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Abstract. We consider isomorphism properties of infinite random geometric graphs defined
over a variety of metrics. In previous work, it was shown that for Rn with the L∞-metric, the
infinite random geometric graph is, with probability 1, unique up to isomorphism. However,
in the case n = 2 this is false with either of the L2-metric or the hexagonal metric. We
generalize this result to a large family of metrics induced by norms. In particular, we show
that the infinite geometric graph is unique up to isomorphism if and only if the metric space
has a new property which we name truncating: each step-isometry from a dense set to itself is
an isometry. As a corollary, we derive that the infinite random geometric graph defined in Lp

space is unique up to isomorphism with probability 1 only in the cases when p = 1 or p = ∞.

1. Introduction

Geometric random graph models play an important role in the modelling of real-world
networks such as on-line social networks [6], wireless networks [17, 19], and the web graph
[1, 16]. In such stochastic models, vertices of the network are represented by points in a
suitably chosen metric space, and edges are chosen by a mixture of relative proximity of
the vertices and probabilistic rules. In real-world networks, the underlying metric space is
a representation of the hidden reality that leads to the formation of edges. Such networks
can be viewed as embedded in a feature space, where vertices with similar features are more
closely positioned. For example, in the case of on-line social networks, for example, users are
embedded in a high dimensional social space, where users that are positioned close together in
the space exhibit similar characteristics. The web graph may be viewed in topic space, where
web pages with similar topics are closer to each other. We note that the theory of random
geometric graphs has been extensively developed (see, for example, [2, 14] and the book [22]).

The study of countably infinite graphs is motivated in part by the theory of the infinite
random graph, or the Rado graph (see [10, 11, 15]), written R. The graph R was first discovered
by Erdős and Rényi [15], who proved that with probability 1, any two randomly generated
countably infinite graphs, where vertices are joined independently with probability p ∈ (0, 1),
are isomorphic. The graph R has several remarkable properties, such as universality (all
countable graphs are isomorphic to an induced subgraph) and homogeneity (every isomorphism
between finite induced subgraphs extends to an isomorphism). The investigation of R lies at
the intersection of logic, probability theory, and topology; see the surveys [10, 11, 15] and
Chapter 6 of [5].

Geometric random graphs are usually studied in the case of finite graphs. In [7] we con-
sidered infinite random geometric graphs. In our model, vertices were chosen at random
according to a given probability distribution from a dense subset of Rn for a fixed n ≥ 1 and
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two vertices are adjacent if the distance between the two vertices is no larger than some fixed
real number. More precisely, consider a metric space S with metric

d : S × S → R,

a parameter δ ∈ R+, a countably infinite subset V of S, and p ∈ (0, 1). The Local Area

Random Graph LARG(V, δ, p) has vertices V, and for each pair of vertices u and v with
d(u, v) < δ, an edge is added independently with probability p. Note that V may be either
finite or infinite. For simplicity, we consider only the case when δ = 1; we write LARG(V, p)
in this case. The LARG model generalizes well-known classes of random graphs. For example,
special cases of the LARG model include the random geometric graphs, where p = 1, and the
binomial random graph G(n, p), where S has finite diameter D, and δ ≥ D.

A set V ⊆ R2 is representative if, for every set A ⊆ R2 with positive Lebesgue measure,
A ∩ V 6= ∅. It follows that a representative set must be infinite, dense in R2, and that the
intersection with any set of non-zero measure must be infinite. For example, in R2 with the
Euclidean L2-metric, the set of points with irrational coordinates is representative, but the set
of points with rational coordinates is not. The concept of representative set is introduced to
capture the notion of a “random” countably infinite subset of R2. Thus, if an infinite number
of points from R2 are chosen according to, for example, a Poisson point process with uniform
density, then the result would, with probability 1, be a representative set.

Let Ωn be the set of metrics defined on Rn. We will say that a metric d ∈ Ωn is predictable
if there exists a countably infinite representative set V ⊆ Rn such that for all p ∈ (0, 1), with
probability 1 graphs generated by LARG(V, p) are isomorphic. For all n ∈ N+ it was shown
in [7] that the L∞-metric is predictable, while the L2-metric is not.

We have therefore, the following natural classification program for infinite random geometric
graphs.

Geometric Isomorphism Dichotomy (GID): Determine which metrics in Ωn are pre-
dictable.

In the next section, we describe our main results which greatly extend our understanding
of the GID for a large family of so-called norm derived metrics, which includes all the familiar
Lp-metrics and the hexagonal metric. The hexagonal metric arises in the study of Voronoi
diagrams and period graphs (see [18]) which have found applications to nanotechnology. We
note that in [8], it was shown that the hexagonal metrics in the case n = 2 are not predictable.

All graphs considered are simple, undirected, and countable unless otherwise stated. Given
a metric space S with distance function d, define the (open) ball of radius δ around x by

Bδ(x) = {u ∈ S : d(u, x) < δ}.

We will sometimes just refer to Bδ(x) as a δ-ball or ball of radius δ. A subset V is dense
in S if for every point x ∈ S, every ball around x contains at least one point from V . We
refer to u ∈ S as points or vertices, depending on the context. Throughout, let N, N+, Z,
and R denote the non-negative integers, the positive integers, the integers, and real numbers,
respectively. We use bold notation for vectors u ∈ Rn. The dot product of two vectors u and
v is denoted u · v. For a reference on graph theory the reader is directed to [13, 24], while [9]
is a reference on metric spaces.
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1.1. Main results. Our main result is Corollary 3 stated below, which settles the GID for a
large class of metrics in the plane. Before we state the theorem, we first need some definitions.
Throughout, d is a metric in Ω2. Indeed, the definitions stated in this section naturally extend
to higher dimensions and more general metric spaces, but we focus on the plane for simplicity,
since our results apply there.

1.1.1. The truncation property of metric spaces. A function f : V → V , where V ⊆ R2 is a
step-isometry if for every u, v ∈ V ,

⌊d(u, v)⌋ = ⌊d(f(u), f(v))⌋.

Thus, a step-isometry preserves distances in truncated form. A metric d has the truncating

property if every step-isometry f : V → W is an isometry, where V ⊆ R2 is a representative
set. In [7], it was shown that R2 with the L2-metric has the truncating property, but the
L∞-metric does not. For example, in the case n = 1 with the L∞-metric, consider the map
f : R → R given by:

f(x) =

{

⌊x⌋ + 2

3
(x− ⌊x⌋) if x− ⌊x⌋ ≤ 1

2
,

⌊x⌋ + 4

3
(x− ⌊x⌋)− 1

3
else.

It is straightforward to check that f is a step-isometry, but not an isometry.

1.1.2. Norm-derived metrics and their shape. A metric d is translation-invariant if for all
a,x,y ∈ R2, we have that

d(x,y) = d(x+ a,x + a).

The metric d is homogeneous if for all α ∈ R, d(αx, αy) = |α|d(x,y). Any translation-
invariant, homogeneous metric d induces a norm, given by ‖x‖ = d(x, 0). Conversely, a norm
‖ · ‖ induces a translation-invariant, homogeneous metric

d(x,y) = ‖x− y‖.

