).

Lemma 4.3. A.a.s. the following holds for some large enough constant C′ > 0.

For any v ∈ Lt, where t ≤ logd−1 n− ω, and any j such that (d−1)t+2j

n ≤ logn,

X(v, j) ≤ C′ logn.

Proof. Fix v ∈ Lt and let j be the maximum integer satisfying (d−1)t+2j

n ≤ logn.
Since there are O(n) possible vertices to consider, it is enough to show that the bound
holds with probability 1− o(n−1).

For u ∈ S, let Iu(v, i) (1 ≤ i ≤ j) be the event that u ∈ S(v, i) and u is bad. In
order for u to be in S(v, i), u must receive at least one edge from a vertex in S(v, i−1),

VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 741

and in order to be bad it must have at least one more edge from either S(v, i− 1) or
another vertex at layer Lt+i−1. Thus,

P(Iu(v, i)) =
O((d − 1)i)

n

O((d − 1)t+i)

n
= O

(
(d− 1)t+2i

n2

)
,

since there are O((d−1)i) edges emanating from S(v, i−1) and there are O((d−1)t+i)
edges emanating from Lt+i−1. Letting Iu = Iu(v, i) the corresponding indicator
variable, we have that

E

(∑
u∈S

Iu

)
= O

(
(d− 1)t+2i

n

)
.

Since we know that P(Iu = 1 | Iu′ = 1) ≤ P(Iu = 1 | Iu′ = 0), note that
P(Iu = 1 | Iu′ = 1) ≤ P(Iu = 1) (for a fixed total number of edges, the probability for
u to be bad is smaller if another vertex u′ is bad) and, by the law of total probability,
at least one of the two conditional probabilities has to be at most P(Iu = 1). Thus,∑

u∈S Iu is bounded from above by
∑

u∈S I ′u, where the I ′u are independent indicator
random variables with

P(Iu = 1) ≤ P(I ′u = 1) = C
(d− 1)t+2i

n2

for some sufficiently large C > 0. The total number of bad vertices in the subgraph
of depth j pending at v is X =

∑j
i=1

∑
u∈S Iu(v, i) ≤ ∑j

i=1

∑
u∈S I ′u(v, i). Since

(d−1)t+2j

n ≤ logn,

E(X) ≤
j∑

i=1

C
(d− 1)t+2i

n
= O

(
(d− 1)t+2j

n

)
= O(log n),

and by the Chernoff bound given by (2), X ≤ C′ logn with probability 1− o(n−1) for
some C′ > 0 large enough.

We need one more lemma. For a given vertex v ∈ Lt and integer j, a vertex u ∈ S
is called very bad if it has at least two incoming edges from vertices in S(v, i − 1).
In particular, every very bad vertex is bad. Let Z(v, j) be the number of very bad
vertices in N(v, j).

For a given T = Θ(log logn) and any L̂T ⊆ LT such that |L̂T | = o(|LT |/ log2 n),
we will consider the subgraph G(L̂T) consisting of all vertices to which there is a
directed path from some vertex in L̂T . For any t > T , let L̂t be a subset of Lt that is
in G(L̂T).

Lemma 4.4. Let L̂T ⊆ LT for some T = Θ(log log n) be such that |L̂T | =
o(|LT |/ log2 n). Then a.a.s. for any v ∈ L̂t, where T ≤ t ≤ logd−1 n − ω and any

integer j with (d−1)t+2j

n ≤ logn, we have that Z(v, j) = 0.

Proof. Fix any v ∈ L̂t for some T ≤ t ≤ logd−1 n − ω. As in Lemma 4.3, by
letting Hu(v, i) be the event that u ∈ S is very bad, we have

P(Hu(v, i)) =
O((d − 1)i)

n

O((d − 1)i)

n
= O

(
(d− 1)2i

n2

)
.

Letting Hu = Hu(v, i) be the corresponding indicator variable, we have that

E

(∑
u∈S

Hu

)
= O

(
(d− 1)2i

n

)
.

742 A. BONATO, D. MITSCHE, AND P. PRA�LAT

Analogously as in the previous proof, define independent indicator random variables

H ′
u with P(Hu = 1) ≤ P(H ′

u = 1) = C (d−1)2i

n2 . We have

Z(v, j) =

j∑
i=1

∑
u∈S

Hu(v, i) ≤
j∑

i=1

∑
u∈S

H ′
u(v, i),

and so

E(Z(v, j)) ≤
j∑

i=1

C
(d− 1)2i

n
= O

(
(d− 1)2j

n

)
= O

(
logn

(d− 1)t

)
,

since (d−1)t+2j

n ≤ logn.

As |L̂T | = o(|LT |/ log2 n), we have that

|L̂t| ≤ |L̂T |(d− 1)t−T = o((d− 1)t/ log2 n),

and so the expected number of very bad vertices found in L̂t is o(1/ logn). Finally,
the expected number of very bad vertices in any sublayer L̂t (T ≤ t ≤ logd−1 n− ω)
is o(1), and the result holds by Markov’s inequality.

We now come back to the proof of the main theorem for random regular DAGs.
Proof of Theorem 3.1 (iii) and (iv). Note that we already proved an upper bound

of (iii) (see the proof of parts (i) and (ii)). Since gj is nonincreasing as a function of
j, an upper bound of (iv) also holds.

We will prove a lower bound of (iv) first. The lower bound of (iii) will follow
easily from there. Let s ∈ N

+ and suppose that we play the game with parameter
c = d−2− 1

s . If s �= 1, then for every i ∈ N, we have that csi+1 = d−3, and ct = d−2
otherwise. (For s = 1 we find that ct = d− 3 for any t.) Suppose that the greens play
greedily (that is, they always protect vertices adjacent to the sludge) and the graph is
locally a tree. Note that during the time between si+ 2 and s(i+ 1), they can direct
the sludge, leaving him exactly one vertex to choose from at each time-step. However,
at time-step s(i+ 1) + 1, the sludge has 2 vertices to choose from. The sludge has to
use this opportunity wisely, since arriving at a bad vertex (see definition above) when
the greens can protect d − 2 vertices would result in him losing the game. Our goal
is to show that the sludge can avoid bad vertices and, as a result, he has a strategy
to reach the sink Lj . Since we aim for a statement that holds a.a.s., we can assume
that all properties mentioned in Lemmas 4.2, 4.3, and 4.4 hold.

