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Abstract. We consider countably infinite random geometric graphs, whose vertices are points in
Rn, and edges are added independently with probability p ∈ (0, 1) if the metric distance between
the vertices is below a given threshold. Assume that the vertex set is randomly chosen and dense in
Rn. We address the basic question: for what metrics is there a unique isomorphism type for graphs
resulting from this random process? It was shown in [7] that a unique isomorphism type occurs
for the L∞-metric for all n ≥ 1. The hexagonal metric is a convex polyhedral distance function
on R2, which has the property that its unit balls tile the plane, as in the case of the L∞-metric.
We may view the hexagonal metric be seen as an approximation of the Euclidean metric, and it
arises in computational geometry. We show that the random process with the hexagonal metric
does not lead to a unique isomorphism type.

1 Introduction

Geometric random graph models play an important role in the modelling of real-world
networks [21] such as on-line social networks [6], wireless and ad hoc networks [3, 17, 19],
and the web graph [1, 16]. In such stochastic models, vertices of the network are repre-
sented by points in a suitably chosen metric space, and edges are chosen by a mixture
of relative proximity of the vertices and probabilistic rules. In real-world networks, the
underlying metric space is a representation of the hidden reality that leads to the for-
mation of edges. In the case of on-line social networks, for example, users are embedded
in a high dimensional social space, where users that are positioned close together in the
space exhibit similar characteristics.

Growth is a pertinent feature of most real-life networks, and most stochastic models
take the form of a time process, where graphs increase in size over time. The limit of such
a process as time goes to infinity is a countably infinite graph. This study of such limiting
graphs is in part motivated by the large-scale nature of real-world complex networks. It
is expected that the infinite limit will elucidate the structure that emerges when graphs
generated by the process become large. The limiting graphs are also of considerable
interest in their own right.
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The study of countably infinite graphs is further motivated by two major research
directions within graph theory and theoretical computer science. First, there is a well-
developed theory of the infinite random graph, or the Rado graph, written R. The inves-
tigation of R lies at the intersection of logic, probability theory, and topology; see the
surveys [11, 12, 15] or Chapter 6 of [5].

Another line of investigation has focused on so-called graph limits, developed by
Lovász and others [8, 9, 22]. A framework is given to define the convergence of sequences
of graphs of increasing size. Convergence is based on homomorphism densities, and the
limit object is a symmetric measurable function. Countably infinite graphs that arise as
limits of such sequences can be interpreted as random graphs sampled from the limiting
object.

In [7] we considered infinite limits of a simple random geometric graph model. In our
model, vertices are chosen at random from a metric space, and if the distance between
the two vertices is no larger than some fixed threshold, the vertices are adjacent with
some fixed probability. More precisely, for a space S with metric d, consider a threshold
δ ∈ R+, a countable subset V of S, and a link probability p ∈ [0, 1]. The Local Area
Random Graph LARG(V, δ, p) has vertices V, and for each pair of vertices u and v with
d(u, v) < δ an edge is added independently with probability p. Note that V may be
either finite or infinite. For simplicity, we consider only the case when δ = 1; we write
LARG(V, p) in this case. The LARG model generalizes well-known classes of random
graphs. For example, special cases of the LARG model include the random geometric
graphs (where p = 1), and the binomial random graph G(n, p) (where S has finite
diameter D, and δ ≥ D). We note that the theory of random geometric graphs has been
extensively developed (see, for example, [2, 14] and the book [23]).

The basic question we consider is whether the graphs generated by this random
process retain information about the metric space from which they are derived. In [7] we
obtained a positive answer to this question for Rn with the L∞-metric (for any n ≥ 1).
In particular, we showed that in this case, if V is countably infinite, dense in Rn and
randomly chosen, then with probability 1, any two graphs generated by the LARG(V, δ, p)
(for any fixed δ and p) are isomorphic. Moreover, the isomorphism type is the same for
all values of δ ∈ R+ and p ∈ (0, 1). Thus, we can take the unique infinite graph resulting
from this process to represent the geometry of this particular metric space.

The isomorphism result described above for the L∞-metric lead us to consider fol-
lowing general question.