Hence, the metrics we consider are precisely those that are derived from norms. We define
a norm-derived metric as a metric defined by a norm (referred to as the underlying norm).
A well-studied family of norm-derived metrics consists of metrics derived from the Lp norm,

where p ≥ 1; recall that for x = (x1, x2) ∈ R2, ‖x‖p = (|x1|
p + |x2|

p)1/p .
It is straightforward to check that the unit ball around 0 of any norm-derived metric d

must be a convex, point-symmetric set P which we call the shape of d. Conversely, a convex,
point-symmetric set P ⊆ R2 defines a norm ‖ · ‖P and a corresponding metric dP as follows.
Fix a vector x ∈ R2, and let a be the unique point where the ray from 0 to x intersects P .
Then we have that

‖x‖P =
‖a‖2
‖x‖2

,

and the metric dP is defined as
dP (x,y) = ‖x− y‖P .

Observe that the unit ball around 0 of dP equals P . Note that in R2, for p > 1, the Lp-
metric has shape a superellipse or Láme curve, while the L∞-metric has shape a square with
sides parallel to the coordinate axes, and the L1-metric has shape a square with the diagonals
parallel to the coordinate axes. Throughout this paper, we will use the notation dP for the
norm-derived metric with shape P .
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We only consider norm-derived metrics whose shape is either a polygon (and we call such
metrics polygonal ; these include the Lp-metrics in the case p = 1,∞), or metrics whose shape
can be described by a smooth curve (we call such metrics smooth; which includes the Lp-
metrics in the case p > 1 and p 6= ∞). We think that the results in this paper apply equally
to norm-based metric whose shape has both straight and curved sides, and that this can
be proved with methods similar to those presented here. However, we do not pursue this
generalization here, due to the excessive technicalities. To conserve notation, from now on we
denote by Ω the set of all polygonal and smooth norm-derived metrics in R2.

1.1.3. Main results. We now have defined almost all concepts needed to state our main result,
which constitutes a classification of all metrics in Ω in terms of the truncating property. We
next define a special class of polygonal metrics; our main result will show that this is the class
of metrics in Ω which do not have the truncating property. A metric d ∈ Ω is a box metric if
and only if its shape is a parallelogram.

Theorem 1. A metric d ∈ Ω has the truncating property if and only if d is not a box metric.

The proof of the theorem will follow from a series of lemmas presented in Section 2. The
proof considers separately the polygonal and smooth cases.

An important corollary of Theorem 1 shows that, in (R2, dP ) where dP is not a box metric,
three well-chosen points completely determine a step-isometry, as they do an isometry. For
example, if dP is the L2-metric, then the restriction on the 3 points is that they should not be
collinear. For general norm-derived metrics, the restriction is slightly more complicated, and
we need some definitions before we can state the corollary.

A set of three points x,y, z ∈ R2 so that d(x,y) ≤ d(y, z) ≤ d(x, z) is a triangular set if

d(x,y) + d(y, z) > d(x, z).

If d is the L2-metric, then x,y, z forms a triangular set if and only if the points are not
collinear; the same is not true for metrics where the unit ball P is a polygon. For example,
let d∞ be the metric derived from the L∞-norm, and let x = (0, 0), y = (2, 0), and z = (1, 1).
Then d∞(x, z) = d∞(y, z) = 1 and d∞(x,y) = 2, so x,y, z do not form a triangular set,
despite the fact they are not collinear.

Triangular sets exist in any representative set and for any metric d ∈ Ω which is not a box
metric. Namely, fix x,y, z ∈ R2 such that the lines through x and y, y and z, and z and x
have slope γ1, γ2, γ3, respectively. If d is a smooth metric, then if γ1, γ2, γ3 are all different
and none of them is parallel to the x- or y-axis, then {x,y, z} is a triangular set. If d is a
polygonal metric, and if the lines through the origin with slopes γ1, γ2, γ3 intersect P in three
different, non-parallel sides, then {x,y, z} is a triangular set. It is clear that such sets exist
in any set that is representative and therefore, dense in R2, and d is not a box metric.

It follows immediately from the properties of norm-derived metrics that triangular sets have
the following anchoring property : if V is a representative set, S ⊆ V is a triangular set, and
f : V → V an isometry, then the images under f of the points in S completely determine
the map f . Hence, images of triangular sets completely determine the images of points of a
representative set under an isometry. Thus, it follows as corollary from Theorem 1 that if d
is not a box metric, then triangular sets have the anchoring property if only the truncated
distances are given.
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Corollary 2. Let V be a representative set and let S ⊆ V be a triangular set, and let d ∈ Ω
be a norm-based metric which is not a box metric. Then for every step-isometry f : V → V ,
the images under f of the points in S completely determine f .

Proof. By Theorem 1, the step-isometry f is an isometry. The points of S completely deter-
mine, therefore, the position of all points in V . The proof now follows since the image of a
triangular set under an isometry is also a triangular set. �

Thus, if the coordinates of the points in S are given, and for all other points in V the
truncated distance to each of the points in S is given, then the coordinates of all points in V
are determined.

Arguments involving infinite graphs can be used with Corollary 2 to prove the following
theorem, which settles the GID for all metrics in Ω, including the Lp-metrics and polygonal
metrics on R2.

Theorem 3. A metric d ∈ Ω is predictable if and only if it is a box metric.

We defer the proof to the end of Section 2. We conjecture that analogous results as in
Theorem 3 apply to higher dimensions and other norm-derived metrics. We will consider
these cases in future work.

2. Outline of the proof of the main results

In this section, we will sketch the proof of Theorem 1, and give the sequence of lemmas
needed to arrive at the proof. We will also give the proof of Theorem 3. Before we proceed
to an outline of the proof of Theorem 1, we first introduce some notation and concepts that
apply to all norm-derived metrics, and will be helpful in the rest of the paper. For a polygonal
metric dP ∈ Ω, we can use the description of the polygon to compute the norm and distance.
We introduce specific notation for this case which we will use throughout. Let P be a point-
symmetric (but possible non-regular) polygon in R2 whose boundaries are formed by lines
with normals a1, a2, . . . , ak. See Figure 1 for an example. More precisely, let P be the set:

P = {x : for all 1 ≤ i ≤ k, − 1 ≤ ai · x ≤ 1}.

Then for each x ∈ R2, we have that:

‖x‖P = max
1≤i≤k

|ai · x|.

For a ∈ G, let F (P, a) be the face of P with normal a, where a is pointing away from the
centre of P. Define F (P,−a) analogously. See Figure 1.

Define the set of generators of P , written GP , to be the set of vectors that define its sides;
in particular, we have that

GP = {ai : 1 ≤ i ≤ k} ∪ {−ai : 1 ≤ i ≤ k}.

Observe that an alternative description is P = {x : for all a ∈ GP , 0 ≤ a · x ≤ 1}, and for
each x ∈ Rn, we have that

‖x‖P = max
a∈GP

|a · x|.