Before we describe a winning strategy for the sludge, let us discuss the following
useful observation. While it is evident that the greens should use a greedy strategy
to play on the tree, it is less evident in our situation. Perhaps instead of playing
greedily, the greens should protect a vertex far away from the sludge, provided that
there are at least two paths from the sludge to this vertex. However, this implies
that the vertex is very bad, and we know that very bad vertices are rare. It follows
from Lemma 4.4 that there is no very bad vertex within distance j, provided that the

sludge is at a vertex in Lt, t = Ω(log logn), and (d−1)t+2j

n ≤ logn. (For early steps we
know that the graph is locally a tree, so there are no bad vertices at all.) Therefore,
without loss of generality, we can assume that at any time-step t of the game, the
greens protect vertices greedily or protect vertices at distance at least j, where j is

the smallest value such that (d−1)t+2j

n > logn. We call the latter protected vertices
dangerous. The sludge has to make sure that there are no nearby bad or dangerous
vertices.

VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 743

Let

T = s(log2 logn+ C),

where the constant C > 0 will be determined soon and is sufficiently large such
that the sludge is guaranteed to escape from all bad or dangerous vertices which
are close to him. Let δ = 3/log2(d− 1)/(d− 2). During the first δT time-steps,
the sludge chooses any arbitrary branch. Since he is given this opportunity at least
δ log2 logn = 3 log(d−1)/(d−2) logn times and each time he cuts the number of possible

destinations by a factor of d−2
d−1 , the number of possible vertices the sludge can reach

at time δT is O(|LδT |/ log3 n). From that point on, it follows from Lemma 4.4 that
there are no nearby very bad vertices. At time t1 = δT , by Lemma 4.2, there are no
bad vertices at distance

d1 =
1

2
logd−1 n− δT − ω ≥ T

from the sludge, and hence, no dangerous vertices within this distance. It follows
from Lemma 4.3 that there are O(log n) bad vertices at distance

d̄1 =
1

2
logd−1 n+

1

2
logd−1 logn− δT

2
.

There are O(log n) dangerous vertices within this distance (since the total number of
protected vertices during the whole game is of this order). Thus, there are O(log n)
bad or dangerous vertices at a distance between d1 and d̄1 from the sludge.

To derive a lower bound on the length of the game, we provide a strategy for the
sludge that allows him to play for at least a certain number of steps, independently
of the greens’ behavior. In particular, his goal is to avoid these bad or dangerous
vertices: as long as the sludge is occupying a vertex that is not bad, there is at least
one vertex on the next layer available to choose from. More precisely, it follows from
Lemma 4.4 that from time δT onwards, locally there are no very bad vertices. Let us
call a round a sequence of T time-steps. Since all bad vertices are in distinct branches,
in every sth time-step the sludge can halve the number of bad vertices. Therefore,
after one round the sludge can escape from all (C′+1) logn bad or dangerous vertices
that are under consideration in a given round, provided that C > 0 is a large enough
constant. (Recall that the constant C′ is defined in Lemma 4.3.)

Using this strategy, at time t2 = (δ + 1)T there are no bad or dangerous vertices
at distance

d2 = d̄1 − T =
1

2
logd−1 n+

1

2
logd−1 logn− δ + 2

2
T ≥ T.

To see this, note that the sludge escaped from all bad or dangerous vertices, which at
time t1 were at distance d̄1, and he has advanced T steps by now. Using Lemma 4.3
again, we find that there are O(log n) bad or dangerous vertices at distance

d̄2 =
1

2
logd−1 n+

1

2
logd−1 logn− δ + 1

2
T.

Arguing as before, we find that it takes another T steps to escape from them.
In general, at time ti = (δ+ i− 1)T , there are O(log n) bad or dangerous vertices

at a distance between

di =
1

2
logd−1 n+

1

2
logd−1 logn− δ + i

2
T

744 A. BONATO, D. MITSCHE, AND P. PRA�LAT

and

d̄i =
1

2
logd−1 n+

1

2
logd−1 logn− δ + i− 1

2
T.

Thus, as long as di ≥ T , the strategy of escaping from bad or dangerous vertices before
actually arriving at that level is feasible. Moreover, we can finish this round, and so
the sludge is guaranteed to use this strategy until time ti, where i is the smallest value
such that di ≤ T . Solving this for i, we obtain that

(δ + i+ 2)

2
T ≤ 1

2
logd−1 n+

1

2
logd−1 logn,

and so

ti = (δ + i− 1)T ≤ logd−1 n+ logd−1 logn− 3T.

Hence,

ti = (δ + i− 1)T ≤ logd−1 n− 3s log2 logn+ logd−1 logn−O(1).

Finally, note that if i is the smallest value such that di ≤ T , we get that di−1 ≥
T , and so di ≥ T

2 . Hence, another T/2 steps can be played, and the constant of
the second order term can be improved from 3s log2 logn to 5

2s log2 logn, yielding
part (iv). Part (iii) follows by taking s to be a function of n slowly growing to
infinity.

Our next goal is to show that when j = logd−1 n + C, the value of gj is slightly
smaller than d− 2, provided that C is a sufficiently large constant. However, before
we do it, we need one more observation. It follows from Lemma 4.2 (i) that a.a.s.
|Lt| = (1− o(1))d(d− 1)t−1 for t = logd−1 n−ω (ω = ω(n) is any function tending to
infinity with n, as usual). However, this is not the case when t = logd−1 n+O(1). At
this point of the process, a positive fraction of vertices of Lt is bad. This, of course,
affects the number of edges from Lt to Lt+1. In fact, the number of edges between
two consecutive layers converges to c0n as shown in the next lemma.

Lemma 4.5. Let c0 be the constant satisfying

d−1∑
k=1

(d− k)
ck

k!
e−c = c.

For every ε > 0, there exists a constant Cε such that a.a.s. for every logd−1 n+Cε ≤
t ≤ 2 logd−1 n,

(1 − e−c0+ε)n ≤ |Lt| ≤ (1− e−c0−ε)n,

and the number of edges between Lt and Lt+1 is at least (c0−ε)n and at most (c0+ε)n.
Proof. Suppose that the layer Lt has in total cn random incoming edges, for some

c = c(n) ∈ (0, 1]. Then the probability that a vertex v ∈ S (recall that S is the set of
cardinality n used to create layer Lt) has in-degree k ∈ N (that is, absorbs k incoming
edges, or attracts no edges if k = 0) is

(
cn

k

)(
1

n

)k (
1− 1

n

)cn−k

= (1 + o(1))
ck

k!
e−c.

VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 745

Note that each vertex of in-degree 1 ≤ k ≤ d − 1 generates d − k edges to the next
layer. Further, vertices of in-degrees k or more do not have any offspring, and vertices
of S of in-degree 0 are not in Lt. Therefore, the expected number of outgoing edges
produced by all vertices in layer Lt is

(1 + o(1))

d−1∑
k=1

(d− k)
ck

k!
e−cn.