Geometric Isomorphism Dichotomy (GID): For which metrics on Rn do we have the
property that graphs generated by the random process LARG(V, δ, p), for V countably
infinite, dense in Rn and randomly chosen, and any δ ∈ R+ and p ∈ (0, 1) are isomorphic
with probability 1?

In [7], we showed that two graphs generated by LARG(V, δ, p) in R2 with the L2-(or
Euclidean) metric are non-isomorphic with probability 1, thereby answering the GID in
the negative. In the present work, we extend our understanding of the GID to include
another metric on R2, the so-called hexagonal (or honeycomb) metric, written dhex, which
is defined by having hexagonal unit balls. This metric may be seen to lie in between the
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L∞-metric, where unit balls are squares, and the Euclidean metric, where unit balls are
circles. Hexagons have the property that they tile the plane (as squares do), but on the
other hand they can be seen as approximate circles. The precise definition of the dhex

metric is given in Section 3.
The hexagonal metric arises in the study of Voronoi diagrams and period graphs (see

[18]) in computational geometry, which in turn have applications to nanotechnology. The
hexagonal metric arises as a special case of convex polygonal (or polygon-offset) distance
functions, where distance is in terms of a scaling of a convex polygon containing the
origin; see [4, 13, 20]. A precise definition of this metric is given in Section 3. We note
that honeycomb networks formed by tilings by hexagonal meshes have been studied as,
among other things, a model of interconnection networks; see [24].

Our main result is the following theorem.

Theorem 1. Let V be a randomly chosen, countable, dense set in R2 with the dhex-
metric. Let G and H be two graphs generated by the model LARG(V, p), where 0 < p < 1.
Then with probability 1, G and H are not isomorphic.

The theorem answers the GID in the negative for R2 with the hexagonal metric.
We devote the present article to a sketch of a proof of Theorem 1. Our techniques are
largely geometric and combinatorial (such as Hall’s condition), and appear in Section 3.
In Section 2, we introduce the hexagonal metric and review some of the concepts devel-
oped in [7] which are needed to obtain the non-isomorphism result. We conclude with a
conjecture on the GID for a wide family of metrics defined by other polygons.

All graphs considered are simple, undirected, and countable unless otherwise stated.
Let N, N+, Z, and R denote the non-negative integers, the positive integers, the integers,
and real numbers, respectively. Vectors are written in bold. For a reference on graph
theory the reader is directed to [25], while [10] is a reference on metric spaces.

2 Conditions for isomorphism

2.1 Hexagonal metric

We now formally define the hexagonal metric. Consider the vectors

a1 =

(
1
0

)
, a2 =

(
1
2

1
2

√
3

)
, and a3 =

( −1
2

1
2

√
3

)
.

These are the normal vectors to the sides of a regular hexagon, as shown in Figure 1.
For x ∈ R2 define the hexagonal norm of x as follows:

‖x‖hex = max
i=1,2,3

|ai · x|,

where “·” is the dot product of vectors. The hexagonal metric in R2 is derived from the
hexagonal norm, and defined by

dhex(x,y) = ‖x− y‖hex .
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Fig. 1. The vectors ai.

We may drop the subscript “hex” when it is clear from context. Note that the unit balls
with the hexagonal metric are regular hexagons as in Figure 1. We denote the metric
space consisting of R2 with the hexagonal metric by (R2, dhex).

2.2 Step-isometries

For the proof of Theorem 1, we rely on the following geometric theorem. Given metric
spaces (S, dS) and (T, dT ), sets V ⊆ S and W ⊆ T , a step-isometry from V to W is a
surjective map f : V → W with the property that for every pair of vertices u, v ∈ V,

bdS(u, v)c = bdT (f(u), f(v))c.

Every isometry is a step-isometry, but the converse is false, in general. For example,
consider R with the Euclidean metric, and let f : R→ R be given by f(x) = (bxc+x)/2
is a step-isometry, but not an isometry.