We now consider the case where the metric is smooth. Let GP be the set of all vectors from
the origin to points on the boundary of P . Now let G∗

P be a countable dense subset of GP . In
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a1

a2a1a1a1a1

a3a1a1a1a1

a4a1a1a1a1

a1a1a1a1a1

a2a1a1a1a1

a3a1a1a1a1

a4a1a1a1a1

F(P,  a )4
F(P, a )4

Figure 1. The polygon P .

particular, for each vector a ∈ GP and all ǫ > 0, we require that there exist b ∈ G∗
P so that

a · b ≥ 1− ǫ. In other words, the angle between a and b can be made arbitrarily small. Let

P ∗ = {x : for all a ∈ G∗
P , 0 ≤ a · x ≤ 1}.

Then the closure of P ∗ is P . Moreover, we have that for all x ∈ R2,

‖x‖P = sup
a∈G∗

P

a · x.

Such a set G∗
P will be called a generator set for P . Note that every convex set has a countable

generator set, while only polygons have finite generator sets.
The proof of Theorem 1 is outlined here through a series of lemmas. The proofs of these

technical lemmas can all be found in Sections 3 and 4. Their proofs are based on the concept
of respected lines, which we now introduce. Let V ⊆ R2 and f : V → R2 be an injective map.
Let r ∈ R, a ∈ R2, and let ℓ be the line defined by the equation a ·x = r. The map f respects
the line ℓ if there exists a line ℓ′ with equation a′ · x = r′ for some r′ ∈ R, a ∈ R2 such that
for all v ∈ V

a · v < r implies that a′ · f(v) ≤ r′, and a · v > r implies that a′ · f(v) ≥ r′. (1)

The line ℓ′ will be called the image of ℓ under the line map. Note that a function f respects
a line ℓ if the half-spaces on both sides of ℓ are mapped to half-spaces separated by another
line, which can be then be considered the image of ℓ. An integer parallel of line ℓ is a line ℓ′

parallel to ℓ so that d(ℓ, ℓ′) ∈ Z (the distance between two lines is defined in the obvious way).
The first lemma establishes some straightforward consequences of the definitions.

Lemma 4. Let V be a representative set in R2 and let f : V → V be a bijection. Suppose f
respects the line ℓ, and ℓ′ is the image of ℓ under the line map.

(i) If ℓ contains a point v ∈ V , then ℓ′ contains f(v).
(ii) The line ℓ′ is the unique image of ℓ under the line map. That is, ℓ′ is the only line

which satisfies (1).



INFINITE GEOMETRIC GRAPHS 7

(iii) Suppose f respects the line ℓ̂, and ℓ̂′ is the image of ℓ̂ under the line map. Then ℓ and

ℓ̂ are parallel if and only if ℓ′ and ℓ̂′ are parallel.
(iv) If f is a step-isometry and ℓ is a line respected by f , then all integer parallels of ℓ must

also be respected.

The first step in the proof of the main result is to establish that there are some lines that
must be respected by any step-isometry on a representative set. We consider the smooth case
first.

Lemma 5. Consider R2 equipped with a smooth metric d ∈ Ω. Let V be a representative set
in R2, and let f : V → V be a step-isometry. Let v1,v2 ∈ V , and let ℓ be the line through
v1 and v2. Then ℓ must be respected, and its image is the line ℓ′ through f(v1) and f(v2).
Moreover, any line through a point v3 ∈ V and parallel to ℓ must be respected, and its image
is the line through f(v3) and parallel to ℓ′.

A similar lemma for the polygonal case involves a more technical argument. The proof of
this lemma can be found in Section 3.

Lemma 6. Consider R2 equipped by a polygonal metric dP ∈ Ω. Let V be a representative set
in R2 and let f : V → V be a step-isometry. Then any line through a point v ∈ V and parallel
to one of the sides of P must be respected, and its image is a line through f(v) parallel to one
of the sides of P .

The proof of Theorem 1 is based on the fact that the lines emanating from a finite number
of points generate a grid which is infinitely dense, which means that these points completely
determine the step-isometry. These ideas will be made precise in Lemma 8 stated below.

We introduce some terminology which describes the lines that form the dense grid of lines.
Let B be a finite set of points in R2, and let G be a set of vectors in R2. Define a collection
of lines

L(B,G) =
⋃

i∈N

Li(B,G).

inductively as follows. The set L0(B,G) contains all lines through points in B with normal
vector in G, as well as their integer parallels. For i > 0, the sets Li(B,G) are defined induc-
tively. Assume that Li(B,G) has been defined for some i ≥ 0. Then Li+1(B,G) consists of all
lines with normal vector in G going through a point p which is an intersection point of two
lines in Li(B). See Figure 2.

Now let V be a representative set in R2, and f : V → V a step-isometry. Lemmas 5 and 6
can be used to show that, given a set B ⊆ V , there exists a countable generator set G of P so
that L0(B,G) must be respected by f . Using an inductive argument, it can be shown that,
if all lines in L0(B,G) must be respected, then all lines in L(B,G) must be respected. This
results in the following crucial lemma.

Lemma 7. Let dP ∈ Ω, let V be a representative set in R2, and let f : V → V be a step-
isometry. Then there exists a countable generator set G for P , so that for each set B ⊆ V , f
must respect all lines in L(B,G).

Moreover, there exists a map σ : G → R2 such that, if a line ℓ ∈ L(B,G) has normal
vector a ∈ G then its image under the line map has normal vector σ(a). In addition, the set
G ′ = {σ(a) : a ∈ G} is a generator set for P .
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p

Figure 2. The solid lines are in Li(B,G) and the dotted line is in Li+1(B,G).

If the vectors in G fall into two parallel classes, then L(B,G) = L0(B,G). In particular, in
this case no new lines are generated in the induction step. The following lemma shows that,
if dP is not a box metric, and thus, any generator set G for P contains at least three vectors
that are pairwise non-parallel, then B can be chosen so that L(B,G) is dense in R2. Thus,
the lines in L(B,G) generate a dense grid, and any step-isometry must be consistent with this
grid.

Lemma 8. Let dP ∈ Ω, and let G be a countable generator set for P which contains at
least three vectors that are pairwise non-parallel. Let B = {p,q}, and fix a ∈ G, where
a · (p − q) = r ∈ (0, 1) . Then the family L(B,G) contains all the following lines, where
z1, z2 ∈ Z:

a · (x− q) = z1r + z2.

Moreover, if r is irrational, then the lines in L(B,G) form a dense grid; that is, the set of
values {a · (x− q) : x ∈ R2} is dense in R.

The final lemma leads to the proof of the main result. It shows that any step isometry on
a representative set gives rise to an isometry on a dense set of points in R2 formed by a grid
of lines which all have to be respected.