The events considered here are almost independent (one can compute higher moments
and see that the kth moment is asymptotically equal to the kth power of the first
moment), so for any 0 ≤ k ≤ d − 1 it follows from Chernoff bounds that, with
probability 1 − o(log−1 n), the number of vertices of degree k is (1 + o(1))cke−c/k!.
Thus, with the same probability, strong concentration also follows for the number
of edges. If the number of incoming edges equals c0n, then the expected number of
outgoing edges equals

(1 + o(1))

d−1∑
k=1

(d− k)
ck0
k!
e−c0n = (1 + o(1))c0n.

If less than c0n edges are incoming, then more will be going out, and vice versa. A.a.s.
the process converges, and so there exists a constant Cε such that a.a.s. the number of
edges between two consecutive layers Lt and Lt+1 is between (c0 − ε)n and (c0 + ε)n
for any t such that logd−1 n+ Cε ≤ t ≤ 2 logd−1 n.

Finally, let us recall that the layer Lt consists of vertices of S with in-degree at
least 1. The number of in-degree 0 vertices is concentrated around its expectation,
and thus we have that a.a.s.

(1 − e−c0+ε)n ≤ |Lt| ≤ (1− e−c0−ε)n.

The lemma is proved.
The value of c0 (and so 1− e−c0 as well) can be numerically approximated. It is

straightforward to see that c0 tends to d/2 (hence, 1− e−c0 tends to 1) when d → ∞.
We present a few approximate values in Table 1.

Table 1

Approximate values of c0 and 1 − e−c0 .

d 3 4 5 10 20
c0 0.895 1.62 2.26 4.98 ≈ 10

1 − e−c0 0.591 0.802 0.895 0.993 ≈ 1

Finally, we are ready to finish the last part of Theorem 3.1.
Proof of Theorem 3.1 (v). We assume that the game is played with parameter

c = d− 2− 1
s for some s ∈ N

+ \ {1, 2, 3}. For every i ∈ N, we have that csi+1 = d− 3,
and ct = d − 2 otherwise. To derive an upper bound of gj that holds a.a.s., we need
to prove that a.a.s. there exists no winning strategy for the sludge.

We will use a combinatorial game-type argument. The greens will play greedily
(that is, they will always protect nodes adjacent to the sludge). Suppose that the
sludge occupies node v ∈ Lsi+1 for some i ∈ N (at time t = si+2 he moves from v to
some node in Lt) and he has a strategy to win from this node, provided that no node
in the next layers is protected by the greens. We will call such a node sludge-win.

746 A. BONATO, D. MITSCHE, AND P. PRA�LAT

Note that during the time period between si+ 2 and s(i+ 1), the greens can protect
d − 2 nodes at a time, so they can direct the sludge, leaving him exactly one node
to choose from at each time-step. Therefore, if there is a node of in-degree at least
2 in any of these layers, the greens can force the sludge to go there and finish the
game in the next time-step. This implies that all nodes within distance s− 2 from v
(including v itself) must have in-degree 1, and so the graph is locally a tree. However,
at time-step s(i+ 1) + 1, the greens can protect d− 3 nodes, one less than in earlier
steps. If the in-degree of a node reached at this layer is at least 3, then the greens can
protect all out-neighbors and win. Further, if the in-degree is 2 and there is at least
one out-neighbor that is not sludge-win, the greens can force the sludge to go there
and win by definition of not being sludge-win. Finally, if the in-degree is 1, the sludge
will be given 2 nodes to choose from. However, if there are at least two out-neighbors
that are not sludge-win, the greens can “present” them to the sludge, and regardless
of the choice made by the sludge, the greens win.

We now summarize the implications of the fact that v ∈ Lsi+1 is sludge-win. First
of all, all nodes within distance s − 2 are of in-degree 1. Nodes at the layer Ls(i+1)

below v have in-degree at most 2. If u ∈ Ls(i+1) has in-degree 2, then all of the d− 2
out-neighbors are sludge-win. If u ∈ Ls(i+1) has in-degree 1, then all out-neighbors
except perhaps one node are sludge-win. Using this observation, we characterize a
necessary condition for a node v ∈ L1 to be sludge-win. For a given v ∈ L1 that can
be reached at time 1, we define a sludge-cut to be the following cut: examine each
node of Lsi, and proceed inductively for i ∈ N

+. If u ∈ Lsi has out-degree d− 1, then
we cut away any out-neighbor and all nodes that are not reachable from v (after the
out-neighbor is removed). The node that is cut away is called an avoided node. After
the whole layer Lsi is examined, we skip s − 1 layers and move to the layer Ls(i+1).
We continue until we reach the sink, the layer Lj = Lsi′ for some i′ (we stop at Lj

without cutting any further). The main observation is that if the sludge can win the
game, then the following claim holds.

Claim. There exists a node v ∈ L1 and a sludge-cut such that the graph left after
cutting is a (d − 1, d− 2)-regular graph, where each node at layer Lsi, 1 ≤ i ≤ i′ − 1
has out-degree d− 2, and all other nodes have out-degree d− 1. In particular, for any

1 ≤ i ≤ i′ − 1 the graph induced by the set
⋃s(i+1)−1

t=si Lt is a tree.
It remains to show that a.a.s. the claim does not hold. (Since there are at most

d nodes in L1, it is enough to show that a.a.s. the claim does not hold for a given
node in L1.) Fix v ∈ L1. The number of avoided nodes at layer Lsi+1 is at most the
number of nodes in Lsi (after cutting earlier layers), which is at most

	i = (d− 1)si−1

(
d− 2

d− 1

)i−1

= (d− 1)(s−1)i(d− 2)i−1.

In particular, 	, the number of nodes in the sink after cutting, is at most 	i′ ≤ n. It
can be shown that a.a.s. 	 > nα for some α > 0.

Fix nα ≤ 	 ≤ 	i′ ≤ n. We need to show that for this given 	, the claim does not
hold with probability 1− o(n−1). Since each node in Lsi′ has in-degree at most 2, the
number of nodes in Lsi′−1 is at most 2	 (as before, after cutting). Since the graph
between layer Ls(i′−1) and Lsi′−1 is a tree, the number of nodes in Lsi′ is at most
2	/(d− 1)s−1, which is an upper bound for the number of avoided nodes at the next
layer Lsi′+1. Applying this observation recursively, we obtain that the total number
of avoided nodes up to layer si′ is at most 4(d− 1)−s+1	. To count the total number
of sludge-cuts of a given graph, observe that each avoided node corresponds to one

VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 747

out of d− 1 choices. Hence, the total number of sludge-cuts is at most

(7) (d− 1)4(d−1)−s+1�.