A subset V is dense in S if for every point x ∈ S, every ball around x contains at
least one point from V . We refer to u ∈ S as points or vertices, depending on the context.
A crucial step in the proof of isomorphism results of graphs produced by LARG(V, p)
when V is dense in the underlying metric space (S, d), is that any isomorphism must be
a step-isometry. For a rough sketch of this fact, observe that if G is a graph produced by
LARG(v, d), and if u and v are two vertices in V so that k < bd(u, v)c < k+1, then with
probability 1, there exists a path of length k from u to v in G. Since no edge can connect
vertices at distance 1 or higher, no path of length less than k−1 can exist between u and
v. Thus, the graph distance equals the floor of the distance. Since an isomorphism must
preserve graph distance, it therefore must also preserve the distance, up to its integer
multiple, and thus, be a step-isometry.

We will use this fact in the form of the following lemma, adapted from [7], whose
proof is omitted.
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Lemma 1. Let V be a countable set dense in R2 with the dhex-metric, randomly chosen,
and let G and H be two graphs generated by the model LARG(V, p), where 0 < p < 1. If
G and H are isomorphic via f , then with probability 1 we have that f is a step-isometry.

The following theorem is central to our proof of Theorem 1.

Theorem 2. Let V and W be dense subsets of R2 with the dhex-metric, with the property
that V contains two points p1,p2 so that their distance dhex(p1,p2) is irrational. Then
every step-isometry from V to W is uniquely determined by the images of p1 and p2.

The next section will be devoted to the proof of Theorem 2. Using Theorem 2, we may
prove Theorem 1. As the proof of Theorem 1 is analogous to the proof of Theorem 15
in [7], it is omitted.

3 Proof of Theorem 2

To prove Theorem 2, we show first that each finite set of points in the plane introduces
a set of lines (which will be recursively defined below). These lines will fall into three
parallelism classes, defined by their normals ai, for i = 1, 2, 3. More precisely, for a fixed
i ∈ {1, 2, 3}, define Fi to be the family of lines in the plane with normal vector ai. For
r ∈ R, let Fi(r) be the family of lines in Fi which are at integer distance from the line
ai · x = r. Thus, Fi(r) contains the lines with equations

ai · x = r + z, for some z ∈ Z.

We will show that any step-isometry f between two graphs with dense vertex sets
must be “consistent” with these lines (that is, a point in the domain framed by a set
of lines must be mapped to a point which is framed by a corresponding set of lines in
the range); see Lemma 2. We then show that we can choose these lines to be dense in
Lemma 3, and thereby prove that f is in fact uniquely determined by a finite set of
points.

We now define this notion of consistency in a more precise fashion. Let V ⊆ R2

and f : V → R2 be an injective map. Let r ∈ [0, 1) and i ∈ {1, 2, 3}, and let σ be a
permutation of the index set {1, 2, 3}. The map f is consistent with the family of lines
Fi(r) with respect to the permutation σ if there exists r′ ∈ [0, 1) so that for all x ∈ V,
for all z ∈ Z,

ai · x < z + r if and only if aσ(i) · x′ < z + r′,

where x′ = f(x).
In the following, we will assume that all sets contain the origin 0, and we will assume

without loss of generality that any map preserves the origin. Note that we can always
replace any set V by an equivalent, translated set V + b = {v + b : v ∈ V } so that this
is indeed the case.

Lemma 2. Suppose that V and W are dense in R2, and f : V → W is a bijection. If f
is a step-isometry, then there exists a permutation σ of the index set {1, 2, 3} such that
f is consistent with the family of lines Fi(0) with respect to σ for i = 1, 2, 3.
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Proof. For 1 ≤ i ≤ 6, let Si be the six sections partitioning R2 formed by the lines
`j : aj · x = 0, where j = 1, 2, 3. See Figure 2.

0

S

S

S S

S5

4

2

1

3

1

S62

3

Fig. 2. The sectors Si and lines `j : ai · x = 0.

Note that each of the sectors is uniquely defined by its two bounding lines. For
example, sector S1 contains all points x for which a1 ·x < 0 and a2 ·x > 0, and sector S2

contains all points x for which a2 · x < 0 and a3 · x > 0. Thus, any permutation σ of the
index set {1, 2, 3} induces a permutation σ∗ of the sectors. For example, the permutation
σ = (1, 2, 3) induces the permutation σ∗ = (1, 2, 3, 4, 5, 6) of the sector indices.