Lemma 9. Let dP ∈ Ω be a norm-based metric which is not a box metric, and let G be a
generator set for P so that Lemma 7 holds. Let V be a representative set in R2, and let
f : V → V be a step-isometry. Then for every q ∈ V , there exists a point p ∈ V such that,
for all a ∈ G, a · (p − q) is irrational. Moreover, let B = {p,q}, and let σ : G → R2 be as
defined in Lemma 7. Then for each a ∈ G there exists a set R(a) which is dense in R, and
for which the following holds: For each r ∈ R(a), the line ℓ with equation a · (x−q) = r must
be respected, and the image of ℓ has equation σ(a) · (x− q′) = r, where q′ = f(q).

With these lemmas at our disposal, we may now supply a proof of the main theorem.

Proof of Theorem 1. For the forward direction, assume that dP ∈ Ω is a box metric. Thus, P
is a parallelogram, and dP has a set of two non-parallel generators a1 and a2, so that

P = {x : −1 ≤ ai · x ≤ 1 for i = 1, 2}.

Now consider the invertible linear transformation T : R2 → R2 which sends a1 to (1, 0)T and
a2 to (0, 1)T . Then for all u,v ∈ R2, dP (u,v) = d∞(T (u), T (v)). In [7], it was shown that,
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for Rn with the L∞ metric, there are uncountably many step isometries on R2 which are not
isometries, and that, for any representative set V and p ∈ (0, 1), with probability 1 two graphs
produced by LARG(V, p) are isomorphic. Using this result and the transformation T , we can
see that the same is true for any box metric.

For the reverse direction, let V be a representative set and f a step-isometry; we must show
that f is in fact an isometry. Let dP ∈ Ω be a norm-based metric which is not a box metric.
Let G be a countable generator set for P for which Lemma 7 holds.

Fix q,v ∈ V , and a ∈ G; for a point x we use the notation x′ = f(x). Choose p ∈ V so
that Lemma 9 holds, and let B = {p,q}. Let σ : G → R2 be as given by Lemma 7. Let R(a)
be the set as given by Lemma 9.

Assume that a · (v − q) < σ(a) · (v′ − q′). Let t ∈ R(a) be such that

a · (v − q) < t < σ(a) · (v′ − q′).

By Lemma 9, the line ℓ with equation a · (x−q) = t is in L(B,G), and thus must be respected
by f , and the image of ℓ is the line ℓ′ with equation σ(a) · (x − q′) = t. Thus, v lies to the
left of ℓ, while v′ lies to the right of ℓ′. This is a contradiction.

An analogous argument shows that the assumption a · (v − q) > σ(a) · (v′ − q′) also leads
to a contradiction. Thus, we conclude that for all a ∈ G:

a · (v− q) = σ(a) · (v′ − q′). (2)

Let G ′ = {σ(a) : a ∈ G}. By Lemma 7, G ′ is again a generator set for P . By the definition
of a generator set, we have that

dP (v,q) = sup{|a · (v− q)| : a ∈ G}

= sup{|σ(a) · (v′ − q′)| : a ∈ G}

= sup{|a · (v′ − q′)| : a ∈ G ′}

= dP (v
′,q′),

where the second equality follows by (2). Since v,q where arbitrary, f is an isometry. �

We finish the section with the proof of our second main result. For graphs G and H , a
partial isomorphism from G to H is an isomorphism of some finite induced subgraph of G
to an induced subgraph of H . A standard approach to show two countably infinite graphs
are isomorphic is to build a chain of partial isomorphisms whose union gives an isomorphism.
Using the probabilistic method, we show how this fails for random geometric graphs whose
metric is not a box metric. In the following proof, the probability of an event A is denoted by
P(A).

Proof of Theorem 3. Suppose that R2 is equipped with a metric d ∈ Ω. Consider graphs
produced by the model LARG(V, p) for some representative set V , and real numbers δ > 0
and p ∈ (0, 1).

For the forward direction, assume d is not a box metric. Define an enumeration {vi : i ∈ N+}
of V to be good if d(vi, vi+1) < δ for all i ∈ N+ and {v1, v2, v3} are not collinear.

Claim 10. Any representative set V has a good enumeration.
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Proof. For a positive integer n, we call {vi : 1 ≤ i ≤ n} a partial good enumeration of V.
We prove the claim by constructing a chain of partial good enumerations by induction. Since
V is dense in R2, we may choose a triangular set whose points are pairwise within δ of each
other (see also the discussion in Section 1.1.3 . Let V1 = {v1, v2, v3}. Enumerate V \ V1 as
{ui : i ≥ 2}. Starting from V1, we inductively construct a chain of partial good enumerations
Vn, n ≥ 1, so that for n ≥ 2, Vn contains {ui : 2 ≤ i ≤ n}.

We now want to form Vn+1 by adding u = un+1. If u ∈ Vn, then let Vn+1 = Vn. Assume
without loss of generality that u 6∈ Vn. Let N = |Vn|. If d(vN , u) < δ, then let vN+1 = u
and add it to Vn to form Vn+1. Otherwise, by the density of V, choose a shortest finite path
P = p0, . . . , pℓ of points of V \ Vn starting at vN = p0 and ending at u = pℓ so that two
consecutive points in the path are distance at most δ. Then add the vertices of P to Vn to
form Vn+1 and enumerate them so that vN+i = pi for i = 0, 1, . . . , ℓ. Taking the limit of this
chain,

⋃

n≥1
Vn is a good enumeration of V , which proves the claim. �

Let V = {vi : i ≥ 1} be a good enumeration of V, and for any n, let Vn = {vi : 1 ≤ i ≤ n}.
Let G and H be two graphs produced by LARG(V, p). We say that two pairs {v, w} and
{v′, w′} of vertices are compatible if {v, w} are adjacent in G and {v′, w′} are adjacent in H
or {v, w} are non-adjacent in G and {v′, w′} are non-adjacent in H . For two pairs {v, w} and
{v′, w′} such that d(v, w) = d(v′, w′), the probability that they are compatible equals

p∗ =

{

p2 + (1− p)2 if d(v, w) < δ, and
1 otherwise.

Suppose that G and H are isomorphic, and let f be an isomorphism. Then by Lemma 1 of
[8], f must be a step-isometry on V . By Theorem 1, f must be an isometry. By Corollary 2
the images of a triangular set V1 = {v1, v2, v3} in R2 (we identify these with vertices so do not
denote them in bold) determine f completely. Let An be the event that there exists a partial
isomorphism f from the subgraph induced by Vn into H so that f(V1) ⊆ Vn, and let

A∗
n =

⋂

ν≥n

Aν .

Note that A∗
n ⊆ A∗

n+1 for all n.
Next, we estimate the probability of A∗

n. Note first that P(A∗
n) ≤ P(Aν) for all ν ≥ n. For

any tuple (u1, u2, u3) of distinct vertices in Vn, let Cn(u1, u2, u3) be the event that there exists
a partial isomorphism f from the subgraph induced by Vn in G to H so that f(vi) = ui for
i = 1, 2, 3. If Cn happens, then all pairs (vi, vi+1) and (f(vi), f(vi+1)) must be compatible, for
1 ≤ i < n. Therefore,

P(Cn(u1, u2, u3)) ≤ (p∗)n−1.