We now estimate the probability that the claim holds for a given v ∈ L1 and a
sludge-cut. To obtain an upper bound, we estimate the probability that all nodes in
the layer Lsi′−1 are of in-degree 1. Conditioning on the fact that we have 	 nodes in
the last layer, we find that the number of nodes in Lsi′−1 is at least �

d−1 . Let i′ be
large enough such that we are guaranteed by Lemma 4.5 that the number of edges
between the two consecutive layers is at least c0n(1 − ε/2). Hence, the probability
that a node in Lsi′−1 has in-degree 1 is at most

(8)

(
1− 1

n

)c0n(1−ε/2)

= (1 + o(1))e−c0(1−ε/2) ≤ e−c0(1−ε),

where ε > 0 can be arbitrarily small by taking i′ large enough. Let pε be the prob-
ability in (8). We derive that j = si′ ≥ logd−1 n + C′, where C′ = C′(ε, s) > 0 is
a large enough constant. Conditioning on the fact that v ∈ Lsi′−1 has in-degree 1,
it is harder for v′ ∈ Lsi′−1 to have in-degree 1 than without this condition, as more
edges remain to be distributed. Thus, the probability that all nodes in Lsi′−1 have
the desired in-degree is at most

(9) p
�

d−1
ε = exp

(
−c0(1 − ε)

	

d− 1

)
.

Thus, by taking a union bound over all possible sludge-cuts (the upper bound for the
number of them is given by (7)), the probability that the claim holds is at most

(
(d− 1)4(d−1)−s+1

(
e−c0(1−ε)

) 1
d−1

)�

,

which can be made o(n−1) by taking ε small enough, provided that s is large enough
that

(d− 1)4(d−1)−s+2

e−c0 < 1.

By considering the extreme case for the probability of having in-degree 1 when d = 3,
we obtain that

e−c0 ≤ e−
0.895

3 d ≤ e−0.29d

for d ≥ 3 (see Table 1). It is straightforward to see that s ≥ 4 will work for any d ≥ 3,
and s ≥ 3 for d ≥ 5.

5. Proofs for random power law DAGs. Let us recall that we have three
parameters in this model: β > 2, d > 0, and 0 < α < 1. For a given set of parameters,
we defined

M = M(n) = nα, i0 = i0(n) = n

(
d

M

β − 2

β − 1

)β−1

, and c =

(
β − 2

β − 1

)
dn

1
β−1 .

Finally, for i ≥ 1 we have that

wi = c(i0 + i− 1)−
1

β−1 .

748 A. BONATO, D. MITSCHE, AND P. PRA�LAT

Before we analyze the game for this model, let us focus on investigating some
properties of the random graph we play on. We already mentioned that the sequence
(wi)i∈N is decreasing, but it is not obvious which weights we obtain for a given level
Lj. We start by providing a lower bound for the weight of vertices in each layer j
(which will imply an upper bound for the previous layer j − 1). Since the weight wi

is a function of the index i, it is enough to focus on the latter. For j ∈ N, let 	j be
the smallest index among the vertices of layer Lj. Using the notation introduced in
section 2, 	j = dj−1 + 1. The maximum weight at Lj is w�j , and the minimum one is
w�j+1−1. The following lemma investigates the behavior of 	j.

Lemma 5.1. Let

γ = dβ−1

(
β − 2

β − 1

)β−2
⎛
⎝
(
1 +

(
d
β − 2

β − 1

)1−β
)β−2

β−1

− 1

⎞
⎠

if 1
α − β + 3 ∈ N

+ \ {1, 2}, and γ = 1 otherwise. Let

ξ =

(
β − 2

β − 1

)
d

((
d(β − 2)

β − 1

)β−1

+ 1

)− 1
β−1

.

The following holds a.a.s.

(i) 	0 = 1, 	1 = 2, and 	2 = (1 + o(1))M .
In particular, w�0 = M , w�1 = (1 + o(1))M , and

w�2 = (1 + o(1))

⎧⎪⎪⎨
⎪⎪⎩
nα if α < 1

β ,

ξnα if α = 1
β ,(

β−2
β−1

)
dn

1−α
β−1 if α > 1

β .

(ii) For 3 ≤ j < 1
α − β + 3, we have that

	j = (1 + o(1))M j−1 = (1 + o(1))nα(j−1).

In particular,

w�j = (1 + o(1))

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nα if 3 ≤ j < 1
α − β + 2,

ξnα if 3 ≤ j = 1
α − β + 2,(

β−2
β−1

)
dn

1−α(j−1)
β−1 if 1

α − β + 2 < j < 1
α − β + 3,

and j ≥ 3.

(iii) If j0 = 1
α − β + 3 ∈ N

+ \ {1, 2}, then

	j0 = (1 + o(1))γM j0−1 = (1 + o(1))γnα(j0−1) = Θ(nα(j0−1)).

In particular,

w�j0
= (1 + o(1))γ− 1

β−1

(
β − 2

β − 1

)
dn

1−α(j0−1)
β−1 .

VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 749

(iv) Let j1 be the largest integer satisfying j1 ≤ max{ 1
α − β + 3, 2}. Let j2 =

O(log logn) be the largest integer such that

dβ−1
(γ

dβ−1
nα(j1−1)−1

)(β−2
β−1)

j2−j1

≤ (ω log logn)−max{2,β−2}.

Then for j1 < j ≤ j2 we have that

	j = (1 + o(1))dβ−1n
(γ

dβ−1
nα(j1−1)−1

)(β−2
β−1)

j−j1

.

In particular, for j1 < j ≤ j2 we have that

w�j = (1 + o(1))

(
β − 2

β − 1

)(γ

dβ−1
nα(j1−1)−1

)−(β−2
β−1)

j−j1/(β−1)

.

(v) For any 1 ≤ j < j2, the number of edges between Lj−1 and Lj is (1+o(1))	j+1.
Proof. Clearly, we have 	0 = 1, 	1 = 2; (i) holds deterministically for j = 0, 1.

The number of vertices on levels 0 and 1 is at most 1 + w1 = 1 + M , but it can be
slightly smaller if there are some parallel edges (which happens a.a.s. if α > 1/2).
We derive a deterministic upper bound for 	2 of 2 + M , but in fact, using the first
moment method, we can show that a.a.s. 	2 = (1 + o(1))M . Indeed, the probability
that a given vertex from S has in-degree at least 2 is (1 + o(1))

(
M
2

)
/n2, so we expect

O(M2/n) vertices of in-degree at least 2. With probability 1 − O(1/(ω log log n)),
we have O(M2ω log logn/n) of such vertices, and so 	2 ≥ M(1−O(Mω log logn/n)).
The statement for j = 2 holds, and hence, part (i) follows.