Claim. There exist six points vi ∈ V , 1 ≤ i ≤ 6, and a permutation σ of the index
set {1, 2, 3} so that for all i we have that vi ∈ Si and f(vi) ∈ Sσ∗(i), where σ∗ is the
permutation of the sectors induced by σ.

Proof. Let k = 26. Choose points ui, where i = 0, . . . , 6k − 1, such that the following
four conditions hold.

1. All points lie in a band at distance between k−1 and k from the origin. More precisely,
for all i, 0 ≤ i < 6k, k − 1 < d(0,ui) < k.

2. Any two consecutive points lie at less than unit distance from each other. More
precisely, for all i, 0 ≤ i < 6k, d(ui,ui+1) < 1, where addition in the index is taken
modulo 6k.

3. Any two points that are not consecutive are further than unit distance apart. More
precisely, for all i and j, 0 ≤ i < 6k, 2 ≤ j ≤ 6k − 2, d(ui,ui+j) > 1, where addition
in the index is taken modulo 6k. Note that if these points are adjacent if and only if
their distance is less than 1, then the points would form a cycle.

4. For all j, 1 ≤ j ≤ 6, the points u(j−1)k+i, 0 ≤ i < k lie in sector Sj.

For all i, 0 ≤ i < 6k, let u′i = f(ui), and let U ′ = {u′i : 0 ≤ i < 6k}. Since f
is a step-isometry, the points u′i must satisfy conditions (1), (2), and (3) for the given
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ui. Note that we cannot conclude that (4) holds as well. However, we can deduce that
each sector must contain at least k − 1 vertices from U ′. Namely, let u′s ∈ U ′ be in
sector S2. Let u′t1 and u′t2 be the vertices with lowest index and highest index in S2∩U ′,
respectively. Then u′t1−1 and u′t2+1 are in the two sectors adjacent to S2; without loss
of generality u′t1−1 ∈ S1 and u′t2+1 ∈ S3. By condition (1) and by the geometry of the
sectors, d(u′t1−1,u

′
t2+1) ≥ k−1, and by condition (2), d(u′t1−1,u

′
t2+1) < (t2 +1)− (t1−1).

Thus,
(t2 + 1)− (t1 − 1) > k − 1,

so t2 − t1 + 1 ≥ k − 1. Since the points u′t1 , . . . ,u
′
t2

are in S2, it follows that S2 contains
at least k − 1 points. The same conclusion holds for the other sectors.

A simple counting argument shows that each sector can contain at most 6k−5(k−1) =
k + 5 points from U ′ (as there are 6k points ui). For j = 1, 2, . . . , 6, let U ′

j = {f(u) : u ∈
U∩Sj} be the collection of images of points from u that lie in sector Sj. By condition (4),
|U ′

j| = k for all j. Note that k is chosen large enough so that tk > (t−1)(k+5) for any t,
1 ≤ t ≤ 6. Thus, by the pigeonhole principle the tk vertices from t of the sets U ′

j cannot
be contained in less than t sectors. Thus, Hall’s condition (see for example, [25]) holds,
and we can find a permutation σ∗ of the index set {1, 2, . . . , 6} so that U ′

i ∩ Sσ∗(i) 6= ∅.
Moreover, because of the cyclic structure of the points in U ′ implied by conditions (2)
and (3), adjacent sets U ′

j and U ′
j+1 must be mapped by σ∗ to adjacent sectors. This

guarantees that σ∗ is compatible with a permutation σ of the index set {1, 2, 3} of the
lines that define the sectors.

For j = 1, . . . , 6, we can then choose vj ∈ Uj = U ∩ Sj so that f(vj) ∈ U ′
j ∩ Sσ∗(j).

This completes the proof of the claim. 2

To complete the proof of the lemma, fix the vi and σ as in Claim 3. Let

A = {vi : 1 ≤ i ≤ 6}.
Without loss of generality, we set σ to be the identity permutation. For a contradiction,
assume there exists u ∈ V and i ∈ {1, 2, 3} so that ai · u < 0 but ai · u′ > 0, where
u′ = f(u). Let L = {v ∈ A : ai · v < 0}, and R = A − L = {v ∈ A : ai · v > 0}. Let
L′ = {f(v) : v ∈ L} and R′ = {f(v) : v ∈ R}. By definition, each of the vertices of A
lies in a different sector, so we must have that |L| = |R| = 3. See Figure 3; we assume
in the figure that i = 1, so f is not consistent with `1.