Now
An =

⋃

{u1,u2,u3}⊆Vn

Cn(u1, u2, u3),

so for n ≥ 3 we have that P(An) ≤ n2k+2(p∗)n−1, and

P(A∗
n) ≤ inf{ν2k+2(p∗)ν−1 : ν ≥ n} = 0.

If B is the event that G and H are isomorphic, then

B ⊆
⋃

n∈N+

A∗
n.
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Since the union of countably many sets of measure zero has measure zero, we conclude that
P(B) = 0, and thus, with probability 1, G is not isomorphic to H. �

3. Proofs of Lemmas 4, 5, 7, 8 and 9

Proof of Lemma 4. Suppose f respects the line ℓ, and ℓ′ is the image of ℓ under the line map.
Property (i) follows directly from (1): if ℓ contains a point v ∈ V , then ℓ′ must contain v.

Suppose for a contradiction that (ii) is false, so assume that there exists a second image of
ℓ under the line map. Precisely, assume there exists a line ℓ∗ so that if a point v ∈ V is to the
left (right) of ℓ, then it is to the left (right) of both ℓ′ and ℓ∗. However, this implies that the
region of points to the right of ℓ and to the left of ℓ∗ does not contain any images under f of
points in V . This contradicts the fact that V is dense in R2, and f is a bijection.

To prove (iii), assume that f respects the line ℓ̂, and ℓ̂′ is the image of ℓ̂ under the line map,

and suppose that ℓ and ℓ̂ are not parallel. Then ℓ and ℓ̂ divide the plane into four regions,
consisting of points that are to the left or right of ℓ and to the left or right of ℓ̂. Now suppose,
by contradiction, that ℓ′ and ℓ̂′ are parallel. Then ℓ′ and ℓ̂′ divide the plane into three regions.
Thus, there is one combination, for example, to the left of ℓ′ and to the right of ℓ̂′, which is
an impossibility. Since V is dense in R2, all four regions formed by ℓ and ℓ̂ contain points of
V , which gives a contradiction. To prove the converse, apply the analogous argument to f−1.

For (iv), suppose that f is a step-isometry and ℓ is a line respected by f , with image ℓ′.

Let ℓ̂ be an integer parallel of ℓ. Let a ·x = r be the equation defining ℓ, and a ·x = r+ z the
equation defining ℓ̂, where z ∈ Z. Without loss of generality, assume z > 0. Let a′ · x = r′ be
the equation of ℓ′. We claim that the line ℓ̂ must be respected, and its image under f is the
line ℓ̂′ with equation a′ · x = r′ + z.

Suppose, by contradiction, that there exists a point w ∈ V with image w′ = f(w) so that
a ·w < r + z, while a′ · w′ > r′ + z. Now choose u ∈ V so that dP (u,w) < z and a · u < r.

Since V is dense in R2 and the distance between ℓ and ℓ̂ equals z, we can choose such a u.
Let u′ = f(u). Since f respects ℓ, we have that a′ · u′ < r′. Since w and u lie on opposite

sides of ℓ′ and ℓ̂′, we conclude that dP (u
′,w′) > dP (ℓ

′, ℓ̂′) = z. This contradicts the fact that
f is a step-isometry. See Figure 3. �

Proof of Lemma 5. Let v1,v2 ∈ V , and let ℓ be the line through v1 and v2, and let ℓ′ be the
line through v′

1 = f(v1) and v′
2 = f(v2). Let a · x = r be the equation of ℓ and a′ · x = r′ the

equation of ℓ′. We will first show that ℓ must be respected by f , and its image under the line
map is ℓ′.

For a contradiction, assume that there exist points u,w ∈ V so that u,w are both on the
right of ℓ, while u′ = f(u) lies to the right of ℓ′ and w′ = f(w) to the left of ℓ′. More precisely,
assume that a · u > r and a ·w > r, while a′ · u > r′ and a′ ·w < r′.

Let M > 0 be an integer for which the following properties hold.

(i) M > d(u,w).
(ii) If the unit ball P is enlarged by a factor M and placed so that its centre is to the right

of ℓ′ and its boundary contains w′, so that the tangent to this M-ball at w′ is parallel
to ℓ′, then v′

1 and v′
2 must be inside the polygon. See Figure 4.

Note that (ii) can be achieved because d is a smooth metric, and thus, every slope is the
slope of a tangent of P . See Figure 4.
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u w

z

u' w'

z

' ''

Figure 3. The distance between u′ and w′ must be greater than z, while the
distance between u and w is less than z. This leads to a contradiction.

w'

'

P

v'

v'

1

2

Figure 4. Illustration of property (ii) in the definition of M . The dotted line
corresponds to the border of the M-ball.

Choose p ∈ V so that

⌊d(v1,p)⌋ = ⌊d(v2,p)⌋ = M,

and

⌊d(u,p)⌋ , ⌊d(q,w)⌋ < M.

Since M > d(u,w) and V is dense we may choose such a p.
Since f is a step-isometry we have that a similar statement must hold for p′ = f(p), and

v′
1,v

′
2,u

′,w′. Thus, the interior of the ball of radius M around p′ must contain both u′ and
w′, but not v′

1 or v′
2. By our choice of M this is impossible.

To show the second part of the lemma, let ℓ̂ be a line through a point v3 ∈ V and parallel
to ℓ. Let a · x = a · v3 be the equation of ℓ̂. We will show that ℓ̂ must be respected, and that
its image is the line ℓ̂′ with equation a′ ·x = a′ ·v′

3. Note first that by Lemma 4, item (iv), all
integer parallels of ℓ must also be respected. Thus, we may assume that the distance between
ℓ and ℓ̂ is smaller than 1, and that ℓ is to the right of ℓ̂. (We can replace ℓ be one of its integer
parallels if this is not the case.)
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Suppose, by contradiction, that there exists a point w ∈ V with image w′ = f(w) so that

w is to the left of ℓ̂, while w′ is to the right of ℓ̂′. Let m ∈ Z be so that d(w,v3) ≤ m, and so
that, if the unit ball P is enlarged by a factor m and placed so it touches ℓ and its centre is to
the left of ℓ (so it intersects ℓ̂), and so that it contains v3, then this m-ball cannot contain w′.
Now choose a point u ∈ V so that ⌊d(u,v3)⌋ = m−1, ⌊dP (u,w)⌋ ≤ m−1, and a ·u ≤ r−m.
Note that the last condition implies that u is to the left of the integer parallel of ℓ which is
distance m to the left of ℓ. Since f is a step isometry, and since the integer parallels of ℓ
must be respected, similar conditions must hold for u′ = f(u). This implies that the m-ball
centered at u has its center to the left of ℓ, it touches or does not intersect ℓ, and it contains
v′
3 and w′. By the condition on m, this is impossible. �

Note that we defer the proof of Lemma 6 to Section 3.