Now, let us generalize this observation. Let j ≥ 3 and suppose that 	j−1 is already
estimated. Note that 	j = 	j−1 + |Lj−1|, so it remains to estimate the size of Lj−1.
We obtain that

|Lj−1| ≤ 	̄j−1 =

�j−1−1∑
i=�j−2

(wi − 1)

= O(w�j−2) +O(j−1) +

∫ �j−1

i=�j−2

c(i0 + i− 1)−
1

β−1 di

= O(w�j−2) +O(j−1) +

∫ �j−1

i=1

c(i0 + i− 1)−
1

β−1 di

= O(M) +O(j−1) + c

(
β − 1

β − 2

)(
(j−1 + i0)

β−2
β−1 − i

β−2
β−1

0

)

= O(j−1) + c

(
β − 1

β − 2

)
i
β−2
β−1

0

((
1 +

	j−1

i0

) β−2
β−1

− 1

)
.

Note that 	̄j−1 is an upper bound for the number of edges between layer Lj−2 and
Lj−1 (and so an upper bound for |Lj−1|), and we derive the equality |Lj−1| = 	̄j−1

if all vertices in Lj−1 and Lj−2 have in-degree 1. Arguing as before, we deduce
that, with probability 1 − O(1/(ω log logn)), the number of edges going to vertices
in Lj−2 (in Lj−1, respectively) that are of degree at least 2 is O(2j−1ω log log n/n)

(O(̄2j−1ω log logn/n), respectively). Each edge of this type directed to a vertex in
Lj−2 affects its out-degree, and so decreases the number of vertices in Lj−1 by at most

750 A. BONATO, D. MITSCHE, AND P. PRA�LAT

one. Similarly, one edge going to a vertex in Lj−1 of in-degree at least 2 decreases
by at most one the number of vertices of in-degree 1. Thus, with probability 1 −
O(1/(ω log logn)), by considering vertices of in-degree 1 only, we obtain that

|Lj−1| ≥ 	̄j−1 −O(̄2j−1ω log logn/n)−O(2j−1ω log logn/n)

= 	̄j−1 −O(̄2j−1ω log logn/n).(10)

(The last equality follows from the fact that 	̄j−1 = Ω(j−1), provided that w�j−1 =
Ω(1). In fact, we consider values of j at most j2, for which it will be shown that
w�j−1 ≥ ω and so 	̄j−1 > 	j−1.) This, together with the fact that 	j = 	j−1 + |Lj−1|,
implies that

(11) 	j = O(j−1)−O(̄2j−1ω log logn/n)+ c

(
β − 1

β − 2

)
i
β−2
β−1

0

((
1 +

	j−1

i0

) β−2
β−1

− 1

)
.

If 	j−1 = o(i0), then

	j = O(j−1) +O(̄2j−1ω log logn/n) + c

(
β − 1

β − 2

)
i
β−2
β−1

0

(
β − 2

β − 1

	j−1

i0
+O

(
	j−1

i0

)2
)

= O(j−1) +O(̄2j−1ω log logn/n) +M	j−1

(
1 +O

(
	j−1

i0

))

= M	j−1

(
1 +O

(
	j−1

i0

))(
1 +O

(
M−1

))(
1 +O

(
M	j−1ω log log n

n

))
.

Note that M j−2 = n(j−2)α and i0 = Θ(n1−α(β−1)). Therefore, this recursive formula
is to be applied O(1) times only before the condition 	j−1 = o(i0) fails (it may, of
course, happen that it fails for j = 3, so we do not apply it at all). We have that
a.a.s. the statement holds for any value of j such that (j− 2)α < 1−α(β− 1); that is,
j < 1

α − β + 3. Moreover, the error term can be estimated much better; it is, in fact,
(1 + O(n−ε)) for some ε > 0. Let us note one more time that it may happen that
1
α − β ≤ 0, and so the condition fails for j = 3, but then (ii) trivially holds. Thus,
part (ii) is finished.

For part (iii), suppose that j0 = 1
α − β + 3 ∈ N

+ \ {1, 2}. Since our goal is to
show that the statement holds a.a.s., we may assume that 	j0−1 = (1+O(n−ε))M j0−2

for some ε > 0. From the assumption, it follows that 	j0−1 and i0 are of the same

order. By the relations between i0 and M , we have Mβ−1 = n(dβ−2
β−1)

β−1/i0. Thus,

	j0−1 = (1 + O(n−ε))M−(β−1)+ 1
α , and hence, 	j0−1 = (1 + O(n−ε))(dβ−2

β−1)
1−βi0. It

follows from (11) that a.a.s.

	j0 = O(j0−1) +O(̄2j0−1ω log logn/n) + c

(
β − 1

β − 2

)
i
β−2
β−1

0

((
1 +

	j0−1

i0

) β−2
β−1

− 1

)

= (1 +O(n−ε))c
β − 1

β − 2
i
β−2
β−1

0

⎛
⎝(1 + (dβ − 2

β − 1

)1−β
)β−2

β−1

− 1

⎞
⎠

= (1 +O(n−ε))	j0−1Mdβ−1

(
β − 2

β − 1

)β−2
⎛
⎝(1 + (dβ − 2

β − 1

)1−β
) β−2

β−1

− 1

⎞
⎠ ,

so (iii) holds.

VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 751

For part (iv), let j1 be the largest integer satisfying j1 ≤ max{ 1
α − β + 3, 2}.

Based on earlier parts, we may assume that 	j1 = (1 + O(n−ε))γM j1−1. Note that
	j1/i0 = Ω(nε) for some ε > 0, and so 	j−1/i0 = Ω(nε) for any j1 < j ≤ j2, since 	j
is monotonic as a function of j.

Fix j > j1. Now we derive from (11) that with probability 1−O(1/(ω log log n)),

	j = O(j−1) +O(̄2j−1ω log log n/n) + c

(
β − 1

β − 2

)
i
β−2
β−1

0

((
1 +

	j−1

i0

) β−2
β−1

− 1

)

= O(j−1) +O(̄2j−1ω log log n/n) + c

(
β − 1

β − 2

)
i
β−2
β−1

0

(
	j−1

i0

) β−2
β−1

(1 +O(n−ε))

= O(̄2j−1ω log logn/n) + c

(
β − 1

β − 2

)
	

β−2
β−1

j−1 (1 +O(n−ε))(1 +O(c−1	
1

β−1

j−1))

= O(̄2j−1ω log logn/n) + c

(
β − 1

β − 2

)
	

β−2
β−1

j−1 (1 +O(n−ε))(1 +O((j−1/n)
1

β−1))

= (1 +O(1/(ω log logn)))c

(
β − 1

β − 2

)
	

β−2
β−1

j−1 ,

provided that

c

(
β − 1

β − 2

)
	

β−2
β−1

j−1 (ω log logn)/n ≤ (ω log logn)−1,

and

	j−1/n ≤
(
2

d

) β−1
β−2

(ω log logn)−(β−1).