Choose w so that for some b ∈ Z+,

dhex(w,x) > b for all x ∈ R ∪ {0}, and

dhex(w,x) < b for all x ∈ L ∪ {u}.
More precisely, the ball with radius b centered at w contains L ∪ {u}, and is disjoint
from R ∪ {0}.

Since f is a step-isometry, if we set w′ = f(w), then

dhex(w
′,x) > b for all x ∈ R′ ∪ {0}, and

dhex(w
′,x) < b for all x ∈ L′ ∪ {u′}.
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R = {v , v , v }4 5 6L  = {v , v , v }1 2 3
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4v'
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v'

2

1

3

v'

v'

w'

b

0

Fig. 3. The original configuration and its image under f . Dotted lines correspond to the boundaries of the
(partially shown) balls of radius b centred around w and w′.

By the definition of A and the assumption that σ is the identity, for each v ∈ A, if
v is in a certain sector Sj then so is f(v). Thus, ai · v′ < 0 for all v′ ∈ L′. However,
ai ·u′ > 0, so the vertices in L′∪{u′} lie in four different sectors. Thus, the ball of radius
b around w′ must intersect at least four sectors (see Figure 3) and so contains the origin.
Since dhex(w

′,0) > b, this ball cannot contain 0, which gives a contradiction. 2

Let B be a finite subset of R2. Define a collection of lines L(B) inductively as follows.
To define L0(B): for each w ∈ B, add the three lines through w in the families Fi,
(i = 1, 2, 3,) along with their integer parallels. Specifically, these are all the lines with
equation ai · x = ai ·w + z, where z ∈ Z.

For the inductive step, assume that Lj(B) has been defined for some j ≥ 0. To define
Lj+1(B), for each point p ∈ R2 which lies on the intersection of two lines in Lj(B)
(which must belong to different, non-parallel families), add the unique line belonging to
the third family. See Figure 4. More precisely, if p is at the intersection of lines ` and m,
where l ∈ Fi` and m ∈ Fim (with i` 6= im), then add to Lj+1(B) the line with equation
aj · x = aj · p, where j is the unique element in {1, 2, 3}\{i`, im}.

Finally, define

L(B) =
⋃

i∈N
Li(B).

We need the following lemma.
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p

Fig. 4. The solid lines are in Li and the dotted line is in Li+1.

Lemma 3. Let B = {0,p}, where ai ·p = r ∈ (0, 1). Then the family L(B) contains all
the following lines, where i ∈ {1, 2, 3}, z1, z2 ∈ Z:

ai · x = z1r + z2.

Moreover, if r is irrational, the set of lines L(B) is dense in R2.

Proof. Consider the triangular lattice formed by all lines in L0({0}); that is, all lines
with equations ai ·x = z, where i = 1, 2, 3 and z ∈ Z. See Figure 5. Consider the triangle

0
p

Fig. 5. A triangular lattice.

that contains p. We assume that this triangle is framed by the lines with equations
a1 · x = 1, a2 · x = 0 and a3 · x = 0, as shown in Figure 6. (The proof can easily be
adapted to cover all other possibilities.) By definition, the line `1 defined by a1 ·x = r is
part of L0(B).

The line `1 intersects the two sides of the triangle in p1 and p2. The point p1 lies on
the intersection of the lines from the families F1 and F3. Thus, L1(w) contains the line
`2 in F2 through p1 which has equation a2 · x = a2 · p2. Similarly, L1(w) contains the
line `3 in F3 through p2 which has equation a3 · x = a3 · p2. See Figure 6.
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1

37

5

4

2

7p

Fig. 6. Generating the line a3 · p2 = 1− r.

The lines `2 and `3 intersect the third side of the triangle in p3 and p4, generating two
lines `4 and `5 in L2(B) with equations a3 · x = a3 · p3 and a2 · x = a2 · p4, respectively.
The lines `4 and `5 intersect with the sides of the triangle in p5 and p6, generating one
line `6 in L3(B) with equation a1 · x = a1 · p5 = a1 · p6.