Proof of Lemma 7. If dP is a polygonal metric, then let G be the (finite) set of generators of
P ; that is, the set of normals to the sides of P . If dP is a smooth metric, then let G be the set
of generators a of P such that there is a line through two points of V which has a as its normal
vector. Since V is representative, G will be a generator set of P , and since V is countable, G
is also countable. We will show, using induction, that for each set B ⊆ V , f must respect all
lines in L(B,G).

Lemmas 5 and 6 show that any line through a point in B and with normal in G must be
respected. Lemma 4 (iv), shows that any integer parallel of these lines must also be respected.
This shows that f must respect all lines in L0(B,G), and thus, establishes the base case of
the induction.

Let σ : G → R2 be the function that defines the line map, so that for each line ℓ ∈ L0(B,G)
through a point b ∈ B, where ℓ has equation a · x = a · b, the image of ℓ under the line map
has as its equation a · x = σ(a) · f(b). By Lemma 4, item (iii), parallel lines that must be
respected have images that are also parallel. Thus, any line which must be respected by f
and which has normal vector a, must have as its image a line with normal vector σ(a). By
item (ii) of the same lemma, if ℓ contains point b, then its image contains f(b). This shows
that σ is well defined.

Consider the set G ′ = {σ(a) : a ∈ G}. By Lemma 6, if dP is a polygonal metric, all lines
parallel to one of the sides of P are mapped to lines that are again parallel to the sides of P ,
and thus, G ′ = G. If dP is a smooth metric, then G is a countable dense subset of the set of
all vectors from the origin to a point on the boundary of P . It is easy to see that G ′ must
also be dense. Assume, to the contrary, that there exist two vectors a, a′ so that no vector in
G ′ is “between” σ(a) and σ(a′). Fix b ∈ B. Let ℓ and ℓ′ be the lines through b with normal
vectors a and a′. Then, since G is dense, there must be a line ℓ∗ through b which separates
ℓ from ℓ′. This line must have a slope between the slopes of a and a′. Thus, the image of ℓ∗

must separate the images of ℓ and ℓ′ and have a slope between that of σ(a) and σ(a′), which
contradicts our assumption. Therefore, whether dP is polygonal or smooth, in both cases G ′

is a generator set for P .
We will show by induction that f must respect all lines in L(B,G), and that σ defines the line

map as stated. Precisely, we will recursively define a function f ∗ : W → R, where W is the set
of all intersection points of lines in L(B,G), such that for any line ℓ ∈ L(B,G) with equation
a · x = a ·w (a ∈ G, w ∈ W ), its image ℓ′ is the line with equation σ(a) · x = σ(a) · f ∗(w).
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To simplify notation, we will use Ln to denote Ln(B,G). For all k ≥ 0, let

L≤k =

k
⋃

i=1

Li,

and let Wk be the set of all intersection points of lines in L≤k. For the inductive step, assume
the statement holds for a fixed k ≥ 0. Precisely, assume that f must respect all lines in L≤k

and that f ∗ : Wk → R is defined so that the statement above holds. For any line ℓ ∈ L≤k+1

with equation a · x = a · w (a ∈ G, w ∈ W ), we define ℓ′ to be the line with equation
σ(a) · x = σ(a) · f ∗(w). The induction hypothesis says that for any ℓ ∈ L≤k, ℓ

′ is its image
under the line map. We will show that the same holds for ℓ ∈ Lk+1(B).

We extend f ∗ to Wk+1 by taking the image under f ∗ of the intersection of two lines in
L≤k to be the intersection of the images of the lines under the line map. Let a1, a2, a3 ∈ G
be such that no two are linearly dependent. Suppose that ℓ1, ℓ2 ∈ L≤k. Let ℓ3 be a line in
Lk+1 \ L≤k formed by the intersection of ℓ1 and ℓ2. Moreover, assume ℓi has normal vector
ai, for i = 1, 2, 3. In this proof, we will say that a point p is to the right (left) of a line with
equation a · x = t if a · p > t (a · p < t). See Figure 5 for a visualization of the proof.

v v'

1 1

2 2

3 3
' '

'

'
w

44

f

Figure 5. The point f(w) does not exist.

Assume by contradiction that f does not respect ℓ3. Precisely, assume there exists v ∈ V
which is to the left of ℓ3 such that v′ = f(v) is to the right of the line ℓ′3. Let ℓ4 be the unique
line parallel to ℓ3 and through v. By the base case, f must respect lines in L0, and so must
respect ℓ4. As V is dense in R2, we may choose w ∈ V so that w is to the right of ℓ4, left of
ℓ1, and left of ℓ2. See Figure 5. But then f(w) must be to the right of ℓ′4, to the left of ℓ′1, and
to the left of ℓ′2, which is a contradiction. �

Proof of Lemma 8. Let G be a countable generator set for P which contains at least three
vectors that are pairwise non-parallel. Let B = {p,q}, and fix a ∈ G, where a · (p− q) = r ∈
(0, 1) .

Without loss of generality, assume that q = 0. Fix a1, a2, a3 ∈ G so that no two are linearly
dependent. Consider the triangular lattice formed by the lines generated by the ai and the
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0
p

1p

a  x = 03

0

a  x = 02

2p

6p

5p

3p

4p

a  x = 11

r

r

1

37

5

4

2

7pp

Figure 6. Left: A triangular lattice. Right: Generating the line a3 · p2 = 1− r.

point 0 in L0({0}, {a1, a2, a3}); that is, all lines with equations ai · x = z, where i ∈ {1, 2, 3}
and z ∈ Z. See the left figure in Figure 6.

Consider the triangle that contains p. We assume that this triangle is framed by the lines
with equations a1 · x = 1, a2 · x = 0 and a3 · x = 0, as shown in Figure 6. (The proof can
easily be adapted to cover all other possibilities.) By definition, the line ℓ1 through p with
normal a1 is part of L0(B,G). The line ℓ1 has as equation a1 · x = r, where r = a1 · p.

The line ℓ1 intersects the two sides of the triangle in p1 and p2. Following the recursive
definition, this implies that L1(B,G) contains the line ℓ2 through p1 with normal a2. Precisely,
ℓ2 has equation a2 · x = a2 · p1. Similarly, L1(B,G) contains the line ℓ3 through p2 which has
equation a3 · x = a3 · p2. See the right figure in Figure 6.

The lines ℓ2 and ℓ3 intersect the third side of the triangle in p3 and p4, generating two lines
ℓ4 and ℓ5 in L2(B) with equations a3 ·x = a3 ·p3 and a2 ·x = a2 ·p4, respectively. The lines ℓ4
and ℓ5 intersect with the sides of the triangle in p5 and p6, generating one line ℓ6 in L3(B,G)
with equation a1 · x = a1 · p5 = a1 · p6.

By the comparison of similar triangles, we obtain that

a1 · p5 = a1 · p6 = 1− a1 · p = 1− r.

Now the parallel lines a1 · x = r + z2,−r + z2, z2 ∈ Z, may be generated from all similar
triangles in the lattice in an analogous fashion.