(Note that we have 	̄j−1 = O(c	
β−2
β−1

j−1), and thus we obtain the first condition, coming

from the term O(̄2j−1ω log logn/n).) The first condition is equivalent to 	j−1/n ≤(
2
d

) β−1
β−2 (ω log logn)−2 β−1

β−2 , and so both conditions combined together are equivalent
to

	j−1/n ≤
(
2

d

) β−1
β−2

(ω log logn)−max{2 β−1
β−2 ,β−1}.

If this condition is satisfied, then we obtain that 	j = (1 + o(1))n
1

β−1 	
β−2
β−1

j−1 d, or equiv-

alently 	j/n = (1 + o(1))(j−1/n)
β−2
β−1 d. By using the condition on 	j−1/n, we obtain

the following slightly stronger condition (where we ignore the factor of 2) for 	j :

(12) 	j/n ≤ (ω log logn)−max{2,β−2}.

Now, suppose that (12) is satisfied. We rewrite the relation between 	j and 	j−1

using the fact that c = β−2
β−1dn

1
β−1 :

	j
dβ−1n

=

(
(1 +O(1/(ω log logn)))

	j−1

dβ−1n

) β−2
β−1

= (1 +O(1/(ω log logn)))

(
	j−1

dβ−1n

) β−2
β−1

.

752 A. BONATO, D. MITSCHE, AND P. PRA�LAT

Applying this argument recursively, we obtain that

	j = dβ−1n(1 +O(1/(ω log logn)))j
(

	j1
dβ−1n

)(β−2
β−1)

j−j1

.

Finally, since we will soon show that j ≤ j2 = O(log logn), we derive by the previous
cases that

	j = (1 + o(1))dβ−1n

(
γM j1−1

dβ−1n

)(β−2
β−1)

j−j1

= (1 + o(1))dβ−1n
(γ

dβ−1
nα(j1−1)−1

)(β−2
β−1)

j−j1

.

Indeed, since

	j = dβ−1n exp

(
(1 + o(1))

(
β − 2

β − 1

)j−j1

(α(j1 − 1)− 1) logn

)
,

(12) fails for j = C log logn (by taking C > 0 large enough), and item (iv) follows.
Finally, the proof of part (v) follows now by closely inspecting parts (ii), (iii),

and (iv). In each case, 	j+1 − 	j is the size of Lj , and it follows from earlier parts
that 	j+1 − 	j = (1 + o(1))	j+1. This is clearly a lower bound for the number of
edges we try to estimate. On the other hand, 	̄j serves as an upper bound. Hence,
it remains to show that 	̄j = (1 + o(1))	j+1. If j + 1 < 1

α − β + 3, then 	j =
o(i0). By looking at part (ii), we see that the leading term of both 	̄j and 	j+1 is

(1+o(1))cβ−2
β−1 i

β−2
β−1

0 (β−2
β−1

�j
i0
+O(

�j
i0
)2), and the result follows for this case (alternatively,

in this case we can also observe 	j = (1+o(1))nα(j−1), 	j+1 = (1+o(1))nαj , and by the
trivial bound on the degree, 	̄j ≤ 	jM = (1+o(1))nαj holds). Next, if j+1 = 1

α−β+3,
then 	j = Θ(i0), and by the calculations of part (iii), in both 	j+1 and 	̄j , the leading

term is of order (1 + o(1))cβ−1
β−2 i

β−2
β−1

0 ((1 +
�j
i0
)

β−2
β−1 − 1), and the result also follows for

this case. Finally, if j+1 > 1
α − β+3, then 	j = ω(i0), 	̄j = (1+ o(1))cβ−1

β−2	
β−2
β−1

j , and

as observed in part (iv), 	j+1 = (1 + o(1))n
1

β−1 	
β−2
β−1

j d. Thus 	̄j = (1 + o(1))	j+1, and
part (v) follows.

We are now ready to come back to investigating the green number. We provide
some obvious bounds for the green number and after that we sketch the idea that
could be used to estimate it precisely. However, we do not perform these calculations
rigorously, since the approach is rather delicate.

Lemma 5.2. Let γ and j1 be defined as in Lemma 5.1. That is, let

γ = dβ−1

(
β − 2

β − 1

)β−2
⎛
⎝
(
1 +

(
d
β − 2

β − 1

)1−β
)β−2

β−1

− 1

⎞
⎠

if 1
α −β+3 ∈ N

+ \ {1, 2}, and γ = 1 otherwise. Let j1 be the largest integer satisfying
j1 ≤ max{ 1

α − β + 3, 2}. Moreover, let j2 = O(log log n) be the largest integer such
that

dβ−1
(γ

dβ−1
nα(j1−1)−1

)(β−2
β−1)

j2−j1

≤ (ω log logn)−max{2,(β−1)2}.

VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 753

Then, for 1 ≤ j ≤ j2 − 1 we have that a.a.s.

(1− o(1))w�j ≤ gj ≤ w�j−1 .

Note that the definition of j2 in Lemma 5.2 is slightly modified compared to the
one from Lemma 5.1. However, there is only an O(1) difference between these values;
in this case it is smaller.

Proof of Lemma 5.2. Fix 1 ≤ j ≤ j2−1 and suppose that the game is played with
the sink Lj . Since the maximum total degree (and thus, the maximum out-degree) of
vertices in Lj−1 is at most w�j−1 , the greens can easily win when the game is played
with parameter c = w�j−1 . They can play arbitrarily at the beginning of the game
when the sludge is moving towards the sink. Once he reaches a vertex u ∈ Lj−1, the
greens can block all out-neighbors and the game ends. We obtain that gj ≤ w�j−1 .

In order to derive a lower bound, we will need the following property that follows
directly from the proof of Lemma 5.1 and holds a.a.s. Let us note that for j1 < j ≤ j2
we have that

	j = (1 + o(1))	j−1d

(
n

	j−1

) 1
β−1

≥ (1 + o(1))	j−1d(ω log logn)
max{2,(β−1)2}

β−1 .(13)

For j ≤ j1 we have 	j = Ω(j−1n
α), so in fact (13) holds for any j ≤ j2.

Now let us play the game with parameter c = w�j (1− ε) for some ε > 0. We will
show that a.a.s. the sludge can win the game, independently of the strategy of the
greens. This will prove that gj ≥ w�j (1−ε) a.a.s. and the result will hold after taking
ε → 0. If j = 1, then for any α ∈ (0, 1), a.a.s. |L1| = M(1 + o(1)) = w�1(1 + o(1)),
and thus, the greens clearly cannot win the game by protecting w�1(1 − ε) = M(1−
ε)(1 + o(1)) vertices. Hence, we may assume that j ≥ 2.