From the fact that the triangle formed by 0, p1, and p2 is isosceles, it follows that
r = a1 · p = a2 · p1 = a3 · p2. By the comparison of similar triangles, we obtain that

a1 · p5 = a2 · p4 = a3 · p2 = 1− r.

Now the parallel lines ai · x = r + z2,−r + z2, z2 ∈ Z, may be generated from all similar
triangles in the lattice in an analogous fashion.

To complete the proof, consider that the lines `2 and `3 intersect in point p7, which
generates a line `7 ∈ F1 as indicated in Figure 6. Since the triangle formed by p1,p2, and
p7 is a reflection of the triangle formed by 0,p1, and p2, it follows that `7 has equation
a1 ·x = 2r. This process can be repeated to obtain all the lines ai ·x = z1r+z2, z1, z2 ∈ Z,
i = 1, 2, 3.

If r is irrational, then the set {z1r + z2 : z1, z2 ∈ Z} is dense in R (this is a result
from folklore which can be proved by using the pigeonhole principle). That completes
the proof of the lemma. 2

We now give a proof of the main theorem in this section.

Proof of Theorem 2. Let f : V → W be a step-isometry. By Lemma 2 there exists a
permutation σ of the index set {1, 2, 3} such that f is consistent with the family of lines
Fi(0) for i = 1, 2, 3 with respect to σ. Without loss of generality, we assume that σ is the
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identity. Assume that V has two points whose distance is irrational; assume without loss
of generality that a one of them is the origin. Choose B = {0,p} ⊆ V so that dhex(0,p)
is irrational. By Lemma 3, the set of lines L(B) is dense in R2. Thus, any of the points
in V is uniquely defined by their position with respect to all lines in L(B). Moreover, the
same is true for W , and the set of lines generated by the images of 0 and p. Therefore,
once the images of 0 and p are given, each other vertex has a unique image under f . 2

Note that it is a crucial point in the proof of Theorem 2 that V must contain two
points whose distance is irrational. Since the set of rationals has measure 0 in the reals,
if V is chosen randomly, then such two points will exist with probability 1. If V does
not contain such points (for example, if V is chosen to contain all rational points in R2

that lie at rational hexagonal distance from the origin), then for any finite set B the
family L(B) will contain only a finite number of line families, and thus, cannot not lead
to a dense grid. In that case, we expect that methods similar to those used to prove
uniqueness for the L∞-metric can be used to show that LARG(V, p) results in a unique
isomorphism type.

4 Conclusion and further work

We have shown that the hexagonal metric on a randomly chosen, dense subset of R2 can
lead to non-isomorphic limit graphs in the LARG random process. Our main tool was
Theorem 2 which proves that a step-isometry f between randomly chosen dense sets is,
with probability 1, determined by the image of two points. Theorem 2 was proven by
exploiting that f is consistent with a dense set of lines as proved in Lemmas 2 and 3.

The methods described in this article should extend to other polygonal metrics and
higher dimensions. A polygonal metric is one where the unit ball is a (convex) point-
symmetric polygon. The distance between two points a and b given as follows. Translate
the polygon until it is centered at a. Let v be the unique point on the intersection of
the ray from a to b with the boundary of the polygon. Then the distance is given by
the ratio of the (Euclidean) distance between a and b to the distance between a and
v. Alternatively, it is the factor by which the polygon centered at a would have to be
enlarged until it touches b.

To be a metric, the polygon needs to be point-symmetric, and thus, has an even
number of sides. If the number of sides equals 2n for a metric defined in Rn, then
the polygon can be transformed into an n-dimensional hypercube by rescaling of the
coordinates, and thus the metric is equivalent to the L∞-metric. We conjecture that this
is the only case for which the GID is answered in the affirmative.

Conjecture 1. For all n ≥ 2, for all convex polygonal distance functions where the poly-
gon has at least six sides, two graphs generated by LARG(V, p), with V randomly chosen
and dense in Rn, and p ∈ (0, 1), are non-isomorphic with probability 1.

We showed earlier that the GID is answered in the negative for the Euclidean metric
and R2. We think that the analogous statement is true for the Euclidean metric in
higher dimensions, and that the methods in this paper may suggest a suitable approach
to proving this fact.
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