To complete the proof, consider that the lines ℓ2 and ℓ3 intersect in point p7, which generates
a line ℓ7 with normal a1 as indicated in the right figure in Figure 6. Since the triangle formed
by p1,p2, and p7 is half of a parallelogram formed by 0,p1, p2 and p7, it follows that ℓ7 has
equation a1 · x = 2r. This process can be repeated to obtain all the lines a1 · x = z1r + z2,
z1, z2 ∈ Z.

If r is irrational, then the set {z1r + z2 : z1, z2 ∈ Z} is dense in R (this is a result from
folklore which can be proved by using the pigeonhole principle). That completes the proof of
the lemma. �
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Proof of Lemma 9. Fix q ∈ V and a ∈ G. Define S(a) = {v ∈ R2 : a · (v − q) ∈ Q}. The set
S(a) is the union of a countable number of lines, and thus, has measure zero in R2. Let

S =
⋃

a∈G

S(a).

Then S is the countable union of sets of measure zero, so S has measure zero. Since V is
representative, there must exist a point p ∈ V such that V 6∈ S, and thus, for all a ∈ G,
a · (p− q) is irrational.

Let B = {p,q}. Let W be the set of all intersection points in L(B,G), and let σ and f ∗ be
as given by Lemma 7. Fix a ∈ G, and let r = a · (q−p) and r′ = σ(a)a · (q′ −p′). By Lemma
8, for any z1, z2 ∈ Z the line ℓ with equation a · x = z1r + z2 is in L(B,G), and by Lemma 4,
this line must be respected. Following the proof of Lemma 8, it can be easily deduced that
the image of ℓ must have as its equation σ(a) · x = z1r

′ + z2. Namely, each of the points pi

used in the proof and in Figure 2 is defined by the intersection of previously given lines. Their
image f ∗(pi) will be similarly defined by the intersection of the images of those lines. Thus,
the images again follow a layout as in Figure 6 (right), but in this case the distance between
the images of the reference points 0 and p equals r′.

We now claim that r = r′. Assume that this is not the case. Then there exist integers
z1, z2 ∈ Z so that z1r + z2 < 1 and z1r

′ + z2 > 1. Choose a point v ∈ V so that z1r + z2 <
a · (v − q) < 1. Thus, v lies to the right of the line with equation a · (x− p) = z1r + z2, and
to the left of the line with equation a · (x − p) = 1. Thus, its image v′ = f(v) must lie to
the right of the line with equation σ(a) · (x− p′) = z1r

′ + z2, and to the left of the line with
equation σ(a) · (x− p′) = 1. Hence, z1r

′ + z2 < σ(a) · v < 1, which is a contradiction. �

4. Respecting lines when P is a polygon; proof of Lemma 6

In this section, we consider norm-derived metrics on R2 whose shape is a polygon. Specif-
ically, fix d ∈ Ω so that d is a polygonal metric which is not a box metric, and let P be the
shape of d. Let V be a representative set in R2 and let f : V → V be a step-isometry. Since
P is a polygon, its generator set is finite. Let G be the generator set of P where each direction
is represented by only one vector, so we have that P = {x : ∀ a ∈ G, −1 ≤ a · x ≤ 1}, and for
all x,y ∈ R,

d(x,y) = max{|a · (x− y)| : a ∈ G}.

Recall that we use F (P, a) to denote the face of P with normal a ∈ G, where a is pointing
away from the centre of P . We will show that any line through a point v ∈ V and parallel to
one of the sides of P must be respected, and its image is a line through v′ = f(v) parallel to
one of the sides of P .

Before we prove Lemma 6, we need the following technical lemma. The lemma can be
understood as follows. Given a point p ∈ R, and a line ℓ through p with normal vector
a ∈ G, it is straightforward to define two polygons which are both similar to P , so that ℓ is
the only line through p which separates the two polygons. Namely, consider two copies of
P side-by-side; that is, they intersect in a face defined by a, place them such that p lies on
the shared face, and then move them apart so that they do not intersect, but no other line
through p with normal vector in G fits between the two polygons. However, to define these
separating polygons one must be able to precisely define the distances.
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The following lemma shows that separating polygons can also be defined if only rounded
distances are given. This is achieved by making the polygons very large. Before stating the
lemma, we introduce the following notation for the rounded distance. For all x,y ∈ R, define

D(x,y) = ⌊dP (x,y)⌋ .

Lemma 11. There exist positive integers M and m such that, given any points

p, z, z∗,x,x∗,y,y∗ ∈ R2

which satisfy the conditions (3) below, there exists a unique line through p parallel to one of
the sides of P which separates the sets {x : d(x, z) ≤ M} and {x : d(x, z∗) ≤ M}.

D(x,x∗) = D(y,y∗) = 0,

D(x,p) = D(x∗,p) = D(y,p) = D(y∗,p) = m,

D(x,y) = D(x∗,y∗) = 2m,

D(z,x) = D(z,y) = D(z∗,x∗) = D(z∗,y∗) = M − 1,

D(z,p) = D(z∗,p) = M,

D(z, z∗) = 2M. (3)

Proof. Let m and M be positive integers that satisfy the following conditions. Note that the
conditions impose only lower bounds, and thus, m and M can always be chosen so that the
conditions hold by choosing them sufficiently large.

(a) Let θmin be the minimum angle between any two vectors in G. We must choose m so
that m > 1/ sin(θmin).

(b) Let m be chosen such that, for all a ∈ G, the shortest path along the boundary of P
from a point on the line ℓ+ with equation a ·x = 1/m, and a point on the line ℓ− with
equation a · x = −1/m has length at most 1 (where length is measured according to
metric d). See Figure 7.

P

p

- +

Figure 7. Condition (b): the length of the bold path along the boundary is at
most 1/m.

(c) The integer M is such that, for any a ∈ G, the region strictly between the lines ℓ−

with equation a · x = 1 − 1/M, and the line ℓ0 with equation a · x = 1 (an extension
of the face F (P, a)), contains no vertex of P . See Figure 8.
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(d) The integers M and m are such that, for any a ∈ G, and lines ℓ− and ℓ0 as defined
under (c), the following holds. Let q be a vertex of P on ℓ0, and let v be the point on
the intersection of the boundary of P and ℓ− which is closest to q. Then d(v,q) ≤ m−1

M
.

See Figure 8.

F(P,a)

q

v

0

Figure 8. Condition (c): no vertices of P lie between ℓ− and ℓ0. Condition
(d): limits the length of the bold part v–q of the boundary of P .

(e) The integers M and m are so that M > m > 2, and M is large enough so that points
can be chosen so that conditions (3) hold.

Let p, z, z∗,x,x∗,y,y∗ ∈ R2 be such that the conditions in (3) hold. Let

Pz = BM(z) and Pz∗ = BM(z∗).

See Figure 9. Hence, Pz and Pz∗ are the polygons, similar to P , which form the balls of radius
M around z and z∗, respectively. We will show first that there exists a line through p parallel
to one of the sides of P which separates Pz and Pz∗ .