Suppose first that α ≤ 1
β and 2 ≤ j ≤ j1 − 1. Since in this case j ≤ 1

α − β + 3,

by the formulas for 	j given by Lemma 5.1, for any 2 ≤ j ≤ j1 − 1, 	j = Θ(nα(j−1)).
Moreover, by part (v) of Lemma 5.1, the number of edges between Lj−1 and Lj is at
most (1 + o(1))	j+1 = O(n1−αβ+2α) = O(n1−ε0), with ε0 = α(β − 2) > 0. Hence, for
any vertex v ∈ Lj ,

P(deg−(v) ≥ 2) ≤ (1 + o(1))

(
	j+1

2

)(
1

n

)2

= O(n−2ε0) ≤ n−ε0 ≤ n−ε1 ,

where ε1 = min{ε0, α/2} > 0. Denoting by Bv the number of out-neighbors of v with
in-degree 2 or more, we have that E(Bv) ≤ nα−ε1 . Since O(n1−ε0) is a fixed upper
bound on the number of edges between two consecutive layers, for any two vertices
v, v′ ∈ Lj , P(deg

−(v) ≥ 2 | deg−(v′) ≥ 2) ≤ P(deg−(v) ≥ 2) ≤ n−ε1 .
Consider now another stochastic process in which each vertex v ∈ Lj has exactly

nα out-neighbors, and for each out-neighbor w of v, independently of all other vertices,
P(deg−(w) ≥ 2) = n−ε1 . Denote by B′

v the number of out-neighbors of v with in-
degree 2 or more in this new stochastic process. Clearly, E(B′

v) = nα−ε1 ≥ nα/2

for any v. Furthermore, by the previous observation of negative correlation between
vertices of in-degree 2 or more (in the original process), P(Bv ≥ x) ≤ P(B′

v ≥ x) for
any x ≥ 0. Set δ to be a sufficiently small constant. Then by Lemma 4.1, for some
c > 0 we have that

P(Bv ≥ (1 + δ)E(B′
v)) ≤ P(B′

v ≥ (1 + δ)E(B′
v)) ≤ e−nc

.

754 A. BONATO, D. MITSCHE, AND P. PRA�LAT

By taking a union bound over all O(n) vertices of the first j = O(1) layers, a.a.s. all
vertices have at least a 1− o(1) fraction of out-neighbors with in-degree 1.

Now, in order to show a lower bound on the green number, we can assume that
all vertices with in-degree 2 or more are already protected by the greens in the very
beginning (they are cut away from top to bottom together with the subgraphs pending
at them), and thus, the sludge is playing on the remaining graph that is a tree. We
showed that a.a.s. the minimum degree in the remaining tree is at least (1− o(1))w�j .
Observe that, in a tree, the best strategy for the greens is always to protect neighbors
of the vertex currently occupied by the sludge. Indeed, if they protect a vertex at
distance 2 or more from the vertex occupied by the sludge, they can consider the
path between the vertex occupied by the sludge and the vertex originally protected,
and instead protect the unique out-neighbor of the vertex occupied by the sludge.
Clearly, this is at least as good a move as the original one. Since the greens have only
w�j (1 − ε) at their disposal, in each round at least εw�j − o(w�j) neighbors remain
unprotected, and the sludge can go to any of these and finally reach the sink.

Suppose now that α > 1
β or j1 − 1 < j ≤ j2 − 1. For any j1 < j ≤ j2 − 1, we have

w�j−1 = (1 + o(1))c	
− 1

β−1

j−1 ≥ (1 + o(1))c	
− 1

β−1

j d
1

β−1 (ω log logn)
max{2,(β−1)2}

(β−1)2

≥ (1 + o(1))w�jd
1

β−1 (ω log logn).(14)

Moreover, note that the formula is true if j > j1 − 1, but j ≤ j1, and also in the case
α > 1

β , we have j1 = 2, and w�1 = Ω(w�2n
δ) for some δ > 0. Thus, combining these

statements, for any j1 − 1 < j ≤ j2 − 1, or any 2 ≤ j ≤ j2 − 1 in the case α > 1
β ,

w�j = o(w�j−1/ log logn). Since (wi)i≥0 is a monotonically decreasing sequence, any
vertex up to (and including) layer Lj−2 has weight at least w�j−1 = ω(w�j log logn) =
ω(c log logn).

We will provide a strategy for the sludge and show that it guarantees him to win
a.a.s., provided that the game is played with parameter c = w�j (1−ε), as before. The
strategy is straightforward; in particular, he always goes to any nonprotected vertex u
with the property that no out-neighbor of u is protected. Note that the total number
of vertices protected at the end of the game is O(cj2) = O(c log log n). Moreover, each
protected vertex can only eliminate this vertex or its parents. The number of parents
of a given vertex u, the in-degree of u, can be large but these parents are “scattered”
across the whole layer, as we will show in the following claim.

Claim. The following holds a.a.s. The number of paths from any vertex v (a
vertex possibly occupied by the sludge) and vertex u two layers below (a vertex
possibly protected by the greens) is bounded by some universal constant K.

Proof of the claim. Fix ε > 0 to be an arbitrarily small constant. Suppose
first that j is such that w�j−2 < n

1
2−ε. Then, by monotonicity of w�j , the number

of directed paths of length two starting at v ∈ Lj−2 is at most (n
1
2−ε)2 = n1−2ε.

Thus, the probability that for a given vertex u ∈ Lj there are K paths of length two

starting from v is at most
(
n1−2ε

K

)
(1
n)

K . By taking a union bound over all n vertices
u from S ⊇ Lj and all starting vertices v (there are at most n of them), we see that

n2
(
n1−2ε

K

)
(1n)

K = o(1/ log logn) for a sufficiently large constant K. The claim then
holds for this range of values of j, by taking a union bound over O(log logn) possible
values of j.

On the other hand, if j is such that w�j−2 ≥ n
1
2−ε, then by the formulas for w�j

given in Lemma 5.1, we see that j − 2 = O(1) and so j + 1 = O(1) as well. (Indeed,

VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 755

the exponent of n in the formula for w�j−2 in Lemma 5.1 (iv) can be made arbitrarily
small by taking a sufficiently large constant j−2.) Since j+1 = O(1), it follows from
Lemma 5.1 that 	j+1 ≤ n1−ε0 for some ε0 > 0, and as shown in part (v) of Lemma 5.1,
the number of edges between Lj−1 and Lj is at most (1+o(1))	j+1 = O(n1−ε0). Thus,
the number of paths of length two starting at v ∈ Lj−2 is at most O(n1−ε0). Hence,
as before, the probability that for a given vertex u ∈ Lj there are K paths of length

two starting from v is at most
(
O(n1−ε0)

K

)
(1
n)

K , and as before, by taking a union
bound over all n2 pairs of vertices u, v and over all j = O(1), for K sufficiently large,

n2
(
O(n1−ε0)

K

)
(1n)

K = o(1), and the claim follows.
Hence, by the claim, we obtain that the number of eliminated vertices is still

O(c log logn). Finally, since the degree of each vertex in layers up to and including
the layer Lj−2 is ω(c log logn), the sludge can easily reach the layer Lj−1. Since the
minimum degree in this layer is (1 + o(1))w�j and the game is played with parameter
c = w�j (1−ε), no matter what the greens do in this very last move, the sludge reaches
the sink. Thus, gj ≥ w�j (1− ε) a.a.s. As we already mentioned, the result follows by
taking ε tending to zero.

Theorem 3.2 follows immediately from Lemmas 5.1 and 5.2.
We finish by remarking on how we can try to close the gap in the previous lemma.

It follows from Lemma 5.2 that for 1 ≤ j ≤ j2− 1, we have that a.a.s. (1− o(1))w�j ≤
gj ≤ w�j−1 . Suppose then that the game is played with parameter c such that (1 +
ε)w�j ≤ c ≤ (1 − ε)w�j−1 for some ε > 0. Clearly, the sludge tries to stay on vertices
with as small a label as possible (that is, the largest possible total degree). The greens
aim for the opposite: they want the sludge to go to large labels (the smallest total
degree). In the first round, the sludge is guaranteed to be able to go to a vertex with
label at most c + 2 and, in fact, the greens can force him to go to vc+2. In the next
round, it might be the case that there are some “shortcuts” to vertices of degree at
least 2 with small labels, but since the number of such edges is very small, the greens
can easily prevent the sludge from using these edges. After securing these edges, the
greens should protect the remaining neighbors of vc+2 with small labels. This time,
however, this does not help much. The sludge is forced to (but also is able to) go to
a vertex whose label is

(1 + o(1))
c+2∑
i=1

(wi − 1) +O(c) = (1 + o(1))
c+2∑
i=1

wi.

Repeating this argument and the calculations performed in the proof of Lemma 5.1,
we can compute the position of the sludge at time j − 1, and based on that we can
decide if he wins or loses this game. Optimizing this with respect to the parameter c
would yield the asymptotic value of gj.

6. Further directions. We considered Seepage played on regular DAGs in The-
orem 3.1 and in power law DAGs in Theorem 3.2. It would be interesting to analyze
the game on randomDAGs with other degree sequences; for example, where the degree
distribution remains the same at each level, or there are the same number of vertices
at each level. While our emphasis was on asymptotic results for the green number in
random DAGs, our results could be complemented by an analysis (via simulations)
of the green number on small DAGs, say up to 100 vertices. We will consider such an
approach in future work. Finally, hierarchical social networks are not usually strictly
acyclic; for example, on Twitter, directed cycles of followers may occur. Seepage was
defined in [6] for DAGs, but it naturally extends to the setting with directed cycles

756 A. BONATO, D. MITSCHE, AND P. PRA�LAT

(here, the directed graphs considered must have at least one source and a set of sinks;
the game is then played analogously as before). A next step would be to extend our
results, if possible, to a setting where such cycles occur, and analyze the green num-
ber on, say, their strongly connected components. One question is to determine if the
green number changes as a function of the number of backward edges.

Acknowledgments. We would like to thank the anonymous referees for sugges-
tions which improved the paper.

REFERENCES

[1] J.A. Almendral, L. López, and M.A.F. Sanjuán, Information flow in generalized hierarchi-
cal networks, Phys. A, 324 (2003), pp. 424–429.

[2] B. Bollobás, C. Borgs, J.T. Chayes, and O. Riordan, Directed scale-free graphs, in Pro-
ceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (Baltimore,
MD), SIAM, Philadelphia, ACM, New York, 2003, pp. 132–139.

[3] A. Bonato, A Course on the Web Graph, Grad. Stud. Math. 89, American Mathematical
Society, Providence, RI; Atlantic Association for Research in the Mathematical Sciences
(AARMS), Halifax, NS, 2008.

[4] A. Bonato and R.J. Nowakowski, The Game of Cops and Robbers on Graphs, American
Mathematical Society, Providence, RI, 2011.

[5] F.R.K. Chung and L. Lu, Complex Graphs and Networks, American Mathematical Society,
Providence, RI, 2006.

[6] N.E. Clarke, S. Finbow, S.L. Fitzpatrick, M.E. Messinger, and R.J. Nowakowski, Seep-
age in directed acyclic graphs, Australas. J. Combin., 43 (2009), pp. 91–102.

[7] R. Diestel, Graph Theory, Springer-Verlag, New York, 2000.
[8] J.D. Farley, Breaking Al Qaeda cells: A mathematical analysis of counterterrorism operations

(a guide for risk assessment and decision making), Stud. Conflict Terrorism, 26 (2003),
pp. 399–411.

[9] J.D. Farley, Toward a Mathematical Theory of Counterterrorism, The Proteus Monograph
Series 1, U.S. Army War College, Carlisle, PA, 2007.

[10] M. Gupte, P. Shankar, J. Li, S. Muthukrishnan, and L. Iftode, Finding hierarchy in
directed online social networks, in Proceedings of the 20th International World Wide Web
Conference (Hyderabad, India), ACM, New York, 2011, pp. 557–566.

[11] A. Gutfraind, A. Hagberg, and F. Pan, Optimal interdiction of unreactive Markovian
evaders, in Integration of AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems, W.-J. van Hoeve and J.N. Hooker, eds., Springer-Verlag,
Berlin, Heidelberg, 2009, pp. 102–116.

[12] K. Ikeda and S.E. Richey, Japanese network capital: The impact of social networks on
Japanese political participation, Political Behavior, 27 (2005), pp. 239–260.

[13] S. Janson, T. �Luczak, and A. Ruciński, Random Graphs, Wiley, New York, 2000.
[14] L. López, J.F.F. Mendes, and M.A.F. Sanjuán, Hierarchical social networks and information

flow, Phys. A, 316 (2002), pp. 695–708.
[15] Twitaholic, http://twitaholic.com/, January 10, 2012.
[16] D.B. West, Introduction to Graph Theory, 2nd ed., Prentice–Hall, Upper Saddle River, NJ,

2001.
[17] N.C. Wormald, Models of random regular graphs, in Surveys in Combinatorics, London Math.

Soc. Lecture Note Ser. 267, J.D. Lamb and D.A. Preece, eds., Cambridge University Press,
Cambridge, UK, 1999, pp. 239–298.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