P P

p

x

y

z

x'

y'

z'

z z'

Figure 9. The balls Pz and Pz∗ .
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Let a ∈ G be the vector that determines d(z, z∗) so that

d(z, z∗) = a · (z∗ − z),

and for all aG ∈ G,

|aG · (z∗ − z)| ≤ d(z, z∗).

This implies that the line segment connecting z and z∗ intersects Pz in F (Pz, a) and Pz∗ in
F (Pz∗ ,−a), as shown in Figure 10.

P P

p

z

z*

z z*

Figure 10. The line segment connecting z and z∗ intersects Pz and Pz∗ in
parallel faces.

Let ℓ1 and ℓ2 be the lines extending F (Pz, a) and F (Pz∗ ,−a), respectively. Precisely, ℓ1
is the line with equation a · x = a · z + M , and ℓ2 has equation a · x = a · z∗ − M . Since
D(z, z∗) = ⌊d(z, z∗)⌋ = 2M we have that Pz and Pz∗ do not intersect, and thus, ℓ1 lies to the
left of ℓ2. If p lies between ℓ1 and ℓ2, then the line with equation a · x = a · p separates Pz

and Pz∗ , as in Figure 9, and we are done.
Suppose now, by contradiction, that this is not the case. See Figure 11. Without loss of

generality, suppose that p lies to the left (z-side) of ℓ1. By definition x∗ and y∗ lie inside Pz∗ ,
and thus, to the right of ℓ2. Since d(x,x∗) < 1 and d(y,y∗) < 1, we must have that x and
y both lie to the right (z∗-side) of the line ℓ3, which is an integer parallel of ℓ2 defined by
a · x = a · z∗ −M − 1. Note that ℓ3 is such that ℓ2 and ℓ3 are distance 1 apart in the polygon
metric d. Since d(p, z∗) < M + 1, p must lie to the right of ℓ3.

Consider Pp = Bm(p), the m-ball around p. Let v be the point on the intersection of the
boundary of Pz and ℓ3 and let q be the vertex of Pz which is an endpoint of F (Pz, a) (see
Figure 6). (Following the definition, there are actually two choices for both q and v; in each
case, we choose the point closest to p.) By condition (c) on M , no vertex of Pz lies between
ℓ3 and ℓ1, and thus, the line segment from q to v is part of the boundary of Pz. By condition
(d), this line segment has length, measured according to d, at most m− 1.

Since d(p, z) ≤ M + 1, the distance from p to the nearest point on the boundary of Pz is
at most 1. Moreover, since d(v,q) ≤ m− 1 this implies that there is a path of length at most
m from p to v and from p to q, respectively. Thus, d(v,p) ≤ m and d(v,q) ≤ m, and so v
and q lie inside Pp, and, by convexity, so does the entire piece of the boundary of Pz between
q and z.
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Figure 11. The point p must lie to the right of ℓ3.
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Figure 12. The position of x and y. The shaded area is the only area between
lines ℓ1 and ℓ3 outside Pp and inside Pz.

We therefore have that there is only one connected region between ℓ1 and ℓ3 outside Pp

and inside Pz. See shaded area in Figure 12. Hence, x and y must both lie in the unique
region outside Pp and between ℓ1 and ℓ3. In particular, they both lie on the same side of Pp.
However, since d(x,p) < m + 1 and d(y,p) < m + 1, x and y are both within distance 1
(in polygon distance) of Pp. By condition (2), the length of the piece of the boundary of Pp

between lines ℓ1 and ℓ3, measured in polygon distance, is at most m. Therefore,

dP (x,y) ≤ m+ 2 < 2m,

which contradicts the assumption about the choice of x and y. Hence, p lies between ℓ1 and
ℓ2 as in Figure 9, and thus, the line ℓ with equation a · x = a · p separates Pz and Pz∗ .

Next, we prove that the line ℓ is unique with the given property. Suppose for a contradiction
that there are two distinct lines ℓ1 and ℓ2, with normal vectors a1 and a2 in GP , respectively,
so that both ℓ1 and ℓ2 contain p and separate Pz and Pz∗ . In particular, both lines must
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separate x and x∗. Now, by the conditions in (3), d(x,x∗) < 1, d(p,x) ≥ m and d(p,x∗) ≥ m.
Thus, the angle φ between the line segments px and px∗ is such that sin(φ) < 1/m. The angle
between ℓ1 and ℓ2 must be smaller than the angle between a1 and a2, but by condition (a) the
angle between any two vectors in G has sine value at least 1/m. This gives a contradiction. �

Proof of Lemma 6. Assume without loss of generality that the origin 0 ∈ V , and that f(0) =
(0). Fix a ∈ G. Let M and m be as in Lemma 11, let p = 0, and choose z, z∗,x,x∗,y,y∗ such
that ‖z‖P = a · z and ‖z∗‖P = −a · z∗, and the conditions (3) of Lemma 11 hold. Hence, the
sets Pz = BM(z) and Pz∗ = BM (z∗) are separated by the line ℓ with equation x · a = 0.

Since f is a step-isometry, and conditions (3) only refer to rounded distances, the conditions
(3) also hold for the images f(p) = 0, f(z), f(z∗), f(x), f(x∗), f(y), and f(y∗). Therefore, by
Lemma 11 there exists a vector a′ ∈ G so that the line ℓ′ with equation a′ · x = 0 separates
the M-balls around f(z) and f(z∗). Precisely, a′ · f(z) < 0 and a′ · f(z∗) > 0.

Claim: The map f is consistent with the line ℓ with equation x · a = 0, and the image of
ℓ under the line map is the line ℓ′ with equation a′ · x = 0.

Proof of Claim. Fix any w ∈ V to the left of ℓ, so a ·w < 0. Choose integer M ≥ M +1, and
points z̄ and z̄∗ so that D(w, z̄) ≤ M̄ and z̄, z̄∗,x,x∗,y,y∗,p satisfy conditions (3) with M
replaced by M . Moreover, the new points are chosen so that Pz is contained in Pz̄ = BM(z̄
and Pz∗ is contained in Pz̄∗ = BM(z̄∗).

By definition, the sets Pz̄) and Pz̄∗ are separated by the line ℓ, and w ∈ Pz̄. By Lemma 11

there must be a line ℓ̂ through f(p) = 0 with normal in G which separates the M-balls around

f(z̄) and f(z̄∗). The line ℓ̂ also separates the M-balls around f(z) and f(z∗), and thus, ℓ̂ line
must be ℓ′. Therefore, f(w) must lie on the left (that is, the f(z)-side) of ℓ′. �

By the claim, we can now define σ : G → G by taking σ(a) to be the normal to the image
under the line map of the line with equation a · x = 0. By Lemma 4, σ is well-defined and a
bijection.

By a similar argument, for every point p ∈ V we can define such a map σ. Moreover, by
Lemma 4 (iii), parallel lines have parallel images under the line map. Hence, the map σ is
independent of the choice of p. �
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